JPH04215847A - Nitrogen oxide catalytic cracking catalyst and catalytic cracking method - Google Patents

Nitrogen oxide catalytic cracking catalyst and catalytic cracking method

Info

Publication number
JPH04215847A
JPH04215847A JP3040575A JP4057591A JPH04215847A JP H04215847 A JPH04215847 A JP H04215847A JP 3040575 A JP3040575 A JP 3040575A JP 4057591 A JP4057591 A JP 4057591A JP H04215847 A JPH04215847 A JP H04215847A
Authority
JP
Japan
Prior art keywords
catalytic cracking
copper
catalyst
ions
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3040575A
Other languages
Japanese (ja)
Inventor
Shiyuuichi Kagawa
鹿川 修一
Yasutake Teraoka
寺岡 靖剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP3040575A priority Critical patent/JPH04215847A/en
Priority to EP19910103507 priority patent/EP0445816B1/en
Priority to AU72699/91A priority patent/AU649586B2/en
Priority to DE1991608276 priority patent/DE69108276T2/en
Priority to CA002037814A priority patent/CA2037814A1/en
Priority to US07/666,716 priority patent/US5219545A/en
Publication of JPH04215847A publication Critical patent/JPH04215847A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide nitrogen oxide catalytic cracking catalysts which are scarcely deteriorated even if oxygen or sulfur oxides are present in the case that nitrogen oxides are removed from gases containing nitrogen oxides and a catalytic cracking method using the catalysts. CONSTITUTION:Copper ions and ions of transition metals other than copper are included in zeolite having the mole ratio SiO2/Al2O3 of at least 20 to provide nitrogen oxide catalytic cracking catalysts and a nitrogen oxide catalytic cracking method using the catalysts is provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、窒素酸化物を含有する
ガスから窒素酸化物を除去する触媒及びその使用方法に
関するものであり、さらに詳細には、窒素酸化物を接触
分解する触媒及びそれを使用する方法を提供するもので
ある。さらに酸素あるいは硫黄酸化物が共存しても劣化
の少ない触媒を提供するものである。
[Field of Industrial Application] The present invention relates to a catalyst for removing nitrogen oxides from a gas containing nitrogen oxides and a method for using the same, and more particularly to a catalyst for catalytically decomposing nitrogen oxides and its use. It provides a method for using . Furthermore, the present invention provides a catalyst that exhibits little deterioration even when oxygen or sulfur oxides coexist.

【0002】0002

【従来の技術】工業プラント、自動車等から排出される
燃焼排ガス中の窒素酸化物は光化学スモッグの発生原因
とも成り得る物質であり、環境保全の立場からその除去
方法の開発は、重大かつ緊急の社会的課題である。窒素
酸化物の中でも一酸化窒素(NO)は特に除去が困難で
ありこれまでにも種々の方法が検討されてきた。例えば
、接触還元法は有効な手段として提案され開発が進めら
れているが、アンモニア、水素あるいは一酸化炭素等の
還元剤を必要とし、さらに未反応還元剤を回収、あるい
は分解する為の特別の装置を必要とする。これに対して
接触分解法は還元剤等の特別な添加剤を必要とせず、触
媒層に通すだけで窒素と酸素に分解する方法であり、プ
ロセスも単純であることから最も望ましい方法である。 従来の研究によれば、Pt,CuO,Co3O4等にN
O分解活性が認められたが、何れも分解生成物である酸
素の毒作用を受ける為、実用触媒とは成り得なかった。
[Prior Art] Nitrogen oxides in combustion exhaust gas emitted from industrial plants, automobiles, etc. are substances that can cause photochemical smog, and from the standpoint of environmental conservation, the development of methods for removing them is an important and urgent task. It is a social issue. Among nitrogen oxides, nitric oxide (NO) is particularly difficult to remove, and various methods have been studied so far. For example, the catalytic reduction method has been proposed and is being developed as an effective method, but it requires a reducing agent such as ammonia, hydrogen, or carbon monoxide, and it also requires a special method to recover or decompose the unreacted reducing agent. Requires equipment. On the other hand, the catalytic cracking method does not require any special additives such as reducing agents, and decomposes the material into nitrogen and oxygen simply by passing it through a catalyst layer, and is the most desirable method because the process is simple. According to conventional research, N is present in Pt, CuO, Co3O4, etc.
Although O decomposition activity was observed, they could not be used as practical catalysts because they were poisoned by oxygen, a decomposition product.

【0003】これに対し,本発明者等は幅広く接触分解
用触媒の研究を重ね、銅イオンを交換した数種のゼオラ
イトが定常的な活性を示すことを見出すに至った。更に
、銅イオンを含有し、ある特定の結晶構造を有するゼオ
ライトがNOの接触分解触媒として極めて高い定常活性
を示すばかりでなく、硫黄酸化物の共存下においても活
性がそのまま維持されることを見出した(特開昭60−
125250号公報)。
On the other hand, the present inventors have extensively researched catalysts for catalytic cracking and have found that several types of zeolite with exchanged copper ions exhibit steady activity. Furthermore, we discovered that zeolite containing copper ions and having a specific crystal structure not only exhibits extremely high steady-state activity as a NO catalytic cracking catalyst, but also maintains its activity even in the coexistence of sulfur oxides. (Unexamined Japanese Patent Publication 1986-
125250).

【0004】しかしながら、上記触媒は特に高温での十
分な活性および十分な耐熱性を有しておらず、未だ実用
化されるに至っていない。
However, the above catalyst does not have sufficient activity and heat resistance, especially at high temperatures, and has not yet been put into practical use.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、還元
剤であるアンモニアを使用することなく、工業プラント
、自動車等から排出される燃焼排ガス中の窒素酸化物を
高温においても効率良く除去し、且つ、硫黄酸化物及び
酸素が共存しても高活性を維持する接触分解触媒を提供
するものである。
[Problems to be Solved by the Invention] An object of the present invention is to efficiently remove nitrogen oxides from combustion exhaust gases emitted from industrial plants, automobiles, etc., even at high temperatures, without using ammonia as a reducing agent. , and to provide a catalytic cracking catalyst that maintains high activity even in the coexistence of sulfur oxides and oxygen.

【0006】[0006]

【課題を解決する為の手段】本発明者等は、上記課題に
ついて鋭意検討を重ねた結果、本発明を完成するに至っ
た。
[Means for Solving the Problems] The present inventors have completed the present invention as a result of extensive studies regarding the above-mentioned problems.

【0007】即ち本発明は、SiO2/Al2O3モル
比が少なくとも20であるゼオライトに銅イオン及び銅
以外の遷移金属イオンを含有させた窒素酸化物接触分解
触媒、及び、窒素酸化物含有ガスから窒素酸化物を除去
する方法において、該触媒と窒素酸化物含有ガスを接触
させることを特徴とする窒素酸化物の接触分解方法を提
供するものである。
That is, the present invention provides a nitrogen oxide catalytic cracking catalyst in which copper ions and transition metal ions other than copper are contained in zeolite having a SiO2/Al2O3 molar ratio of at least 20, and The present invention provides a method for catalytic decomposition of nitrogen oxides, which comprises bringing the catalyst into contact with a nitrogen oxide-containing gas.

【0008】以下、本発明をより詳細に説明する。The present invention will be explained in more detail below.

【0009】本発明において用いられるゼオライトはS
iO2/Al2O3モル比が20以上であることを必須
とする。SiO2/Al2O3モル比はその上限が特に
限定されるものではない。SiO2/Al2O3モル比
が20未満であると、十分な耐熱性が得られない。一般
的にはSiO2/Al2O3モル比が20〜200程度
のものが用いられる。
The zeolite used in the present invention is S
It is essential that the iO2/Al2O3 molar ratio is 20 or more. The upper limit of the SiO2/Al2O3 molar ratio is not particularly limited. When the SiO2/Al2O3 molar ratio is less than 20, sufficient heat resistance cannot be obtained. Generally, those having a SiO2/Al2O3 molar ratio of about 20 to 200 are used.

【0010】本発明の触媒を構成するゼオライトとして
は、例えば、ZSM−5、ZSM−8、ZSM−11、
ZSM−12、ZSM−20、ZSM−35等のゼオラ
イトが使用できるが、その中でもZSM−5が好適に用
いられる。またこれらのゼオライトの製造方法は限定さ
れるものではない。またモルデナイト、フェリエライト
、Y型ゼオライト、L型ゼオライト等のゼオライトを脱
アルミニウムしたものであっても良い。また、これらの
ゼオライトは、そのままあるいはアンモニウム塩、鉱酸
等で処理しNH4イオン交換或いはHイオン交換してか
ら使用することもできる。
Zeolites constituting the catalyst of the present invention include, for example, ZSM-5, ZSM-8, ZSM-11,
Zeolites such as ZSM-12, ZSM-20, and ZSM-35 can be used, and among them, ZSM-5 is preferably used. Furthermore, the method for producing these zeolites is not limited. Further, dealuminated zeolites such as mordenite, ferrierite, Y-type zeolite, and L-type zeolite may also be used. Further, these zeolites can be used as they are or after being treated with ammonium salts, mineral acids, etc. to exchange NH4 ions or H ions.

【0011】本発明の接触分解触媒は、SiO2/Al
2O3モル比が少なくとも20のゼオライトに、銅イオ
ン及び銅以外の遷移金属イオンを含有させることが必須
である。
The catalytic cracking catalyst of the present invention is a SiO2/Al
It is essential that the zeolite having a 2O3 molar ratio of at least 20 contains copper ions and transition metal ions other than copper.

【0012】上記ゼオライトに銅イオン及び銅以外の遷
移金属イオンを含有させる方法は特に限定されないが、
イオン交換法が好ましい。イオン交換法としては一般的
に行われている方法を採用することができる。例えば銅
イオン及び銅以外の遷移金属イオンを含有する水溶液を
用いてイオン交換しても良いし、銅イオン交換した後銅
以外の遷移金属イオンでイオン交換、あるいは、銅以外
の遷移金属イオンでイオン交換した後銅イオン交換して
も良い。イオン交換の際の水溶液中の銅イオン及び銅以
外の遷移金属イオンの濃度はイオン交換率によって任意
に設定することができる。
[0012] The method of incorporating copper ions and transition metal ions other than copper into the zeolite is not particularly limited;
Ion exchange method is preferred. As the ion exchange method, a commonly used method can be employed. For example, ion exchange may be performed using an aqueous solution containing copper ions and transition metal ions other than copper, ion exchange with transition metal ions other than copper after copper ion exchange, or ion exchange with transition metal ions other than copper. After the exchange, copper ion exchange may be performed. The concentrations of copper ions and transition metal ions other than copper in the aqueous solution during ion exchange can be arbitrarily set depending on the ion exchange rate.

【0013】また、銅イオン及び銅以外の遷移金属イオ
ンは可溶性の塩の形で使用でき、可溶性の塩としては、
硝酸塩、酢酸塩、シュウ酸塩、塩酸塩等が好適に使用で
きる。
[0013] Copper ions and transition metal ions other than copper can be used in the form of soluble salts.
Nitrate, acetate, oxalate, hydrochloride, etc. can be suitably used.

【0014】上記において銅イオン交換する際には、銅
イオン含有量を増大させる為にアンモニアを添加しpH
を調整して行っても良い。
[0014] When performing copper ion exchange in the above process, ammonia is added to increase the copper ion content and the pH is adjusted.
You can also adjust it.

【0015】イオン交換サイトにある銅イオンが活性点
であることから、銅はイオン交換サイトに交換されたも
のであることが望ましい。また、銅以外の遷移金属イオ
ンについてもイオン交換サイトにイオン交換することが
望ましいが、そればかりでなく、酸化物等でゼオライト
上に担持された状態でもその効果が発揮される。
[0015] Since the copper ions present at the ion exchange sites are active sites, it is desirable that the copper be exchanged at the ion exchange sites. Furthermore, it is desirable to ion-exchange transition metal ions other than copper at ion-exchange sites, but the effect is also exhibited not only when ions are supported on zeolite using oxides or the like.

【0016】本発明で使用する遷移金属イオンとしては
、特に限定はないが、例えばCo,Ni,Cr,Fe,
Mn,Zn,Ptなどのイオンが好ましく用いられる。
The transition metal ions used in the present invention are not particularly limited, but include, for example, Co, Ni, Cr, Fe,
Ions such as Mn, Zn, and Pt are preferably used.

【0017】イオン交換処理した試料は、固液分離、洗
浄、乾燥して使用される。また、必要に応じて焼成して
から用いることもできる。
The ion-exchanged sample is used after solid-liquid separation, washing and drying. Moreover, it can also be used after baking if necessary.

【0018】銅イオン交換量は、Cu/Al原子比で表
わして0.01〜1.5、また、銅以外の遷移金属イオ
ン交換量は、Al原子に対して原子比で0.01以上で
あることが望ましい。Cu/Al原子比が0.01未満
では活性点である銅イオンが少なく、十分な触媒活性が
得られないし、また1.5を越える場合には銅が酸化物
等でゼオライト表面に存在し、銅イオン含有量を増大さ
せただけの効果が得られなくなる恐れがある。また、銅
以外の遷移金属イオン交換量がAl原子に対して原子比
で0.01未満では銅以外の遷移金属イオン共存の効果
が小さく十分な耐熱性が得られなくなる恐れがある。
The amount of copper ion exchanged is 0.01 to 1.5 in terms of Cu/Al atomic ratio, and the amount of ion exchanged with transition metals other than copper is 0.01 or more in atomic ratio to Al atoms. It is desirable that there be. When the Cu/Al atomic ratio is less than 0.01, there are few copper ions, which are active sites, and sufficient catalytic activity cannot be obtained, and when it exceeds 1.5, copper exists on the zeolite surface as an oxide, etc. There is a possibility that the effect of simply increasing the copper ion content will not be obtained. Furthermore, if the amount of ion exchange of transition metals other than copper is less than 0.01 in atomic ratio with respect to Al atoms, the effect of the coexistence of transition metal ions other than copper may be small and sufficient heat resistance may not be obtained.

【0019】本発明の接触分解触媒のSiO2/Al2
O3モル比は、使用したゼオライト基材のSiO2/A
l2O3モル比と実質的に変わらない。また、接触分解
触媒の結晶構造もイオン交換前後で本質的に異なるもの
ではない。
SiO2/Al2 of the catalytic cracking catalyst of the present invention
The O3 molar ratio is SiO2/A of the zeolite base material used.
It is not substantially different from the l2O3 molar ratio. Furthermore, the crystal structure of the catalytic cracking catalyst is not essentially different before and after ion exchange.

【0020】本発明の接触分解触媒は、粘土鉱物等のバ
インダーと混合し成形して使用することもできる。また
、予めゼオライトを成形し、その成形体に銅及び銅以外
の遷移金属イオンをイオン交換等で含有させることもで
きる。ゼオライトを成形する際に用いられるバインダー
としては、カオリン、アタパルガイト、モンモリロナイ
ト、ベントナイト、アロフェン、セピオライト等の粘土
鉱物である。あるいは、バインダーを用いずに成形体を
直接合成したバインダレスゼオライト成形体であっても
良い。またさらに、コージェライト製あるいは金属製等
のハニカム状基材にゼオライトをコートして用いること
もできる。
The catalytic cracking catalyst of the present invention can also be used by being mixed with a binder such as a clay mineral and molded. Alternatively, zeolite may be formed in advance and the formed body may contain copper and transition metal ions other than copper by ion exchange or the like. Binders used in forming zeolite include clay minerals such as kaolin, attapulgite, montmorillonite, bentonite, allophane, and sepiolite. Alternatively, it may be a binderless zeolite molded product that is directly synthesized without using a binder. Furthermore, a honeycomb-shaped substrate made of cordierite or metal may be coated with zeolite.

【0021】排ガス中の窒素酸化物の接触分解は、本発
明の接触分解触媒と窒素酸化物を含む排ガスを接触させ
ることにより行なうことができる。
Catalytic decomposition of nitrogen oxides in exhaust gas can be carried out by bringing the catalytic cracking catalyst of the present invention into contact with exhaust gas containing nitrogen oxides.

【0022】なお上記接触分解触媒は、アンモニア、一
酸化炭素、炭化水素、水分、酸素,硫黄酸化物等の存在
する排ガスに適用された場合にも、従来の銅を担持した
ゼオライト触媒と同等の触媒性能を発揮することができ
る。
[0022] The above-mentioned catalytic cracking catalyst has the same performance as the conventional copper-supported zeolite catalyst even when applied to exhaust gas containing ammonia, carbon monoxide, hydrocarbons, moisture, oxygen, sulfur oxides, etc. Can exhibit catalytic performance.

【0023】[0023]

【作用】特開昭60−125250号公報に示されてい
るように、銅イオンを含有させた特定の結晶構造を有す
る結晶性アルミノ珪酸塩は、還元剤の存在しない排ガス
においても窒素酸化物を効率良く除去することができる
。これは、その結晶性アルミノ珪酸塩の特異な結晶構造
により、イオン交換された銅イオンの酸化還元サイクル
が容易となり、この酸化還元サイクルにより窒素酸化物
が窒素と酸素に分解される為である。また、銅イオンが
窒素酸化物の分解生成物である酸素の毒作用を受けにく
く長時間に渡り高活性を維持する。
[Operation] As shown in JP-A No. 60-125250, crystalline aluminosilicate containing copper ions and having a specific crystal structure can generate nitrogen oxides even in exhaust gas without a reducing agent. It can be removed efficiently. This is because the unique crystal structure of the crystalline aluminosilicate facilitates the redox cycle of ion-exchanged copper ions, and this redox cycle decomposes nitrogen oxides into nitrogen and oxygen. In addition, copper ions are less susceptible to the poisonous effects of oxygen, which is a decomposition product of nitrogen oxides, and maintain high activity over a long period of time.

【0024】しかしながら、上記の銅イオン交換した結
晶性アルミノ珪酸塩は高温では銅イオンの還元が進みす
ぎて、銅イオンの酸化還元サイクルが妨げられ、十分な
活性を得ることができない。
However, in the copper ion-exchanged crystalline aluminosilicate described above, the reduction of copper ions proceeds too much at high temperatures, and the redox cycle of copper ions is hindered, making it impossible to obtain sufficient activity.

【0025】本発明の触媒は、ゼオライトに銅イオン及
び銅以外の遷移金属イオンを含有させたものであるが、
銅以外の遷移金属イオンを共存させることによって銅イ
オンの還元の進みすぎを防止する効果があり、銅イオン
の酸化還元サイクルを促進させることにより、高温にお
いても高活性でかつ定常安定性の高い接触分解触媒とな
ると考えられる。
The catalyst of the present invention is a zeolite containing copper ions and transition metal ions other than copper.
The coexistence of transition metal ions other than copper has the effect of preventing excessive reduction of copper ions, and by promoting the redox cycle of copper ions, it becomes a highly active and stable contact even at high temperatures. It is thought to act as a decomposition catalyst.

【0026】[0026]

【実施例】以下、実施例において本発明をさらに詳細に
説明する。しかし、本発明はこれら実施例のみに限定さ
れるものではない。
EXAMPLES The present invention will be explained in more detail in the following examples. However, the present invention is not limited to these examples.

【0027】実施例1 攪拌状態にある実容積2リットルのオーバーフロータイ
プの反応槽に、珪酸ソーダ水溶液(SiO2;153g
/リットル,Na2O;50g/リットル,Al2O3
;0.8g/リットル)と、硫酸アルミニウム水溶液(
Al2O3;38.4g/リットル,H2SO4;27
5g/リットル)とをそれぞれ3.2リットル/hr,
0.8リットル/hrの速度で連続的に供給した。反応
温度は30〜32℃、排出されるスラリーのpHは6.
4〜6.6であった。
Example 1 A sodium silicate aqueous solution (SiO2; 153 g
/liter, Na2O; 50g/liter, Al2O3
;0.8g/liter) and aluminum sulfate aqueous solution (
Al2O3; 38.4g/liter, H2SO4; 27
5g/liter) and 3.2liter/hr, respectively.
It was fed continuously at a rate of 0.8 liters/hr. The reaction temperature was 30-32°C, and the pH of the slurry discharged was 6.
It was 4-6.6.

【0028】排出スラリーを固液分離し十分水洗した後
、Na2O;1.72wt%,Al2O3;2.58w
t%,SiO2;39.3wt%,H2O;56.4w
t%の粒状無定形アルミノ珪酸塩均一化合物を得た。 該均一化合物2,840gと1.39wt%のNaOH
水溶液5160gとをオートクレーブに仕込み、160
℃で72時間攪拌下で結晶化した。生成物を固液分離、
水洗、乾燥してZSM−5型ゼオライトを得た。化学分
析の結果、その組成は無水ベースにおける酸化物のモル
比で表わして次の組成を有していた。
After separating the discharged slurry into solid and liquid and thoroughly washing with water, Na2O; 1.72wt%, Al2O3; 2.58w
t%, SiO2; 39.3wt%, H2O; 56.4w
A granular amorphous aluminosilicate homogeneous compound of t% was obtained. 2,840 g of the homogeneous compound and 1.39 wt% NaOH
Pour 5160g of aqueous solution into an autoclave,
Crystallization was carried out under stirring at <RTIgt;C</RTI> for 72 hours. solid-liquid separation of the product,
It was washed with water and dried to obtain ZSM-5 type zeolite. As a result of chemical analysis, its composition, expressed as molar ratio of oxides on an anhydrous basis, was as follows:

【0029】 1.1Na2O,Al2O3,23.3SiO2このゼ
オライト10gを、0.012N硝酸コバルト水溶液1
リットルに添加した。60℃にて一昼夜攪拌し、洗浄し
てコバルトイオン交換ゼオライトを得た。次いで、0.
024N酢酸銅水溶液1リットルに添加した。 60℃で一昼夜攪拌し、洗浄、乾燥して触媒1を調製し
た。化学分析の結果、その組成は無水ベースにおける酸
化物のモル比で表わして次の組成を有していた。
1.1Na2O, Al2O3, 23.3SiO2 10g of this zeolite was mixed with 11g of 0.012N cobalt nitrate aqueous solution.
Added to liters. The mixture was stirred at 60° C. for a day and night and washed to obtain a cobalt ion exchange zeolite. Then 0.
024N copper acetate aqueous solution. Catalyst 1 was prepared by stirring at 60°C all day and night, washing and drying. As a result of chemical analysis, its composition, expressed as molar ratio of oxides on an anhydrous basis, was as follows:

【0030】   0.43CoO,0.75CuO,Al2O3,2
3.3SiO2実施例2 実施例1で得られたZSM−5型ゼオライト10gを使
用し、硝酸コバルトの代わりに酢酸ニッケルを用いた以
外は実施例1と同様にして触媒2を調製した。
0.43CoO, 0.75CuO, Al2O3,2
3.3SiO2 Example 2 Catalyst 2 was prepared in the same manner as in Example 1 except that 10 g of ZSM-5 type zeolite obtained in Example 1 was used and nickel acetate was used instead of cobalt nitrate.

【0031】化学分析の結果、その組成は無水ベースに
おける酸化物のモル比で表わして次の組成を有していた
As a result of chemical analysis, its composition, expressed in molar ratio of oxides on an anhydrous basis, was as follows:

【0032】   0.60NiO,0.75CuO,Al2O3,2
3.3SiO2実施例3 実施例1で得られたZSM−5型ゼオライト10gを使
用し、硝酸コバルトの代わりに酢酸クロムを用いた以外
は実施例1と同様にして触媒3を調製した。
0.60NiO, 0.75CuO, Al2O3,2
3.3 SiO2 Example 3 Catalyst 3 was prepared in the same manner as in Example 1 except that 10 g of ZSM-5 type zeolite obtained in Example 1 was used and chromium acetate was used instead of cobalt nitrate.

【0033】化学分析の結果、その組成は無水ベースに
おける酸化物のモル比で表わして次の組成を有していた
As a result of chemical analysis, its composition, expressed in molar ratio of oxides on an anhydrous basis, was as follows:

【0034】   0.09Cr2O3,1.05CuO,Al2O3
,23.3SiO2実施例4 実施例1で得られたZSM−5型ゼオライト10gを使
用し、硝酸コバルトの代わりに硝酸鉄を用いた以外は実
施例1と同様にして触媒4を調製した。
0.09Cr2O3, 1.05CuO, Al2O3
, 23.3SiO2 Example 4 Catalyst 4 was prepared in the same manner as in Example 1 except that 10 g of ZSM-5 type zeolite obtained in Example 1 was used and iron nitrate was used instead of cobalt nitrate.

【0035】化学分析の結果、その組成は無水ベースに
おける酸化物のモル比で表わして次の組成を有していた
As a result of chemical analysis, its composition, expressed in molar ratio of oxides on an anhydrous basis, was as follows:

【0036】   0.41FeO,0.92CuO,Al2O3,2
3.3SiO2実施例5 実施例1,2,3及び4で得られた触媒を用いて、接触
分解性能を調べた。
0.41FeO, 0.92CuO, Al2O3,2
3.3SiO2 Example 5 Catalytic cracking performance was investigated using the catalysts obtained in Examples 1, 2, 3, and 4.

【0037】触媒をプレス成形した後粉砕して42〜8
0メッシュに整粒した。その2ccを常圧固定床流通式
反応管に充填した。Heガス中500℃で1時間の前処
理を行った後、NOを0.48%含有するHeガスを、
接触時間が4.0g・sec/mlになるように流通さ
せた。
[0037] After press-molding the catalyst, it is pulverized to give 42 to 8
The particles were sized to 0 mesh. 2 cc of it was filled into an atmospheric fixed bed flow reaction tube. After pretreatment in He gas at 500 °C for 1 hour, He gas containing 0.48% NO was
It was distributed so that the contact time was 4.0 g·sec/ml.

【0038】各温度におけるNO転化率を表1に示す。Table 1 shows the NO conversion rate at each temperature.

【0039】[0039]

【表1】 比較例1 実施例1で得られたZSM−5型ゼオライト10gを、
0.012N酢酸銅水溶液1リットルに添加した後、6
0℃で一昼夜攪拌し、洗浄、乾燥して比較触媒を調製し
た。化学分析の結果、その組成は無水ベースにおける酸
化物のモル比で表わして次の組成を有していた。
[Table 1] Comparative Example 1 10 g of ZSM-5 type zeolite obtained in Example 1 was
After adding to 1 liter of 0.012N copper acetate aqueous solution, 6
A comparison catalyst was prepared by stirring at 0°C all day and night, washing and drying. As a result of chemical analysis, its composition, expressed as molar ratio of oxides on an anhydrous basis, was as follows:

【0040】   0.64Na2O,0.69CuO,Al2O3,
23.3SiO2比較例2 比較例1で得られた触媒を用いて、実施例5と同様にし
て比較触媒の接触分解性能を調べた。
0.64Na2O, 0.69CuO, Al2O3,
23.3SiO2 Comparative Example 2 Using the catalyst obtained in Comparative Example 1, the catalytic cracking performance of the comparative catalyst was investigated in the same manner as in Example 5.

【0041】その結果を表2に示す。The results are shown in Table 2.

【0042】[0042]

【表2】 実施例6 実施例1で得られたZSM−5型ゼオライト10gを使
用し、硝酸コバルトの代わりに硝酸マンガンを用いた以
外は実施例1と同様にして触媒5を調製した。
[Table 2] Example 6 Catalyst 5 was prepared in the same manner as in Example 1 except that 10 g of the ZSM-5 type zeolite obtained in Example 1 was used and manganese nitrate was used instead of cobalt nitrate.

【0043】化学分析の結果、その組成は無水ベースに
おける酸化物のモル比で表わして次の組成を有していた
As a result of chemical analysis, its composition, expressed in molar ratio of oxides on an anhydrous basis, was as follows:

【0044】   0.68MnO,0.71CuO,Al2O3,2
3.3SiO2実施例7 実施例1で得られたZSM−5型ゼオライト10gを使
用し、硝酸コバルトの代わりに酢酸亜鉛を用いた以外は
実施例1と同様にして触媒6を調製した。
0.68MnO, 0.71CuO, Al2O3,2
3.3SiO2 Example 7 Catalyst 6 was prepared in the same manner as in Example 1, except that 10 g of ZSM-5 type zeolite obtained in Example 1 was used and zinc acetate was used instead of cobalt nitrate.

【0045】化学分析の結果、その組成は無水ベースに
おける酸化物のモル比で表わして次の組成を有していた
As a result of chemical analysis, its composition, expressed in molar ratio of oxides on an anhydrous basis, was as follows:

【0046】   0.62ZnO,0.76CuO,Al2O3,2
3.3SiO2実施例8 実施例1で得られたZSM−5型ゼオライト10gを使
用し、硝酸コバルトの代わりに塩化白金酸を用いた以外
は実施例1と同様にして触媒7を調製した。
0.62ZnO, 0.76CuO, Al2O3,2
3.3SiO2 Example 8 Catalyst 7 was prepared in the same manner as in Example 1, except that 10 g of ZSM-5 type zeolite obtained in Example 1 was used and chloroplatinic acid was used instead of cobalt nitrate.

【0047】化学分析の結果、その組成は無水ベースに
おける酸化物のモル比で表わして次の組成を有していた
As a result of chemical analysis, its composition, expressed in molar ratio of oxides on an anhydrous basis, was as follows:

【0048】   0.15PtO,1.07CuO,Al2O3,2
3.3SiO2実施例9 実施例6,7及び8で得られた触媒を用いて、実施例5
と同様にして比較触媒の接触分解性能を調べた。
0.15PtO, 1.07CuO, Al2O3,2
3.3SiO2 Example 9 Using the catalysts obtained in Examples 6, 7 and 8, Example 5
The catalytic cracking performance of the comparative catalyst was investigated in the same manner as described above.

【0049】その結果を表3に示す。The results are shown in Table 3.

【0050】[0050]

【表3】[Table 3]

【0051】[0051]

【発明の効果】表1,表2及び表3から明らかなように
、本発明の窒素酸化物接触分解触媒は、ガスと接触させ
ることによりガス中の窒素酸化物を高温においても効率
よく除去でき、耐熱性に非常に優れた性能を示す。
Effects of the Invention As is clear from Tables 1, 2, and 3, the nitrogen oxide catalytic cracking catalyst of the present invention can efficiently remove nitrogen oxides from gas even at high temperatures by contacting it with gas. , exhibits excellent heat resistance.

【0052】本発明の窒素酸化物接触分解触媒は、アン
モニア等の還元剤を使用すること無く、燃焼排ガス中の
窒素酸化物を高温においても効率良く除去できるという
効果があり、また、耐熱性に非常に優れた性能を示すと
いう効果がある。したがって、本発明の触媒を排ガスと
接触させることにより、高温においても窒素酸化物の浄
化を行うことができる。
The nitrogen oxide catalytic cracking catalyst of the present invention has the effect of efficiently removing nitrogen oxides from combustion exhaust gas even at high temperatures without using a reducing agent such as ammonia, and has excellent heat resistance. It has the effect of exhibiting very excellent performance. Therefore, by bringing the catalyst of the present invention into contact with exhaust gas, nitrogen oxides can be purified even at high temperatures.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】SiO2/Al2O3モル比が少なくとも
20であるゼオライトに銅イオン及び銅以外の遷移金属
イオンを含有させた窒素酸化物接触分解触媒。
1. A nitrogen oxide catalytic cracking catalyst comprising a zeolite having a SiO2/Al2O3 molar ratio of at least 20 containing copper ions and transition metal ions other than copper.
【請求項2】窒素酸化物含有ガスから窒素酸化物を除去
する方法において、請求項1に記載の触媒と、窒素酸化
物含有ガスを接触させることを特徴とする窒素酸化物の
接触分解方法。
2. A method for catalytic decomposition of nitrogen oxides, which comprises bringing the catalyst according to claim 1 into contact with the nitrogen oxide-containing gas.
JP3040575A 1990-03-09 1991-02-13 Nitrogen oxide catalytic cracking catalyst and catalytic cracking method Pending JPH04215847A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3040575A JPH04215847A (en) 1990-03-09 1991-02-13 Nitrogen oxide catalytic cracking catalyst and catalytic cracking method
EP19910103507 EP0445816B1 (en) 1990-03-09 1991-03-07 Use of a zeolitic catalyst for decomposing nitrogen oxides in the absence of reducing agent
AU72699/91A AU649586B2 (en) 1990-03-09 1991-03-07 Catalyst and method for catalytically decomposing nitrogen oxides
DE1991608276 DE69108276T2 (en) 1990-03-09 1991-03-07 Use of a zeolitic catalyst to decompose nitrogen oxides in the absence of a reducing agent.
CA002037814A CA2037814A1 (en) 1990-03-09 1991-03-08 Catalyst and method for catalytically decomposing nitrogen oxides
US07/666,716 US5219545A (en) 1990-03-09 1991-03-08 Catalyst and method for catalytically decomposing nitrogen oxides

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5653590 1990-03-09
JP2-56535 1990-03-09
JP3040575A JPH04215847A (en) 1990-03-09 1991-02-13 Nitrogen oxide catalytic cracking catalyst and catalytic cracking method

Publications (1)

Publication Number Publication Date
JPH04215847A true JPH04215847A (en) 1992-08-06

Family

ID=26380048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3040575A Pending JPH04215847A (en) 1990-03-09 1991-02-13 Nitrogen oxide catalytic cracking catalyst and catalytic cracking method

Country Status (1)

Country Link
JP (1) JPH04215847A (en)

Similar Documents

Publication Publication Date Title
EP0462598B1 (en) Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same
JP2008104914A (en) Nitrogen oxide purification catalyst and method
JP2928853B2 (en) Nitrogen oxide catalytic cracking catalyst and catalytic cracking method
US5695728A (en) Method for removal of nitrogen oxides
US5219545A (en) Catalyst and method for catalytically decomposing nitrogen oxides
EP0445816B1 (en) Use of a zeolitic catalyst for decomposing nitrogen oxides in the absence of reducing agent
JP2734476B2 (en) Catalyst for direct catalytic cracking of nitrogen oxides
JPH044045A (en) Catalyst for processing exhaust gas
JPH04215847A (en) Nitrogen oxide catalytic cracking catalyst and catalytic cracking method
JP2555637B2 (en) Method for producing copper-containing zeolite
KR0146879B1 (en) Mordenite containing zeolite catalyst for nox removal
JPH02164453A (en) Preparation and use of nitrogen oxide removing catalyst
JPH06170166A (en) Removal of nitrogen oxide
JP3482661B2 (en) Nitrogen oxide removal method
JPH03101837A (en) Production of catalyst for decomposition of nitrogen oxide
JP3395220B2 (en) Nitrogen oxide removal method
JPH04367740A (en) Catalyst and method for reducing and removing nitrogen oxide
JPH03293041A (en) Catalyst for catalytic decomposition of nitrogen oxide and catalytic decomposition method
JP3395221B2 (en) Nitrogen oxide removal method
JPH0478444A (en) Catalyst for purification of exhaust gas and its using method
JPH03293040A (en) Catalyst for catalytic decomposition of nitrogen oxide and catalytic decomposition method
JP3482658B2 (en) Nitrogen oxide removal method
JPH03258345A (en) Catalyst for cracking of nitrogen oxide and method of catalytic cracking
JPH06277522A (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using same
JPH03143547A (en) Catalyst for decomposition of nitrogen oxide