JPH0421596A - Production of substrate for oxide superconductor - Google Patents

Production of substrate for oxide superconductor

Info

Publication number
JPH0421596A
JPH0421596A JP2123678A JP12367890A JPH0421596A JP H0421596 A JPH0421596 A JP H0421596A JP 2123678 A JP2123678 A JP 2123678A JP 12367890 A JP12367890 A JP 12367890A JP H0421596 A JPH0421596 A JP H0421596A
Authority
JP
Japan
Prior art keywords
base material
noble metal
metal
oxide superconducting
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2123678A
Other languages
Japanese (ja)
Other versions
JP2968556B2 (en
Inventor
Nobuyuki Sadakata
伸行 定方
Yasuhiro Iizuka
飯塚 康裕
Kazunori Onabe
和憲 尾鍋
Kazutomi Kakimoto
一臣 柿本
Tsukasa Kono
河野 宰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP2123678A priority Critical patent/JP2968556B2/en
Publication of JPH0421596A publication Critical patent/JPH0421596A/en
Application granted granted Critical
Publication of JP2968556B2 publication Critical patent/JP2968556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To form an oxide superconducting thin film in good crystalline orientation state by putting a noble metal material between two sheets of metal substrates consisting of a heat-resistant alloy having high strength and rolling the noble metal in the above-mentioned state to form a composite and then dividing the composite into two parts so as to leave the noble metal material on either one metal substrate and carrying out heat treatment of the noble metal material. CONSTITUTION:In the production of a substrate for oxide superconductor provided with a metal substrate part consisting of a heat resistant alloy having high strength such as hastelloy and covering layer formed on the upper face of the metal substrate part and consisting of a noble metal part having face-centered cubic structure and having an oxide superconducting thin film formed on the above-mentioned covering layer, the following method is selected: The noble metal material 3 is rolled in a state where the material 3 is put between two sheets of metal substrates 1 and 1' consisting of the heat-resistant alloy having high strength to form a composite. Then either one metal substrate 1' is peeled from the composite and then part of the noble metal material 3 is subjected to heat treatment and a crystal of the surface of noble metal material 3 is oriented along (100) face to form the aimed substrate consisting of the metal substrate part 1 and covering layer 3 of noble metal material.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、超電導磁石、超電導発電機、超電導エネル
ギー貯蔵、加速器用磁石などとして応用開発が進められ
ている酸化物超電導導体製造用の基材に関する。
[Detailed Description of the Invention] "Field of Industrial Application" This invention is a base material for manufacturing oxide superconducting conductors, which are being developed for application as superconducting magnets, superconducting generators, superconducting energy storage, accelerator magnets, etc. Regarding.

「従来の技術」 Y −B a−Cu−0系、B i−3r−Ca−Cu
−0系、TI−B a−Ca−Cu−0系などに代表さ
れる酸化物超電導体を用いて長尺の超電導導体を開発す
ることがなされている。
"Prior art" Y-B a-Cu-0 system, B i-3r-Ca-Cu
BACKGROUND ART Elongated superconducting conductors have been developed using oxide superconductors typified by -0 series, TI-B a-Ca-Cu-0 series, and the like.

この種の酸化物超電導体を用いて長尺の超電導導体を実
用化することを考えると、金属テープなどのように可撓
性に優れ、しかも加工性の良好な材料からなる基材を用
意し、この基材上に、酸化物超電導薄膜を形成して酸化
物超電導導体を製造することが望まれる。
Considering the practical use of long superconducting conductors using this type of oxide superconductor, it is necessary to prepare a base material made of a material with excellent flexibility and good workability, such as metal tape. It is desirable to form an oxide superconducting thin film on this base material to produce an oxide superconducting conductor.

ところが、現在までに報告されている酸化物超電導導体
用の金属基材は、金、白金、銀、ハステロイなどに限ら
れており、これらの金属材料からなる基材上に酸化物超
電導薄膜を形成して得られた酸化物超電導導体は、チタ
ン酸ストロンチウム(S rT io 3)あるいはマ
グネシア(MgO)等の単結晶体からなる基板上に酸化
物超電導薄膜を形成して得られた酸化物超電導導体に対
し、臨界電流密度が2〜3桁小さいのが現状である。
However, the metal substrates for oxide superconducting conductors that have been reported to date are limited to gold, platinum, silver, Hastelloy, etc., and it is difficult to form oxide superconducting thin films on substrates made of these metal materials. The obtained oxide superconducting conductor is an oxide superconducting conductor obtained by forming an oxide superconducting thin film on a substrate made of a single crystal such as strontium titanate (S rT io 3) or magnesia (MgO). In contrast, the current critical current density is two to three orders of magnitude lower.

このように金属製の基材上に形成した酸化物超電導薄膜
の臨界電流密度が小さくなる主な原因として知られてい
るのは、酸化物超電導体の結晶の配向性の問題である。
The main cause of such a decrease in the critical current density of an oxide superconducting thin film formed on a metal base material is the problem of crystal orientation of the oxide superconductor.

即ち、この種の酸化物超電導体は、結晶の特定の方向に
電流を流し易く、特定の方向に電流を流しにくい電気的
異方性を有している。
That is, this type of oxide superconductor has electrical anisotropy that allows current to flow easily in a specific direction of the crystal and makes it difficult to flow a current in a specific direction.

従って酸化物超電導体を用いて超電導導体を製造しよう
とする場合、結晶の配向性を制御することが重要な課題
となる。
Therefore, when attempting to manufacture a superconducting conductor using an oxide superconductor, controlling crystal orientation becomes an important issue.

ここでペロブスカイト構造を基本構造とする酸化物超電
導体の結晶構造においては、結晶軸のa軸方向とb軸方
向とに銅原子と酸素原子とが配列して結合され、この結
合部分が結晶軸のC軸方向に層状に積層された構造をな
している。
In the crystal structure of an oxide superconductor having a perovskite structure as a basic structure, copper atoms and oxygen atoms are aligned and bonded in the a-axis direction and the b-axis direction of the crystal axis, and this bonding portion is It has a structure in which layers are stacked in the C-axis direction.

従って、この系の酸化物超電導体は、結晶のab軸方向
の臨界電流密度が高くなるので、臨界電流密度を高める
ためには、結晶のab軸を基材表面に平行に配置するよ
うに、即ち、結晶軸のC軸を基材表面に垂直に向くよう
に酸化物超電導体を成膜することが好ましい。更に、酸
化物超電導薄膜を基材表面に成膜する必要がある背景か
ら、用いる基材の表面の結晶格子の大きさは、酸化物超
電導体のab軸方向の結晶格子の大きさに等しいことが
望ましい。
Therefore, this type of oxide superconductor has a high critical current density in the ab-axis direction of the crystal, so in order to increase the critical current density, the ab-axis of the crystal should be arranged parallel to the substrate surface. That is, it is preferable to form the oxide superconductor so that the C axis of the crystal axis is perpendicular to the surface of the substrate. Furthermore, since it is necessary to form an oxide superconducting thin film on the surface of a base material, the size of the crystal lattice on the surface of the base material used must be equal to the size of the crystal lattice in the ab-axis direction of the oxide superconductor. is desirable.

以上のような観点から前述の単結晶体の基板を検討して
みると、(100)面で配向しているSrT i O3
の結晶においては、a=3.91人であり、(100)
面で配向しているMgOの結晶においては、a=4.2
1人であるのに対し、Y IB at CusO7−6
なる組成のY系酸化物超電導体にあっては、a=3.8
9人、b=3.82人であって前記の値に極めて近い値
となっている。
Examining the aforementioned single-crystal substrate from the above viewpoint, it is found that SrT i O3 is oriented in the (100) plane.
In the crystal of , a=3.91 people, (100)
In a plane-oriented MgO crystal, a=4.2
While there is one person, Y IB at CusO7-6
In the Y-based oxide superconductor with the composition, a=3.8
9 people, b=3.82 people, which is a value extremely close to the above value.

これに対し、Agからなる基材は、a=4.09人の面
心立方の結晶構造を有してはいるものの、従来から酸化
物超電導導体の製造用として用いられてきたものは、多
結晶構造で結晶の向きも揃っていないものであった。こ
のため、Agの基材上に酸化物超電導薄膜を作製した場
合に、基材の表面と酸化物超電導薄膜のab軸の格子定
数の不整合により、酸化物超電導薄膜をC軸配向させる
ことが難しい問題があった。
On the other hand, although the base material made of Ag has a face-centered cubic crystal structure with a = 4.09, there are many materials that have been conventionally used for manufacturing oxide superconducting conductors. It had a crystalline structure, and the orientation of the crystals was not aligned. Therefore, when an oxide superconducting thin film is fabricated on an Ag base material, it is difficult to align the oxide superconducting thin film with the C-axis due to the mismatch in the lattice constants between the surface of the base material and the ab axis of the oxide superconducting thin film. There was a difficult problem.

また、Agからなる基材は、酸化物超電導体を形成中ま
たは形成した後に行う熱処理によって軟化する傾向があ
り、超電導磁石の電磁力に起因する外力が作用する装置
への応用としては強度不足となる問題がある。また、基
材自体か強度不足であると、応力付加によって基材上の
超電導薄膜にクラックが入ったり、基材と超電導薄膜が
剥離するおそれがあった。
In addition, the base material made of Ag tends to soften due to heat treatment performed during or after the formation of the oxide superconductor, and it may not be strong enough to be applied to devices that are subjected to external forces caused by the electromagnetic force of superconducting magnets. There is a problem. Furthermore, if the strength of the base material itself is insufficient, there is a risk that the superconducting thin film on the base material will crack or the base material and the superconducting thin film may separate from each other due to the application of stress.

以上のような背景から本願発明者らは、酸化物超電導導
体製造用の基材として、高強度の金属基材部の上にAg
の被覆層を形成してなる基材を用いる技術について研究
開発を進めている。
Based on the above background, the inventors of the present application have developed Ag on a high-strength metal base material as a base material for manufacturing oxide superconducting conductors.
We are conducting research and development on a technology that uses a base material with a coating layer formed on it.

ここで従来、金属基材部の上にAgの被覆層を形成する
には、金属基材部とAgテープとを爆着などの手段で密
着させた後、圧延加工を施して複合一体化するようにし
ている。
Here, conventionally, in order to form an Ag coating layer on a metal base material part, the metal base material part and Ag tape are brought into close contact with each other by means such as explosive bonding, and then rolled into a composite body. That's what I do.

ところが、高強度の耐熱金属材料として広く用いられて
いるハステロイなどの金属材料と、Agとは、機械強度
の差が大きく、両者の加工硬化特性も大きく異なるため
に、圧延加工中に、被覆層または金属基材部が、波打ち
状態に変形したり、断線するなどの問題があり、歩留り
が悪い欠点があった。
However, there is a large difference in mechanical strength between metal materials such as Hastelloy, which is widely used as a high-strength, heat-resistant metal material, and Ag, and the work hardening properties of the two are also significantly different. Alternatively, there were problems such as the metal base material being deformed into a wavy state or breaking, resulting in a low yield.

本発明は前記課題を解決するためになされたもので、酸
化物超電導薄膜を良好な結晶配向状態で形成できるとと
もに、機械強度が高く、応力付加に強い酸化物超電導導
体製造用の基材を効率良く製造することができる方法を
提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and it is possible to form an oxide superconducting thin film in a good crystal orientation state, and to efficiently produce a base material for producing an oxide superconducting conductor that has high mechanical strength and is resistant to stress. The purpose is to provide a method that can be manufactured well.

「課題を解決するための手段」 本発明は前記課題を解決するために、ハステロイなどの
耐熱高強度合金からなる金属基材部と、この金属基材部
の上面に形成された結晶質の面心立方構造の貴金属材料
からなる被覆層とを具備してなり、前記被覆層の上に酸
化物超電導薄膜が形成される酸化物超電導導体用基材の
製造方法において、 耐熱高強度合金からなる2枚の金属基材の間に、貴金属
材料からなる被覆材を挾んだ状態で圧延加工を施して金
属基材と被覆材とを圧着して複合体を形成し、次いでこ
の複合体を被覆材を境として2つに引き剥がし、次いで
熱処理を施して貴金属材料からなる被覆材の表面の結晶
を(100)面に沿って配向させ、金属基材部と被覆層
からなる基材を形成するものである。
"Means for Solving the Problems" In order to solve the problems described above, the present invention provides a metal base made of a heat-resistant, high-strength alloy such as Hastelloy, and a crystalline surface formed on the upper surface of the metal base. A method for manufacturing an oxide superconducting conductor base material comprising a coating layer made of a precious metal material having a center-cubic structure, and an oxide superconducting thin film is formed on the coating layer, comprising: 2 made of a heat-resistant high strength alloy; A coating material made of a precious metal material is sandwiched between two metal substrates, and the metal substrate and coating material are pressed together to form a composite. The material is peeled off into two pieces at the boundary, and then heat treated to orient the crystals on the surface of the covering material made of a noble metal material along the (100) plane, thereby forming a base material consisting of a metal base material part and a covering layer. It is.

「作用」 高強度合金の金属基材で軟質の貴金属材料の被覆材を上
下から挾みつけた状態で圧延加工するので、波打ち現象
や断線を引き起こすことなく圧延加工がなされる。酸化
物超電導体の格子定数に近い格子定数を有する貴金属か
らなる被覆層を備えた基材を用い、この被覆層の結晶を
(100)面の方向に配向するので、この被覆層上に酸
化物超電導薄膜を成膜するならば、酸化物超電導薄膜が
被覆層の表面の結晶構造に整合しつつ成長する。従って
基材表面にC軸配向した酸化物超電導薄膜が生成する。
``Operation'' Since the rolling process is performed with the soft precious metal covering material sandwiched between the high-strength alloy metal base material from above and below, the rolling process is performed without causing any waving or wire breakage. A base material is used that is provided with a coating layer made of a noble metal having a lattice constant close to that of the oxide superconductor, and the crystals of this coating layer are oriented in the (100) plane direction. When a superconducting thin film is formed, the oxide superconducting thin film grows while matching the crystal structure of the surface of the coating layer. Therefore, a C-axis oriented oxide superconducting thin film is formed on the surface of the substrate.

また、貴金属製の被覆層を強度の高い金属基材部で補強
しているので、貴金属単独からなる基材よりも機械強度
に優れ、外力に対して強い構造のものが得られる。
Furthermore, since the noble metal coating layer is reinforced with a metal base portion having high strength, it is possible to obtain a structure that has superior mechanical strength and is resistant to external forces than a base material made of a noble metal alone.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明方法を実施することにより基材を形成し、更に酸
化物超電導導体を製造するには、まず、第1図に示すよ
うにハステロイなどの耐熱高強度合金からなる基板状の
金属基材1,1を用意し、この金属基材1.1の間にA
g、Au、Ptあるいはこれらの合金などの貴金属から
なる薄い板状の被覆材3を挾み込み、この状態で全体を
圧延し、第2図に示すように3層構造のテープ状の複合
体4を形成する。この複合体4は、Agの被覆材5の上
下両面に耐熱高強度合金からなるテープ状の金属基材6
を圧着してなる構造になっている。従って複合体4は可
撓性を有し、第3図に示す送出ドラム7に巻回しておく
ことができる。
In order to form a base material and further manufacture an oxide superconductor by carrying out the method of the present invention, first, as shown in FIG. , 1 is prepared, and between this metal base material 1.1, A
A thin plate-shaped covering material 3 made of precious metals such as g, Au, Pt, or alloys thereof is sandwiched in between, and the whole is rolled in this state to form a tape-shaped composite with a three-layer structure as shown in Fig. 2. form 4. This composite body 4 has a tape-shaped metal base material 6 made of a heat-resistant high-strength alloy on both upper and lower surfaces of an Ag coating material 5.
The structure is made by crimping. The composite body 4 is therefore flexible and can be wound around a delivery drum 7 shown in FIG.

次に前記複合体4を貴金属の被覆材5を境として2つに
引き剥がす。引き剥がす場合に具体的には、第3図に示
すように行う。第3図において、7は複合体4を巻回し
てなる送出ドラムを示し、8は巻取ドラム、9.9はロ
ールを各々示している。ここで前記送出ドラム7から繰
り出した複合体4の先端部を被覆材5の厚さ方向中央部
で2つに切断しておき、この切断部分をローラ9,9の
間を通過させてそれぞれ巻取ドラム8.8の外周部に取
り付けておく。この状態から巻取ドラム8゜8を回転さ
せることで複合体4を送出ドラム7から引き出しつつ2
本に引き裂いてテープIO210を得ることができる。
Next, the composite body 4 is peeled off into two pieces with the noble metal coating 5 as a boundary. Specifically, the peeling is performed as shown in FIG. 3. In FIG. 3, numeral 7 indicates a delivery drum formed by winding the composite material 4, 8 indicates a winding drum, and 9.9 indicates a roll. Here, the tip of the composite material 4 fed out from the delivery drum 7 is cut into two parts at the center in the thickness direction of the coating material 5, and the cut parts are passed between the rollers 9, 9, and wound. Attach it to the outer periphery of the take-up drum 8.8. From this state, by rotating the winding drum 8°8, the composite 4 is pulled out from the delivery drum 7 while the 2
The tape IO210 can be obtained by tearing it into books.

なお、圧延加工により貴金属の結晶組織が変化し、長手
方向に結晶粒の伸びた細長い粒となるために、前記引き
裂きの際に銀が長手方向に裂は易くなる。勿論、この場
合は、ハステロイ製の金属基材lと銀製の被覆材5が充
分強固に接合していることか前提となる。なお、複合体
4を800℃程度の温度に1時間程度加熱することで、
金属基材lと被覆材5を強固に接合し、かつ、銀製の被
覆材5を軟化させ、被覆材5に応力集中を起こすならば
、引き裂きが容易になる。
Note that the rolling process changes the crystal structure of the noble metal, resulting in elongated grains with crystal grains extending in the longitudinal direction, so that the silver easily tears in the longitudinal direction during the tearing process. Of course, in this case, it is assumed that the metal base material l made of Hastelloy and the coating material 5 made of silver are sufficiently firmly bonded. Note that by heating the composite 4 to a temperature of about 800°C for about 1 hour,
If the metal base material 1 and the coating material 5 are firmly bonded, and the silver coating material 5 is softened to cause stress concentration in the coating material 5, tearing becomes easy.

複合体4をテープ状に2つに引き裂いた後に、テープl
Oの表面の貴金属層を平滑にするために、研摩加工また
は軽い圧延加工を施す。圧延加工を施すには、例えば第
4図に示すように、テープIOを巻取ドラム8から繰り
出してロール11.11の間を通過させて圧延し、続い
て巻取ドラム12に巻き取るようにすれば良い。
After tearing the composite 4 into two tape-like pieces, the tape l
In order to smooth the noble metal layer on the surface of O, polishing or light rolling is performed. To perform the rolling process, for example, as shown in FIG. 4, the tape IO is unwound from the winding drum 8, passed between rolls 11 and 11 to be rolled, and then wound onto the winding drum 12. Just do it.

前記テープlOを圧延加工したならば、好ましくは1気
圧以下の酸素分圧下において、300℃を越える温度で
700℃より低い温度、より好ましくは500〜600
℃の温度で、100時間以下、より好ましくは1〜6時
間時間熱処理を行って貴金属層の表面の結晶を配向させ
る。
Once the tape IO is rolled, it is preferably heated under an oxygen partial pressure of 1 atm or less at a temperature above 300°C and below 700°C, more preferably between 500 and 600°C.
C. for 100 hours or less, more preferably 1 to 6 hours, to orient the crystals on the surface of the noble metal layer.

ここで、銀などの金属は、強圧延加工などの強い塑性加
工を受けると、加工組織、即ち優先方位を持った集合組
織になって、特殊な方位に結晶が揃うことが知られてい
る。従って、前述の圧延加工によりテープ状に形成して
集合組織を発達させたしのに熱処理を施すことにより結
晶粒の結晶方位を特定方向に優先的に揃えることができ
、この際の方位が(100)方向であって、酸化物超電
導体の格子定数ならびにC軸配向性に寄与する。
Here, it is known that when a metal such as silver is subjected to strong plastic working such as hard rolling, it becomes a processed structure, that is, a texture with a preferential orientation, and crystals are aligned in a special orientation. Therefore, by forming the tape into a tape shape through the rolling process described above and developing a texture, and then applying heat treatment, the crystal orientation of the crystal grains can be preferentially aligned in a specific direction, and the orientation at this time is ( 100) direction, which contributes to the lattice constant and C-axis orientation of the oxide superconductor.

前記の熱処理によって貴金属層の表面の結晶は、(10
0)面が配向して被覆層15となり、この結果、第5図
に示すように耐熱高強度合金からなる金属基材部16と
、その上面に被覆された貴金属製の被覆HI5とからな
る基材I7が得られる。
As a result of the above heat treatment, the crystals on the surface of the noble metal layer become (10
0) The planes are oriented to form the coating layer 15, and as a result, as shown in FIG. Material I7 is obtained.

ここで金属基材部lはハステロイなどの耐熱金属から形
成されるので、熱処理によって強度低下を引き起こした
り損傷することはない。
Here, since the metal base member l is formed from a heat-resistant metal such as Hastelloy, it will not be damaged or deteriorated in strength by heat treatment.

これらの貴金属からなる被覆層15は結晶構造が酸化物
超電導体の結晶構造と類似であって、格子定数も近いも
のである。例えば、Y IB at CLi2O、−6
なる組成の酸化物超電導体の結晶においては、ペロプス
カイトを基本とする結晶構造であって、a=3.89、
b=3.82である。これに対し、Ag、Au、Ptは
いずれも面心立方構造であって、Agはa=4.09人
、Auはa=4.08人、Ptはa=3.92人である
The crystal structure of the coating layer 15 made of these noble metals is similar to that of the oxide superconductor, and the lattice constants are also similar. For example, Y IB at CLi2O, -6
In the crystal of the oxide superconductor with the composition, the crystal structure is based on perovskite, and a=3.89,
b=3.82. On the other hand, Ag, Au, and Pt all have face-centered cubic structures, with a=4.09 for Ag, a=4.08 for Au, and a=3.92 for Pt.

前記基材17を用いて酸化物超電導導体を製造するには
、基材17の被覆N15上に、スパッタリング、分子線
エピタキシー法、レーザPVD法、CVD法などの成膜
手段を用いて酸化物超電導薄膜を形成する。ここでの酸
化物超電導薄膜は、Y−B a−Cu−0系、B i−
8r−Ca−Cu−0系、Tl−Ba−Ca−Cu−0
系などに代表される酸化物である。
In order to manufacture an oxide superconducting conductor using the base material 17, an oxide superconductor is formed on the coating N15 of the base material 17 using a film forming method such as sputtering, molecular beam epitaxy, laser PVD, or CVD. Forms a thin film. The oxide superconducting thin film here is Y-Ba-Cu-0 based, Bi-
8r-Ca-Cu-0 system, Tl-Ba-Ca-Cu-0
It is an oxide typified by the

具体的に例えば、Y IB atc uso ?−5な
る組成、B it S rt Cat Cus OXな
る組成あるいはTltBatCax Cu30 Xの組
成のものなどである。
Specifically, for example, Y IB atc uso? -5, Bit S rt Cat Cus OX, or TltBatCax Cu30X.

前記基材17上に酸化物超電導薄膜を形成する場合、基
材表面の結晶が(100)面に配向しているので、基材
表面上に形成される酸化物超電導薄膜の結晶の配向性も
整った状態となる。即ち、酸化物超電導薄膜の結晶のa
−b面が被覆層15の上面に平行に向き、同結晶のC軸
が被覆層15の表面に対して垂直になるように結晶配向
する。
When forming an oxide superconducting thin film on the base material 17, since the crystals on the surface of the base material are oriented in the (100) plane, the crystal orientation of the oxide superconducting thin film formed on the base material surface is also It will be in good condition. That is, a of the crystal of the oxide superconducting thin film
The -b plane is oriented parallel to the upper surface of the covering layer 15, and the crystal is oriented so that the C axis of the crystal is perpendicular to the surface of the covering layer 15.

基材I7上に酸化物超電導薄膜を形成したならば、酸化
物超電導薄膜の均質化を目的として500〜800℃に
1分〜数時間程度加熱した後に徐冷する熱処理を施して
も良い。この熱処理によって酸化物超電導薄膜の結晶構
造が整えられて超電導特性が向上し、酸化物超電導導体
が得られる。
Once the oxide superconducting thin film is formed on the base material I7, heat treatment may be performed to homogenize the oxide superconducting thin film by heating it to 500 to 800° C. for about 1 minute to several hours and then slowly cooling it. This heat treatment adjusts the crystal structure of the oxide superconducting thin film, improves superconducting properties, and yields an oxide superconducting conductor.

前述のように表面結晶が配向した被覆層15上に更に酸
化物超電導薄膜を成膜するならば、被覆層15の結晶軸
に酸化物超電導薄膜の結晶軸を一致させなから成膜でき
るので、酸化物超電導薄膜を碁打上に配向状態で成膜す
ることができる。従って臨界電流密度の高い優れた酸化
物超電導導体を得ることができる。
If an oxide superconducting thin film is further formed on the covering layer 15 in which the surface crystals are oriented as described above, the film can be formed without aligning the crystal axis of the oxide superconducting thin film with the crystal axis of the covering layer 15. An oxide superconducting thin film can be deposited on a Go board in an oriented state. Therefore, an excellent oxide superconductor having a high critical current density can be obtained.

また、得られた酸化物超電導導体は、耐熱性に優れ、高
強度の金属基材部で補強されるために、超電導磁石用と
して使用されて電磁力に起因する応力が付加された場合
であっても、超電導薄膜にクラックを生じるおそれが少
なく、外力に強い特徴を有する。
In addition, the obtained oxide superconducting conductor has excellent heat resistance and is reinforced with a high-strength metal base material, so it is difficult to apply stress due to electromagnetic force when used as a superconducting magnet. Even if the superconducting thin film is used, there is little risk of cracks occurring in the superconducting thin film, and it is resistant to external forces.

ところで、耐熱高強度金属製の金属基材と貴金属製の被
覆材を複合する場合、第6図に示すように、2枚の金属
基材1.1の間に、貴金属製の2枚の被覆材3°を挾み
、これを圧延して基材を形成しても良い。
By the way, when combining a metal base material made of a heat-resistant, high-strength metal and a coating material made of a noble metal, as shown in FIG. The base material may be formed by sandwiching the material by 3 degrees and rolling it.

この実施例のように2枚の被覆材3°、3°を用いて複
合を行うならば、後の工程で引き裂く場合に、被覆材3
°、3°が容易に2つに分離する。なおまた、分離操作
を更に容易にするために、被覆材3’、3’の境界面に
雌型剤を塗布しておいても良い。この離型剤は引き裂き
後の研摩加工などで除去することができる。
If the composite is performed using two pieces of covering material 3° and 3° as in this example, when tearing in the later process, the covering material 3
°, 3° easily separates into two. Furthermore, in order to further facilitate the separation operation, a female molding agent may be applied to the interface between the coating materials 3' and 3'. This mold release agent can be removed by polishing or the like after tearing.

第6図に示す金属基材1.1と被覆材3°、3°を用い
て基材を製造することで先の実施例の基材17と同等の
基材を得ることができる。
By manufacturing a base material using the metal base material 1.1 and the coating materials 3° and 3° shown in FIG. 6, a base material equivalent to the base material 17 of the previous example can be obtained.

「実施例」 ハステロイC−276からなる厚さ3mmの2枚の基板
の間に、Agからなる厚さ1 mmの板体を挾んだ状態
で圧延加工を施し、全体の厚さ0.35a+−1幅5I
III11.金属基材部の厚さ0.3tam、被覆層の
厚さ005■のテープ状の複合体を形成し、全体を0,
5〜1.0気圧の酸素分圧下において、600℃で1時
間熱処理することで、被覆層表面のAgの結晶を(10
0)面に沿うように配向させた。
"Example" A plate made of Ag with a thickness of 1 mm was sandwiched between two substrates made of Hastelloy C-276 with a thickness of 3 mm, and rolled to a total thickness of 0.35 a+. -1 width 5I
III11. A tape-shaped composite is formed with a metal base portion having a thickness of 0.3 tam and a coating layer having a thickness of 0.05 mm.
By heat treating at 600°C for 1 hour under an oxygen partial pressure of 5 to 1.0 atm, the Ag crystals on the surface of the coating layer are
0) Oriented along the plane.

第7図に、前記のように製造された基材の被覆層のX線
回折試験結果を示す。第7図から明らかなように、(2
00)面の回折ピークが見られ、被覆層の表面部分が結
晶配向していることが判明した。
FIG. 7 shows the results of an X-ray diffraction test of the coating layer of the base material produced as described above. As is clear from Figure 7, (2
A diffraction peak of the 00) plane was observed, indicating that the surface portion of the coating layer was crystal oriented.

続いてレーザ蒸着装置を用いて被覆層上にY。Subsequently, Y was deposited on the coating layer using a laser evaporation device.

B atCuso t−6なる組成の酸化物超電導薄膜
を成膜することができた。
An oxide superconducting thin film having a composition of BatCuso t-6 could be formed.

また、前記のように製造された酸化物超電導導体の引張
り強度を測定した結果、50 kg/ mad”の優秀
な値を示した。これに対し、前記基材と同一寸法のAg
テープを用い、これを熱処理して結晶配向させ、その上
に超電導薄膜を形成して得られた酸化物超電導導体の引
張り強度は14 kg/ ll11m’であった。
Furthermore, as a result of measuring the tensile strength of the oxide superconducting conductor manufactured as described above, it showed an excellent value of 50 kg/mad''.
The tensile strength of the oxide superconducting conductor obtained by heat-treating the tape to crystallize it and forming a superconducting thin film thereon was 14 kg/11 m'.

以上のことから本発明の基材を用いて製造された酸化物
超電導導体は、配向性の良好な酸化物超電導薄膜を備え
るとともに、Agのみのテープ材と比較し、引張り強度
も高いことが明らかになった。従って前記酸化物超電導
導体は、電磁力による外力などにさらされる超電導磁石
用などとして好適である。
From the above, it is clear that the oxide superconducting conductor manufactured using the base material of the present invention not only has an oxide superconducting thin film with good orientation, but also has high tensile strength compared to a tape material made only of Ag. Became. Therefore, the oxide superconducting conductor is suitable for use in superconducting magnets that are exposed to external forces such as electromagnetic force.

「発明の効果」 以上説明したように本発明によれば、強度の高い耐熱合
金からなる金属基材の間に軟質の貴金属材を挾んで圧延
するので、圧延中に波打ち部分や破断部分を生じること
がなくなり、圧延加工時の歩留りが向上する。更に、1
本の複合体から2本の基材を製造できるので、製造効率
が良好であり、大量生産に適している。
"Effects of the Invention" As explained above, according to the present invention, since a soft precious metal material is sandwiched between metal base materials made of a high-strength heat-resistant alloy and rolled, wavy parts and broken parts occur during rolling. This eliminates the problem and improves the yield during rolling. Furthermore, 1
Since two base materials can be manufactured from a book composite, manufacturing efficiency is good and it is suitable for mass production.

また、酸化物超電導体の格子定数に近い格子定数を有し
、結晶の格子定数の類似する貴金属からなる被覆層を金
属基村上に形成した基材を用い、この基材の被覆層表面
の結晶を(100)面の方向に配向しているので、この
基材を用いて被覆層上に酸化物超電導薄膜を成膜するな
らば、酸化物超電導薄膜が被覆層表面の結晶構造に整合
しつつ成長する。従って基材上にC軸配向した酸化物超
電導薄膜を生成させることができ、結晶配向性の良好な
臨界電流特性の高い酸化物超電導導体を得ることができ
る。
In addition, by using a base material in which a coating layer made of a noble metal having a lattice constant close to that of an oxide superconductor and having a similar lattice constant to a crystal is formed on a metal substrate, crystals on the surface of the coating layer of this base material are used. is oriented in the direction of the (100) plane, so if an oxide superconducting thin film is formed on the coating layer using this base material, the oxide superconducting thin film will align with the crystal structure of the coating layer surface. grow up. Therefore, a C-axis oriented oxide superconducting thin film can be produced on the substrate, and an oxide superconducting conductor with good crystal orientation and high critical current characteristics can be obtained.

更に、基材全体を高価な貴金属で構成する場合よりも貴
金属の使用割合を少なくできるので、本発明の基材を用
いることによって得られる酸化物超電導導体のコストダ
ウンができる。
Furthermore, since the proportion of noble metal used can be lower than when the entire base material is made of expensive noble metals, the cost of the oxide superconducting conductor obtained by using the base material of the present invention can be reduced.

更にまた、耐熱性の高強度の金属基材部の上に被覆層を
形成し、更に酸化物超電導薄膜を形成すると、応力が付
加された場合に金属基材部が強度を発揮し、超電導薄膜
のクラック発生を防止するので、外力に強い酸化物超電
導導体が得られる。
Furthermore, by forming a coating layer on a heat-resistant, high-strength metal base material and further forming an oxide superconducting thin film, the metal base material exhibits strength when stress is applied, and the superconducting thin film Since the generation of cracks is prevented, an oxide superconducting conductor that is resistant to external forces can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は本発明方法の一例を説明するため
のもので、第1図は被覆層を金属基材部で挾んだ状態を
示す断面図、第2図は複合材の断面図、第3図は複合材
の引き裂き状態を示す側面図、第4図は圧延加工状態を
示す側面図、第5図は得られた基材の斜視図、第6図は
本発明の第2実施例に使用する金属基材と被覆材の積層
状態を示す側面図、第7図は基材上面の被覆層のX線回
折試験結果を示すグラフである。 1.6・・・金属基材、3.3’、5・・被覆材、複合
体、 5 ・・ 被覆層、 6−金属基材部、 7・・・基材。
Figures 1 to 5 are for explaining an example of the method of the present invention. Figure 1 is a cross-sectional view showing the coating layer sandwiched between metal base parts, and Figure 2 is a cross-sectional view of the composite material. 3 is a side view showing the state of tearing the composite material, FIG. 4 is a side view showing the state of rolling processing, FIG. 5 is a perspective view of the obtained base material, and FIG. 6 is the second embodiment of the present invention. FIG. 7 is a side view showing the laminated state of the metal base material and the coating material used in the examples, and a graph showing the results of an X-ray diffraction test of the coating layer on the top surface of the base material. 1.6...Metal base material, 3.3', 5...Coating material, composite, 5...Coating layer, 6-Metal base material portion, 7... Base material.

Claims (1)

【特許請求の範囲】  ハステロイなどの耐熱高強度合金からなる金属基材部
と、この金属基材部の上面に形成された結晶質の面心立
方構造の貴金属材料からなる被覆層とを具備してなり、
前記被覆層の上に酸化物超電導薄膜が形成される酸化物
超電導導体用基材の製造方法であって、 耐熱高強度合金からなる2枚の金属基材の間に、貴金属
材料を挾んだ状態で圧延加工を施して金属基材と貴金属
材料とを圧着して複合体を形成し、次いでこの複合体を
一方の金属基材上に前記貴金属材料が残るように引き剥
がし、次いで熱処理を施して貴金属材料の表面の結晶を
(100)面に沿って配向させ、金属基材部と貴金属材
料の被覆層とからなる基材を形成することを特徴とする
酸化物超電導導体用基材の製造方法。
[Scope of Claims] A metal base made of a heat-resistant, high-strength alloy such as Hastelloy, and a coating layer made of a precious metal material with a crystalline face-centered cubic structure formed on the upper surface of the metal base. Then,
A method for producing a base material for an oxide superconducting conductor, in which an oxide superconducting thin film is formed on the coating layer, the noble metal material being sandwiched between two metal base materials made of a heat-resistant high-strength alloy. The metal base material and the precious metal material are pressed together to form a composite by rolling in the state, and then this composite is peeled off so that the precious metal material remains on one of the metal bases, and then heat treatment is performed. Production of a base material for an oxide superconducting conductor, characterized in that crystals on the surface of the noble metal material are oriented along the (100) plane to form a base material consisting of a metal base portion and a coating layer of the noble metal material. Method.
JP2123678A 1990-05-14 1990-05-14 Method for producing substrate for oxide superconducting conductor Expired - Fee Related JP2968556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2123678A JP2968556B2 (en) 1990-05-14 1990-05-14 Method for producing substrate for oxide superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2123678A JP2968556B2 (en) 1990-05-14 1990-05-14 Method for producing substrate for oxide superconducting conductor

Publications (2)

Publication Number Publication Date
JPH0421596A true JPH0421596A (en) 1992-01-24
JP2968556B2 JP2968556B2 (en) 1999-10-25

Family

ID=14866598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2123678A Expired - Fee Related JP2968556B2 (en) 1990-05-14 1990-05-14 Method for producing substrate for oxide superconducting conductor

Country Status (1)

Country Link
JP (1) JP2968556B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266687A (en) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc Clad textured metal substrate for forming epitaxial thin film and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266687A (en) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc Clad textured metal substrate for forming epitaxial thin film and method for manufacturing the same

Also Published As

Publication number Publication date
JP2968556B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
US9034124B2 (en) Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
JP3587956B2 (en) Oxide superconducting wire and its manufacturing method
JP5074083B2 (en) Clad-oriented metal substrate for epitaxial thin film formation and manufacturing method thereof
JPH11504612A (en) Structure having an effective biaxially oriented structure and method for producing the structure
CN110770925B (en) High-temperature superconducting wire for improving engineering current density
RU2738320C1 (en) Superconducting joint using detached rebco
JP5123462B2 (en) Film-forming alignment substrate, superconducting wire, and method for manufacturing film-forming alignment substrate
KR101806651B1 (en) Peelable superconductor, peelable superconductor production method, and repair method for superconducting wire
JP4741326B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP2001110255A (en) High strength orientation multicrystal metal substrate and oxide superconductive wire material
JPH07506800A (en) Strongly coupled oxide superconductor and its manufacturing method
US20200313064A1 (en) High temperature-superconducting wire having superconducting layer staked thereon and method for manufacturing same
JPH0421597A (en) Substrate for oxide superconductor
JPH0421596A (en) Production of substrate for oxide superconductor
US7445808B2 (en) Method of forming a superconducting article
US11380462B2 (en) Superconducting article with compliant layers
US7175735B2 (en) Method and apparatus for manufacturing coated conductor
JP2013134856A (en) Oxide superconducting wire material and method for manufacturing the same
JP4013280B2 (en) Structure having wire rod wound in coil, method for manufacturing the same, and spacer
JP3930163B2 (en) Method for manufacturing metal substrate for oxide superconductor
JPH0668727A (en) Manufacture of superconducting wire
JP2001236834A (en) Oxide superconducting conductor
KR20080052562A (en) Improvements in and relating to superconducting material
JP2911177B2 (en) Manufacturing method of oxide superconducting conductor
JPH08157213A (en) Oxide superconductive film and its production

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees