JP2001247904A - Method for producing metallic sintered product - Google Patents

Method for producing metallic sintered product

Info

Publication number
JP2001247904A
JP2001247904A JP2000062222A JP2000062222A JP2001247904A JP 2001247904 A JP2001247904 A JP 2001247904A JP 2000062222 A JP2000062222 A JP 2000062222A JP 2000062222 A JP2000062222 A JP 2000062222A JP 2001247904 A JP2001247904 A JP 2001247904A
Authority
JP
Japan
Prior art keywords
sintering
compact
metal
molded body
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000062222A
Other languages
Japanese (ja)
Inventor
Isao Makino
功 牧野
Takeshi Arai
毅 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000062222A priority Critical patent/JP2001247904A/en
Publication of JP2001247904A publication Critical patent/JP2001247904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a metallic sintered product by which the friction resistance between a molded body and a sintering stand is reduced, and the deformation of the molded body caused by the friction resistance can be prevented. SOLUTION: A molding material obtained by mixing metal powder and a binder is subjected to injection molding into a die to produce a molded body. Next, a degreasing stage of removing the binder from the molded body is performed, and, thereafter, a sintering stage of sintering the above metal powder is performed to produce a metallic sintered product. In the above sintered stage, in a sintering furnace 2, the above molded body 1 subjected to the degreasing stage is placed on a sintering stand 3, further, a rollable inclusion 4 is interposed between the above molded body 1 and the above sintering stand 3, and sintering is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,金属粉末射出成形法により,金
属焼結品を製造する場合のバインダの除去後の金属粉末
を焼結させる焼成工程に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintering step for sintering a metal powder after removing a binder when manufacturing a metal sintered product by a metal powder injection molding method.

【0002】[0002]

【従来技術】近年,金属粉末射出成形法(MIM法:Metal
Powder Injection Molding)が金属部品の製造法とし
て利用されている。この方法は,金属粉末をバインダと
混合させて流動性を持たせて,これを射出成形し,得ら
れた成形体から加熱等によりバインダの大部分を除去す
る脱脂工程と,更に高い温度で加熱して金属粉末を焼結
させる焼成工程を行うことによって所望の製品を得る方
法である。
2. Description of the Related Art In recent years, metal powder injection molding (MIM: Metal
Powder Injection Molding) is used as a method for manufacturing metal parts. In this method, a metal powder is mixed with a binder so as to have fluidity, the mixture is injection-molded, and a large amount of the binder is removed from the obtained molded body by heating or the like. This is a method of obtaining a desired product by performing a firing step of sintering the metal powder.

【0003】図6(a)に示すごとく,一般に,焼成工
程では,成形体9を載置するために焼成台93を用い
る。焼成工程では焼成炉2の内部を高温にするので,こ
の焼成台93には,アルミナ等の熱安定性の高いものが
使用される。ところで,脱脂工程では成形体9のバイン
ダの大部分が除去されるため,焼成工程においては,粉
末が焼結する分,成形体9は収縮をする。バインダは成
形体9に均一に介在しているため,成形体9は全体的に
均一に収縮をする。このとき,熱安定性の高い焼成台9
3はほとんど収縮しないため,成形体9における焼成台
93との接触面92においては,成形体9と焼成台93
との間に摩擦抵抗が生じ,その収縮を阻害される。その
ため,図6(b)に示すごとく,焼成工程後の金属焼結
体91は,焼成台93と接触している面が収縮できず
に,底面面積が広くなった形状になってしまう。
As shown in FIG. 6A, generally, in a firing step, a firing table 93 is used to mount the compact 9 thereon. Since the inside of the baking furnace 2 is heated to a high temperature in the baking step, a baking table 93 made of a material having high thermal stability such as alumina is used. By the way, since most of the binder of the compact 9 is removed in the degreasing step, the compact 9 shrinks in the firing step as much as the powder sinters. Since the binder is uniformly interposed in the molded body 9, the molded body 9 contracts uniformly as a whole. At this time, the firing table 9 with high thermal stability
3 hardly shrinks, so that the molded body 9 and the baking table 93
A frictional resistance is generated between them, and their contraction is hindered. Therefore, as shown in FIG. 6B, the surface of the metal sintered body 91 after the firing step cannot be shrunk in contact with the firing table 93, and has a shape with a large bottom area.

【0004】焼成台に関する知見としては,特開平6−
305842号公報に示されるごとく,成形体に合わせ
た焼成治具を用いて焼結を行うという方法がある。この
方法では,成形体の自重による変形を防止することがで
きる。また,特開平10−158070号公報に示され
るごとく,焼成治具に凹凸,あるいは貫通孔を設けて焼
結を行うという方法がある。この方法では,成形体と焼
成治具との固着を防止することができる。
[0004] Regarding the knowledge of the firing table, see
As disclosed in Japanese Patent Publication No. 305842, there is a method in which sintering is performed using a firing jig adapted to a compact. According to this method, it is possible to prevent deformation of the molded body due to its own weight. Also, as disclosed in Japanese Patent Application Laid-Open No. 10-158070, there is a method in which unevenness or through holes are provided in a firing jig and sintering is performed. According to this method, it is possible to prevent the compact from sticking to the firing jig.

【0005】[0005]

【解決しようとする課題】しかしながら,従来の方法
は,成形体と焼成台具との間の摩擦抵抗による変形防止
には効果が期待できない。
However, the conventional method cannot be expected to be effective in preventing deformation due to frictional resistance between the compact and the sintering fixture.

【0006】本発明は,かかる従来の問題点に鑑みてな
されたもので,焼成工程において,成形体と焼成台との
間の摩擦抵抗を低減し,該摩擦抵抗による成形体の変形
を防止することができる金属焼結品の製造方法を提供し
ようとするものである。
The present invention has been made in view of such a conventional problem, and reduces the frictional resistance between a compact and a baking table in a baking process, thereby preventing deformation of the compact due to the frictional resistance. It is an object of the present invention to provide a method for manufacturing a sintered metal product that can be used.

【0007】[0007]

【課題の解決手段】請求項1に記載の発明は,金属粉末
とバインダとを混合させた成形材料を型内に射出成形し
て成形体を作製し,次いで該成形体からバインダを除去
する脱脂工程を行った後,上記金属粉末を焼結させる焼
成工程を行って,金属焼結品を製造する方法であって,
上記焼成工程においては,上記脱脂工程を終えた上記成
形体を焼成台の上に載置すると共に,上記成形体と上記
焼成台の間に転動可能な介在物を介在させて焼結を行う
ことを特徴とする金属焼結品の製造方法にある。
According to a first aspect of the present invention, there is provided a degreasing method in which a molding material in which a metal powder and a binder are mixed is injection-molded into a mold to produce a molding, and then the binder is removed from the molding. After performing the step, a sintering step of sintering the metal powder is performed to produce a sintered metal product,
In the firing step, the compact having undergone the degreasing step is placed on a firing table, and sintering is performed with a rollable inclusion interposed between the compact and the firing table. A method of manufacturing a metal sintered product characterized by the above.

【0008】本発明において最も注目すべきことは,上
記脱脂工程を終えた上記成形体を焼成台の上に載置する
と共に,上記成形体と上記焼成台の間に転動可能な介在
物を介在させて焼結を行うことである。
In the present invention, it is most remarkable that the compact having undergone the degreasing step is placed on a firing table, and a rollable inclusion is provided between the compact and the firing table. Sintering with the interposition.

【0009】次に,本発明の作用効果につき説明する。
本発明における焼成工程では,成形体と焼成台の間に転
動可能な介在物を介在させている。そのため,焼結時に
おける成形体の変形を防止することができる。即ち,焼
成工程においては,成形体全体が収縮しようとすると
き,焼成台との接触面以外の部分は摩擦抵抗がなく自由
に収縮することができる。一方,焼成台との接触面に
は,焼成台との間の摩擦抵抗が収縮の妨げとなる。ここ
で,本発明では,成形体と焼成台との間には上記介在物
を介在させている。そのため,成形体が収縮するとき,
成形体が介在物を転がして収縮することができる。
Next, the operation and effect of the present invention will be described.
In the firing step according to the present invention, a rollable inclusion is interposed between the compact and the firing table. For this reason, deformation of the compact during sintering can be prevented. That is, in the firing step, when the entire molded body is about to shrink, parts other than the contact surface with the firing table can be shrunk freely without frictional resistance. On the other hand, on the contact surface with the baking table, the frictional resistance with the baking table hinders shrinkage. Here, in the present invention, the above-mentioned inclusion is interposed between the compact and the firing table. Therefore, when the compact shrinks,
The compact can roll and shrink the inclusions.

【0010】つまり,接触面においては,従来のような
大きな摩擦抵抗を発生しうる滑り運動ではなく,非常に
小さな摩擦抵抗しか発生させない転がり運動になる。そ
のため,成形体が収縮する際に,接触面に発生する摩擦
抵抗を著しく低減させることができる。それ故,摩擦抵
抗による成形体の変形を防止することができる。なお,
介在物は,特殊な形状をしたものにする必要がなく,種
々の形状のものを用いることができる。また,上記介在
物のすべてが転がる必要はなく,その一部が転がること
によっても,上記摩擦抵抗を大幅に低減させることがで
きる。
That is, on the contact surface, a rolling motion that generates only a very small frictional resistance is performed instead of a sliding motion that can generate a large frictional resistance as in the related art. Therefore, the frictional resistance generated on the contact surface when the compact shrinks can be significantly reduced. Therefore, deformation of the molded body due to frictional resistance can be prevented. In addition,
The inclusion does not need to have a special shape, and various shapes can be used. Further, not all of the inclusions need to be rolled, and even if a part of the inclusions roll, the frictional resistance can be significantly reduced.

【0011】また,本発明による焼成工程では,介在物
を成形体と焼成台との間に介在させるだけで良い。その
ため,実施が容易であり,あまり費用がかからない。ま
た,そのため,種々の形状の成形体に使用することがで
きる。
In the firing step according to the present invention, it is only necessary to interpose inclusions between the compact and the firing table. Therefore, it is easy to implement and inexpensive. Therefore, it can be used for molded articles of various shapes.

【0012】なお,上記介在物には,熱安定性の良いも
のを使用することが好ましい。例えば,アルミナ,窒化
ケイ素等のセラミックス,焼結温度より高融点の金属,
金属間化合物等とすることができる。これにより,上記
介在物が,炉内で高温にさらされても変形することがな
く,成形体が収縮するとき,該成形体が介在物の上を転
がることができる。
It is preferable that the inclusions have good thermal stability. For example, ceramics such as alumina and silicon nitride, metals having a melting point higher than the sintering temperature,
It can be an intermetallic compound or the like. Thus, the inclusion does not deform even when exposed to high temperatures in a furnace, and when the compact shrinks, the compact can roll over the inclusion.

【0013】以上,本発明によれば,成形体と焼成台と
の間の摩擦抵抗を低減し,該摩擦抵抗による成形体の変
形を防止することができる金属焼結品の製造方法を提供
することができる。
As described above, according to the present invention, there is provided a method for producing a metal sintered product capable of reducing the frictional resistance between a compact and a firing table and preventing deformation of the compact due to the frictional resistance. be able to.

【0014】次に,請求項2に記載の発明のように,上
記介在物は,球状物であることが好ましい。これによ
り,成形体が無理なく介在物の上を転がることができ
る。そのため,成形体と焼成台との間の介在物の転がり
による摩擦抵抗を小さくすることができる。
Next, as in the second aspect of the present invention, it is preferable that the inclusions are spherical. This allows the compact to roll over the inclusion without difficulty. Therefore, the frictional resistance due to the rolling of the inclusion between the molded body and the baking table can be reduced.

【0015】次に,請求項3に記載の発明のように,上
記球状物は,その粒径が上記成形体の上記金属粉末の粒
径以上であることが好ましい。これにより,成形体が無
理なく介在物の上を転がることができる。そのため,成
形体と焼成台との間の介在物の転がりによる摩擦抵抗を
小さくすることができる。なお,上記介在物の粒径が,
成形体の金属粉末の粒径よりも小さい場合,介在物は,
成形体の隙間の中に入り込んでしまうため,成形体が収
縮するとき,介在物の上を転がることができないおそれ
がある。そのため,介在物の粒径は,成形体の金属粉末
の粒径以上であることが好ましい。
Next, as in the third aspect of the present invention, it is preferable that the spherical particles have a particle size equal to or larger than that of the metal powder of the compact. This allows the compact to roll over the inclusion without difficulty. Therefore, the frictional resistance due to the rolling of the inclusion between the molded body and the baking table can be reduced. The particle size of the inclusions is
If the particle size is smaller than that of the metal powder of the compact,
When the compact shrinks, it may not be able to roll over the inclusions because it enters the gaps between the compacts. Therefore, the particle size of the inclusions is preferably equal to or larger than the particle size of the metal powder of the compact.

【0016】次に,請求項4に記載の発明のように,上
記球状物は,焼結後の金属焼結体の底面に,4個以上接
触し得る粒径を有していることが好ましい。これによ
り,成形体が無理なく介在物の上を転がることができ
る。そのため,成形体と焼成台との間の介在物の転がり
による摩擦抵抗を小さくすることができる。
Next, as in the invention according to a fourth aspect, it is preferable that the spherical object has a particle size capable of contacting four or more pieces with the bottom surface of the sintered metal body. . This allows the compact to roll over the inclusion without difficulty. Therefore, the frictional resistance due to the rolling of the inclusion between the molded body and the baking table can be reduced.

【0017】なお,上述したように,焼成工程では,粉
末が焼結する分,成形体は収縮をする。この収縮は,例
えば,図2に示すごとく,成形体1の辺の長さが約80
%の長さに収縮する。この場合,球状物4の直径Rは,
以下の条件により決定することが好ましい。即ち,焼結
前の成形体1における底面の各辺長さをa,bとしたと
き,焼結後の金属焼結体11における各辺の長さは約8
0%の長さに短くなるため,焼結前の面積をabとした
とき,焼結後の面積はおよそ0.64abとなる。一
方,球状物4の直径をRとしたとき,球状物4は金属焼
結体11を支え,どの方向にも転がるためには,4個以
上介在していることが好ましい。
As described above, in the firing step, the compact shrinks as much as the powder sinters. This shrinkage is, for example, as shown in FIG.
Shrink to% length. In this case, the diameter R of the spherical object 4 is
It is preferable to determine under the following conditions. That is, assuming that the length of each side of the bottom surface of the compact 1 before sintering is a and b, the length of each side of the sintered metal 11 after sintering is about 8
Since the length is shortened to 0%, when the area before sintering is ab, the area after sintering is about 0.64ab. On the other hand, when the diameter of the spherical object 4 is R, the spherical object 4 preferably intervenes four or more in order to support the metal sintered body 11 and roll in any direction.

【0018】更に具体的に説明すると,直径Rの球状物
4が2個並んで各辺を形成する面積4Rは,焼結後の
金属焼結体11によって形成される面積0.64abと
等しくなり,4R=0.64abとなる。従って,こ
の場合には,球状物4の直径Rは,0.4(ab)
0.5以下とすることが好ましい。
[0018] More specifically, the area 4R 2 where spheres 4 of diameter R to form two side by side each side is equal to the area 0.64ab formed by sintered metal 11 after sintering 4R 2 = 0.64ab. Therefore, in this case, the diameter R of the spherical object 4 is 0.4 (ab)
It is preferable to be 0.5 or less.

【0019】次に,請求項5に記載の発明のように,上
記球状物は,複数段に積層した状態で介在していること
が好ましい。これにより,介在物を成形体と焼成台との
間に容易に介在させることができる。例えば,介在物
は,成形体を焼成台の上に載置する前に,予め焼成台の
上に敷き詰めておくことができる。この際,介在物を一
段に整然と並べる必要はなく,敷き詰める作業の手間を
省くことができる。
Next, as in the fifth aspect of the present invention, it is preferable that the spherical objects are interposed in a state of being stacked in a plurality of stages. Thereby, an inclusion can be easily interposed between the compact and the firing table. For example, the inclusions can be previously spread on the baking table before placing the compact on the baking table. At this time, it is not necessary to arrange the inclusions in a more orderly manner, and the work of laying down can be omitted.

【0020】次に,請求項6に記載の発明のように,上
記球状物は,その粒径が0.05〜1mmであることが
好ましい。これにより,成形体が無理なく介在物の上を
転がることができる。そのため,成形体と焼成台との間
の介在物の転がりによる摩擦抵抗を小さくすることがで
きる。
Next, as in the sixth aspect of the present invention, it is preferable that the spherical material has a particle size of 0.05 to 1 mm. This allows the compact to roll over the inclusion without difficulty. Therefore, the frictional resistance due to the rolling of the inclusion between the molded body and the baking table can be reduced.

【0021】なお,上記球状物の粒径が0.05mm未
満の場合には,金属粉末の粒径は分布を持つため,その
粒径が平均粒径を超える場合があり,球状物の転がりが
悪くなるおそれがある。また,その粒径が小さくなると
表面エネルギーが大きくなるため,球状物の転がりが悪
くなるおそれがある。一方,1mmを超える場合には,
成形体と球状物との接触距離が長くなるので,成形体の
形状によっては成形体が変形する可能性がある。
When the particle diameter of the spherical object is less than 0.05 mm, since the particle diameter of the metal powder has a distribution, the particle diameter may exceed the average particle diameter, and the rolling of the spherical object may occur. It may be worse. In addition, when the particle diameter is small, the surface energy is large, so that the rolling of the spherical object may be deteriorated. On the other hand, if it exceeds 1 mm,
Since the contact distance between the molded body and the spherical body becomes long, the molded body may be deformed depending on the shape of the molded body.

【0022】次に,請求項7に記載の発明のように,上
記介在物は,棒状物とすることもできる。この場合に
は,上記介在物が上記球状物である場合と同様に,上記
接触面における摩擦抵抗を大幅に低減させることができ
る。
Next, as in the invention as set forth in claim 7, the inclusion may be a rod-shaped object. In this case, the frictional resistance at the contact surface can be significantly reduced as in the case where the inclusion is the spherical object.

【0023】次に,請求項8に記載の発明のように,上
記棒状物は,その直径が上記成形体の上記金属粉末の粒
径以上であることが好ましい。これにより,上記球状物
の場合に述べたと同様の理由で,成形体は棒状物の上を
無理なく転がることができる。
Next, as in the present invention, it is preferable that the diameter of the rod is equal to or larger than the particle diameter of the metal powder of the compact. Thereby, the molded body can be rolled on the rod-shaped object without difficulty for the same reason as described in the case of the spherical object.

【0024】次に,請求項9に記載の発明のように,上
記棒状物は,焼結後の金属焼結体の底面に,2個以上接
触し得る直径を有していることが好ましい。これによ
り,上記球状物の場合に述べたと同様の理由で,成形体
は棒状物の上を無理なく転がることができる。
Next, as in the ninth aspect of the present invention, it is preferable that the rod has a diameter that allows two or more pieces to contact the bottom surface of the sintered metal body. Thereby, the molded body can be rolled on the rod-shaped object without difficulty for the same reason as described in the case of the spherical object.

【0025】具体的には,図3に示すごとく,棒状物4
の直径Rは,以下の条件により決定することが好まし
い。即ち,焼結後の金属焼結体11の底面において棒状
物4が転がる方向の辺の長さをBとしたとき,棒状物4
は,金属焼結体11を安定して支えるために,2個以上
介在していることが好ましい。よって,直径Rの棒状物
4が2個並んで形成される長さ2Rは,辺の長さBに等
しくなり,2R=Bとなる。従って,Rは,B/2以下
とすることが好ましい。
More specifically, as shown in FIG.
Is preferably determined by the following conditions. That is, when the length of the side in the rolling direction of the rod 4 on the bottom surface of the sintered metal body 11 after sintering is B, the rod 4
In order to stably support the metal sintered body 11, it is preferable that two or more are interposed. Therefore, the length 2R formed by arranging the two rod-shaped objects 4 having the diameter R is equal to the side length B, and 2R = B. Therefore, it is preferable that R be B / 2 or less.

【0026】次に,請求項10に記載の発明は,金属粉
末とバインダとを混合させた成形材料を型内に射出成形
して成形体を作製し,次いで該成形体からバインダを除
去する脱脂工程を行った後,上記金属粉末を焼結させる
焼成工程を行って,金属焼結品を製造する方法であっ
て,上記焼成工程においては,上記脱脂工程を終えた上
記成形体を焼成台の上に載置し,上記成形体と上記焼成
台との接触面における上記焼成台の表面粗さは,十点平
均粗さRzが6.5以下であることを特徴とする金属焼
結品の製造方法にある。
Next, a tenth aspect of the present invention is a degreasing method in which a molding material in which a metal powder and a binder are mixed is injection-molded into a mold to produce a molding, and then the binder is removed from the molding. After performing the step, a firing step of sintering the metal powder is performed to produce a sintered metal product. In the firing step, the compact having undergone the degreasing step is placed on a firing table. The surface roughness of the sintering table on the contact surface between the compact and the sintering table, which is placed on top, has a ten-point average roughness Rz of 6.5 or less. In the manufacturing method.

【0027】本発明において最も注目すべきことは,上
記成形体と上記焼成台との接触面における上記焼成台の
表面粗さを,上記特定の値に積極的に設定するというこ
とである。そして,これにより,成形体と焼成台との間
の摩擦抵抗を小さくすることができ,成形体の変形を防
止することができる。
The most remarkable point in the present invention is that the surface roughness of the baking table at the contact surface between the compact and the baking table is positively set to the specific value. As a result, the frictional resistance between the compact and the firing table can be reduced, and the compact can be prevented from being deformed.

【0028】即ち,上記焼成台の十点平均粗さRzが
6.5以下となるように,表面粗さを細かくすることに
より,これよりも表面粗さが粗い場合に比べ,上記接触
面の摩擦抵抗を大幅に低減することができる(図4参
照)。そのため,この場合には,上記介在物を介在させ
た場合と同様の作用効果が得られ,焼結時の変形を抑制
することができる。
That is, by making the surface roughness fine so that the ten-point average roughness Rz of the baking table becomes 6.5 or less, the contact surface of the contact surface can be made finer than in the case where the surface roughness is rougher than this. Friction resistance can be greatly reduced (see FIG. 4). Therefore, in this case, the same operation and effect as when the above-described inclusions are interposed are obtained, and deformation during sintering can be suppressed.

【0029】[0029]

【発明の実施の形態】実施形態例1 本発明の実施形態例にかかる金属焼結品の製造方法につ
き,図1を用いて説明する。本例において,まずは,金
属粉末とバインダとを混合させた成形材料を型内に射出
成形して成形体を作製する。次いで,該成形体からバイ
ンダを除去する脱脂工程を行った後,上記金属粉末を焼
結させる焼成工程を行って,金属焼結品を製造する。ま
た,上記焼成工程においては,上記脱脂工程を終えた上
記成形体を焼成台の上に載置すると共に,上記成形体と
上記焼成台の間に転動可能な介在物を介在させて焼結を
行う。以下,これを詳説する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 A method for manufacturing a sintered metal product according to an embodiment of the present invention will be described with reference to FIG. In this example, first, a molding material in which a metal powder and a binder are mixed is injection-molded into a mold to produce a molded body. Next, after performing a degreasing step of removing a binder from the molded body, a firing step of sintering the metal powder is performed to manufacture a sintered metal product. In the firing step, the compact having undergone the degreasing step is placed on a firing table, and sintering is performed by interposing a rollable inclusion between the compact and the firing table. I do. The details are described below.

【0030】本例では,成形体の成形材料として,平均
粒径10μmのSUS316粉末とバインダとを混合し
たものを用いた。そして,図1(a)に示すごとく,直
方体形状の成形体1を金属射出成形法により成形し,そ
の後脱脂工程と焼成工程とを行った。
In this example, a mixture of SUS316 powder having an average particle diameter of 10 μm and a binder was used as a molding material for the molded body. Then, as shown in FIG. 1A, a rectangular parallelepiped molded body 1 was molded by a metal injection molding method, and then a degreasing step and a firing step were performed.

【0031】ここで,上記焼成工程では,図1(a)に
示すごとく,焼成炉2において,上記脱脂工程を終えた
上記成形体1を焼成台3の上に載置すると共に,上記成
形体1と上記焼成台3の間に転動可能な介在物4を介在
させて焼結を行った。また,上記介在物4としては,平
均粒径0.3mmのアルミナ材料よりなる球状物を用い
た。また,焼結は真空中で1300℃に保持するという
条件で行った。以上の工程を実施した結果,図1(b)
に示すごとく,上記成形体1は,全体的に約20%均一
に収縮して,優れた形状の金属焼結体11となった。
Here, in the firing step, as shown in FIG. 1A, in the firing furnace 2, the compact 1 after the degreasing step is placed on a firing table 3 and the compact 1 Sintering was carried out with a rollable inclusion 4 interposed between 1 and the firing table 3. In addition, as the inclusion 4, a spherical material made of an alumina material having an average particle diameter of 0.3 mm was used. The sintering was performed under the condition that the temperature was maintained at 1300 ° C. in a vacuum. As a result of performing the above steps, FIG.
As shown in the figure, the compact 1 shrunk uniformly by about 20% as a whole, and became a metal sintered body 11 having an excellent shape.

【0032】次に,本例の作用効果につき説明する。本
例における焼成工程では,成形体1と焼成台3の間に,
転動可能な介在物4を介在させている。そのため,焼結
時における成形体1の変形を防止することができる。
Next, the operation and effect of this embodiment will be described. In the firing step in this example, between the compact 1 and the firing table 3,
Rollable inclusions 4 are interposed. Therefore, deformation of the compact 1 during sintering can be prevented.

【0033】即ち,焼成工程においては,成形体1の全
体が収縮しようとするとき,焼成台3との接触面14以
外の部分は摩擦抵抗がなく自由に収縮することができ
る。一方,焼成台3との接触面14には,焼成台3との
間の摩擦抵抗が収縮の妨げとなる。ここで,本例では,
成形体1と焼成台3との間には上記介在物4を介在させ
ている。そのため,成形体1が収縮するとき,成形体1
が介在物4を転がして収縮することができる。
That is, in the firing step, when the entire molded body 1 is about to shrink, portions other than the contact surface 14 with the firing table 3 can be shrunk freely without frictional resistance. On the other hand, on the contact surface 14 with the baking table 3, the frictional resistance between the baking table 3 and the baking table 3 hinders contraction. Here, in this example,
The inclusion 4 is interposed between the molded body 1 and the firing table 3. Therefore, when the compact 1 shrinks, the compact 1
Can roll and shrink the inclusions 4.

【0034】つまり,接触面14においては,従来のよ
うな大きな摩擦抵抗を発生しうる滑り運動ではなく,非
常に小さな摩擦抵抗しか発生させない転がり運動にな
る。そのため,成形体1が収縮する際に,接触面14に
発生する摩擦抵抗を著しく低減させることができる。そ
れ故,摩擦抵抗による成形体1の変形を防止することが
できる。なお,介在物4は特殊な形状をしたものにする
必要がなく,種々の形状のものを用いることができる。
また,上記介在物4のすべてが転がる必要はなく,その
一部が転がることによっても,上記摩擦抵抗を大幅に低
減させることができる。
That is, the contact surface 14 is not a sliding motion that can generate a large frictional resistance as in the related art, but a rolling motion that generates a very small frictional resistance. Therefore, when the molded body 1 contracts, the frictional resistance generated on the contact surface 14 can be significantly reduced. Therefore, deformation of the molded body 1 due to frictional resistance can be prevented. The inclusions 4 do not need to have a special shape, and various shapes can be used.
Further, not all of the inclusions 4 need to be rolled, and even if a part of the inclusions 4 can be rolled, the frictional resistance can be significantly reduced.

【0035】また,本例による焼成工程では,介在物4
を成形体1と焼成台3との間に介在させるだけで良い。
そのため,実施が容易であり,あまり費用がかからな
い。また,そのため,種々の形状の成形体に使用するこ
とができる。
In the firing step according to this embodiment, the inclusions 4
Need only be interposed between the compact 1 and the firing table 3.
Therefore, it is easy to implement and inexpensive. Therefore, it can be used for molded articles of various shapes.

【0036】実施形態例2 本例においては,実施形態例1における介在物4を用い
る代わりに,上記焼成台3の表面粗さを調整することに
より,成形体1と焼成台3との間の摩擦抵抗を低減させ
る場合において,焼成台3の面粗度の好ましい範囲を求
めた。即ち,上記焼成工程では,図5(a)に示すごと
く,焼成炉2において,上記脱脂工程を終えた上記成形
体1を焼成台3の上に載置した。そして,上記成形体1
と上記焼成台3との接触面14における,上記焼成台3
の表面粗さを幾通りか変化させたときの,焼結前の成形
体1と焼結後の金属焼結体11の変形の度合いを調べ
た。その他は,実施形態例1と同様である。
Embodiment 2 In this embodiment, instead of using the inclusions 4 in Embodiment 1, the surface roughness of the firing table 3 is adjusted so that the distance between the compact 1 and the firing table 3 is reduced. When reducing the frictional resistance, a preferable range of the surface roughness of the firing table 3 was determined. That is, in the firing step, as shown in FIG. 5A, the compact 1 after the degreasing step was placed on the firing table 3 in the firing furnace 2. Then, the molded body 1
At the contact surface 14 between the sintering table 3 and the sintering table 3
The degree of deformation of the molded body 1 before sintering and the sintered metal body 11 after sintering were examined when the surface roughness was varied in several ways. Other configurations are the same as those of the first embodiment.

【0037】上記変形の度合いの表示方法としては,種
々の方法があるが,本例では,以下に示す変形率差
[%]を用いた。ここで,図4における変形率差[%]
は,以下により定義する。図5(a)に示すごとく,焼
結前における成形体1の上記接触面14での辺の長さを
a1,接触していない面での辺の長さをb1とし,一
方,図5(b)に示すごとく,焼結後における上記接触
面14での辺の長さをa2,接触していない面での辺の
長さをb2とする。このとき,変形率差[%]は,
((b1−b2)/b1−(a1−a2)/a1)×1
00で表す。
There are various methods for displaying the degree of deformation. In this example, the following deformation ratio difference [%] is used. Here, the deformation ratio difference [%] in FIG.
Is defined by: As shown in FIG. 5A, the length of the side at the contact surface 14 of the molded body 1 before sintering is a1, and the length of the side at the non-contact surface is b1. As shown in b), the length of the side on the contact surface 14 after sintering is a2, and the length of the side on the non-contact surface is b2. At this time, the deformation ratio difference [%] is
((B1-b2) / b1- (a1-a2) / a1) × 1
Represented by 00.

【0038】本例では,表面粗さを,十点平均粗さが約
2[μm]から約12[μm]まで変化させた。そし
て,それにより得られた変形率差[%]をグラフ化した
ものを図4に示す。同図は横軸に十点平均粗さRz[μ
m]を,縦軸に変形率差[%]をとったものである。同
図に示すごとく,十点平均粗さRzが6.5[μm]を
境に,それ以下では変形率差[%]が著しく低減してい
ることがわかる。そのため,この場合には,実施形態例
1と同様の作用効果が得られ,焼結時の成形体の変形を
抑制することができる。
In this example, the surface roughness was changed from a ten-point average roughness of about 2 [μm] to about 12 [μm]. FIG. 4 shows a graph of the deformation ratio difference [%] obtained thereby. In the figure, the horizontal axis represents the ten-point average roughness Rz [μ
m] and the vertical axis represents the deformation rate difference [%]. As shown in the figure, it can be seen that the deformation ratio difference [%] is remarkably reduced below the boundary of the ten-point average roughness Rz of 6.5 [μm]. Therefore, in this case, the same operation and effect as those of the first embodiment can be obtained, and the deformation of the compact during sintering can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1における,(a)焼結前の成形
体,(b)焼結後の金属焼結体を示す説明図。
FIG. 1 is an explanatory view showing (a) a molded body before sintering and (b) a metal sintered body after sintering in a first embodiment.

【図2】球状物の配置を示す図で,(a)焼結前の成形
体,(b)焼結後の金属焼結体を示す底面図。
FIG. 2 is a view showing the arrangement of spherical objects, and is a bottom view showing (a) a molded body before sintering, and (b) a sintered metal body after sintering.

【図3】金属焼結体への棒状物の配置を示す斜視図。FIG. 3 is a perspective view showing an arrangement of a rod-shaped object on a metal sintered body.

【図4】実施形態例2における,十点平均粗さRz[μ
m]と変形率差[%]との関係を表す説明図。
FIG. 4 shows a ten-point average roughness Rz [μ in Embodiment 2;
Explanatory drawing showing the relationship between [m] and the difference in deformation ratio [%].

【図5】実施形態例2における,(a)焼結前の成形
体,(b)焼結後の金属焼結体を示す説明図。
FIG. 5 is an explanatory view showing (a) a molded body before sintering and (b) a sintered metal body after sintering in a second embodiment.

【図6】従来例における,(a)焼結前の成形体,
(b)焼結後の金属焼結体を示す説明図。
FIG. 6 shows (a) a molded body before sintering,
(B) Explanatory drawing which shows the metal sintered compact after sintering.

【符号の説明】[Explanation of symbols]

1...成形体, 11...金属焼結体, 14...接触面, 2...焼成炉, 3...焼成台, 4...介在物 1. . . Molded body, 11. . . 13. metal sintered body, . . 1. contact surface; . . Firing furnace, 3. . . Firing table, 4. . . Inclusion

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 金属粉末とバインダとを混合させた成形
材料を型内に射出成形して成形体を作製し,次いで該成
形体からバインダを除去する脱脂工程を行った後,上記
金属粉末を焼結させる焼成工程を行って,金属焼結品を
製造する方法であって,上記焼成工程においては,上記
脱脂工程を終えた上記成形体を焼成台の上に載置すると
共に,上記成形体と上記焼成台の間に転動可能な介在物
を介在させて焼結を行うことを特徴とする金属焼結品の
製造方法。
1. A molding material in which a metal powder and a binder are mixed is injection-molded into a mold to produce a molded body, and then a degreasing step of removing the binder from the molded body is performed. A method for producing a metal sintered product by performing a firing step of sintering, wherein in the firing step, the compact having undergone the degreasing step is placed on a firing table, and And sintering by interposing a rollable inclusion between the sintering table and the sintering table.
【請求項2】 請求項1において,上記介在物は,球状
物であることを特徴とする金属焼結品の製造方法。
2. The method according to claim 1, wherein said inclusions are spherical.
【請求項3】 請求項2において,上記球状物は,その
粒径が上記成形体の上記金属粉末の粒径以上であること
を特徴とする金属焼結品の製造方法。
3. The method for manufacturing a metal sintered product according to claim 2, wherein the spherical particles have a particle size equal to or larger than a particle size of the metal powder of the compact.
【請求項4】 請求項2又は3において,上記球状物
は,焼結後の金属焼結体の底面に,4個以上接触し得る
粒径を有していることを特徴とする金属焼結品の製造方
法。
4. The metal sintering device according to claim 2, wherein the spherical object has a particle size capable of contacting four or more spheres with the bottom surface of the sintered metal body after sintering. Product manufacturing method.
【請求項5】 請求項2〜4のいずれか一項において,
上記球状物は,複数段に積層した状態で介在しているこ
とを特徴とする金属焼結品の製造方法。
5. The method according to claim 2, wherein:
A method for manufacturing a metal sintered product, wherein the spherical objects are interposed in a state of being stacked in a plurality of stages.
【請求項6】 請求項2〜5のいずれか一項において,
上記球状物は,その粒径が0.05〜1mmであること
を特徴とする金属焼結品の製造方法。
6. The method according to claim 2, wherein:
The method for producing a metal sintered product, wherein the spherical material has a particle size of 0.05 to 1 mm.
【請求項7】 請求項1において,上記介在物は,棒状
物であることを特徴とする金属焼結品の製造方法。
7. The method according to claim 1, wherein the inclusions are rod-shaped.
【請求項8】 請求項7において,上記棒状物は,その
直径が上記成形体の上記金属粉末の粒径以上であること
を特徴とする金属焼結品の製造方法。
8. The method for producing a metal sintered product according to claim 7, wherein the rod has a diameter equal to or larger than a particle diameter of the metal powder of the compact.
【請求項9】 請求項7又は8において,上記棒状物
は,焼結後の金属焼結体の底面に,2個以上接触し得る
直径を有していることを特徴とする金属焼結品の製造方
法。
9. A metal sintered product according to claim 7, wherein said rod-shaped object has a diameter capable of contacting two or more pieces with the bottom surface of the sintered metal body after sintering. Manufacturing method.
【請求項10】 金属粉末とバインダとを混合させた成
形材料を型内に射出成形して成形体を作製し,次いで該
成形体からバインダを除去する脱脂工程を行った後,上
記金属粉末を焼結させる焼成工程を行って,金属焼結品
を製造する方法であって,上記焼成工程においては,上
記脱脂工程を終えた上記成形体を焼成台の上に載置し,
上記成形体と上記焼成台との接触面における上記焼成台
の表面粗さは,十点平均粗さRzが6.5以下であるこ
とを特徴とする金属焼結品の製造方法。
10. A molding is prepared by injection molding a molding material obtained by mixing a metal powder and a binder into a mold, and then performing a degreasing step of removing the binder from the molding. A method for producing a metal sintered product by performing a firing step of sintering, wherein in the firing step, the compact having undergone the degreasing step is placed on a firing table,
A method for producing a metal sintered product, wherein a surface roughness of the baking table at a contact surface between the molded body and the baking table has a ten-point average roughness Rz of 6.5 or less.
JP2000062222A 2000-03-07 2000-03-07 Method for producing metallic sintered product Pending JP2001247904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000062222A JP2001247904A (en) 2000-03-07 2000-03-07 Method for producing metallic sintered product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000062222A JP2001247904A (en) 2000-03-07 2000-03-07 Method for producing metallic sintered product

Publications (1)

Publication Number Publication Date
JP2001247904A true JP2001247904A (en) 2001-09-14

Family

ID=18582260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000062222A Pending JP2001247904A (en) 2000-03-07 2000-03-07 Method for producing metallic sintered product

Country Status (1)

Country Link
JP (1) JP2001247904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262451A (en) * 2006-03-27 2007-10-11 Ntn Corp Method for producing sintered product
CN106312059A (en) * 2016-10-11 2017-01-11 广东粤海华金科技股份有限公司 Powder metallurgy sintering method of non-magnetic steel structural component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262451A (en) * 2006-03-27 2007-10-11 Ntn Corp Method for producing sintered product
CN106312059A (en) * 2016-10-11 2017-01-11 广东粤海华金科技股份有限公司 Powder metallurgy sintering method of non-magnetic steel structural component

Similar Documents

Publication Publication Date Title
Enneti et al. Powder-binder formulation and compound manufacture in metal injection molding (MIM)
CN105441881A (en) Making method of chromium target and making method of combination of chromium target
Matsugi et al. A case study for production of perfectly sintered complex compacts in rapid consolidation by spark sintering
JP2001247904A (en) Method for producing metallic sintered product
EP0639417B1 (en) Process for manufacturing powder injection molded parts
US5746960A (en) Method of manufacturing powder injection molded part
JP3011528B2 (en) Ceramic heater for heating semiconductor and method of manufacturing the same
CN211575892U (en) Positioning tool
JP3863591B2 (en) Method for producing sintered metal powder
JP2004308004A (en) Method of producing aluminum sintered material
US6290746B1 (en) Method of producing metal ball and semiconductor package
JP2008133512A (en) Method for producing high density aluminum sintered material by metal powder injection molding process
JPH0421704A (en) Method for sintering green compact of titanium alloy powder
JPH0820804A (en) Production of sintered parts
JP2828730B2 (en) Shelf and molding device
JP2001026802A (en) Method for producing sintered parts
JP2580543Y2 (en) Jig for sintering
JPH0967169A (en) Firing jig and production of ceramic substrate formed by using the same
JP5441050B2 (en) Method for manufacturing transfer mold nest, transfer mold nest, and transfer mold nest used therein
JPH0445203A (en) Powder injection molding
JPH07278608A (en) Method for preventing deformation of sintered compact
JP2968882B2 (en) SiC-based sintered body and method of firing the same
Chang et al. Fabrication of micro metal parts by forging process combined with powder pressing
JPH07321261A (en) Heat sink for semiconductor device
JPS62227703A (en) Method of molding ceramics