JPH0478444A - Catalyst for purification of exhaust gas and its using method - Google Patents

Catalyst for purification of exhaust gas and its using method

Info

Publication number
JPH0478444A
JPH0478444A JP2193063A JP19306390A JPH0478444A JP H0478444 A JPH0478444 A JP H0478444A JP 2193063 A JP2193063 A JP 2193063A JP 19306390 A JP19306390 A JP 19306390A JP H0478444 A JPH0478444 A JP H0478444A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
zeolite
ion exchange
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2193063A
Other languages
Japanese (ja)
Inventor
Senji Kasahara
泉司 笠原
Shuji Okazaki
岡崎 修二
Kazuhiko Sekizawa
関沢 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2193063A priority Critical patent/JPH0478444A/en
Priority to CA002044893A priority patent/CA2044893C/en
Priority to US07/717,659 priority patent/US5374409A/en
Priority to DE69125420T priority patent/DE69125420T2/en
Priority to AU79165/91A priority patent/AU643294B2/en
Priority to EP91110088A priority patent/EP0462598B1/en
Publication of JPH0478444A publication Critical patent/JPH0478444A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a catalyst which can efficiently purify an exhaust gas containing excess oxygen and has excellent heat resistance and durability and to establish the method of using this catalyst by incorporating potassium and transition metal into a zeolite having a specified SiO2/Al2O3 molar ratio. CONSTITUTION:Potassium and transition metal such as Fe, Cu, Co, etc., are incorporated into a zeolite having >=10 SiO2/Al2O3 molar ratio by depositing or ion exchange method. As for the procedure of ion exchange or deposition, potassium is first subjected to ion exchange and then the transition metal is subjected to ion exchange. The zeolite to be used is not especially limited, and for example, mordenite, ferrierite etc., can be used after removing ions such as Na or the like by ammonia treatment. By using the catalyst thus obtd. to treat a combustion exhaust gas containing nitrogen oxide by bringing the catalyst into contact with the gas, the exhaust has can be efficiently purified. The catalyst is excellent in heat resistance and durability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ボイラー 自動車エンジン等から排出される
窒素酸化物を含有する排ガスを処理するための触媒及び
その使用方法に関し、更に詳細には、耐久性の非常に優
れた排ガス浄化用触媒及びその使用方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a catalyst for treating exhaust gas containing nitrogen oxides discharged from boilers, automobile engines, etc., and more specifically, to a method for using the same. The present invention relates to an extremely durable exhaust gas purifying catalyst and a method for using the same.

(従来の技術) ボイラー 自動車エンジン等から排出される排ガス中の
窒素酸化物を除去する方法として、触媒の存在下でアン
モニアを用いる選択的接触還元法、また、排ガスを触媒
に通し、未燃焼の一酸化炭素及び炭化水素により還元す
る非選択的接触還元法等が実用化されている。
(Prior art) Boiler As a method for removing nitrogen oxides from exhaust gas emitted from automobile engines, etc., there is a selective catalytic reduction method that uses ammonia in the presence of a catalyst. Non-selective catalytic reduction methods using carbon monoxide and hydrocarbons have been put into practical use.

特開昭60−125250号公報には、還元剤非共存下
で窒素酸化物を直接接触分解できる触媒として銅イオン
交換したゼオライトが提案されている。
JP-A-60-125250 proposes copper ion-exchanged zeolite as a catalyst that can directly catalytically decompose nitrogen oxides in the absence of a reducing agent.

また、ディーゼルエンジン、低燃費化を目的とした希薄
燃焼エンジンの排ガス浄化用に、酸素過剰下でも、未燃
焼の一酸化炭素、炭化水素等の還元成分により窒素酸化
物を選択的に還元できる触媒として、卑金属をゼオライ
ト等に含有させた触媒が提案されている(特開昭63− 100119)。
In addition, we have developed a catalyst that can selectively reduce nitrogen oxides using reducing components such as unburned carbon monoxide and hydrocarbons, even under excessive oxygen conditions, for exhaust gas purification of diesel engines and lean-burn engines aimed at improving fuel efficiency. As such, a catalyst in which a base metal is contained in zeolite or the like has been proposed (Japanese Unexamined Patent Publication No. 100119/1983).

しかしながら、これらの提案されている触媒は、特に高
温での耐久性に問題があり、実用化されるに至っていな
い。
However, these proposed catalysts have problems in durability, especially at high temperatures, and have not been put into practical use.

(発明が解決しようとする課題) 本発明の目的は、アンモニア等の還元剤を使用すること
なく、自動車等の内燃機関から排出される、特に酸素過
剰の排ガスを、効率良く浄化し、且つ、水蒸気の存在す
る高温での耐久性に優れる排ガス浄化用触媒を提供する
ものである。
(Problems to be Solved by the Invention) An object of the present invention is to efficiently purify exhaust gas, especially oxygen-excess gas, emitted from internal combustion engines such as automobiles without using a reducing agent such as ammonia, and to The present invention provides an exhaust gas purifying catalyst that has excellent durability at high temperatures in the presence of water vapor.

(課題を解決する為の手段) 本発明者等は、上記課題について鋭意検討した結果、本
発明を完成するに至った。
(Means for Solving the Problems) The present inventors have completed the present invention as a result of intensive study on the above problems.

即ち本発明は、S l 02 / AI 203モル比
が少なくとも10のゼオライトにカリウム及び遷移金属
を含有させたことを特徴とする排ガス浄化用触媒、及び
該触媒に窒素酸化物を含む燃焼排ガスを接触させること
を特徴とする排ガスの処理方法を提供するものである。
That is, the present invention provides an exhaust gas purifying catalyst characterized in that potassium and a transition metal are contained in zeolite having a S l 02 / AI 203 molar ratio of at least 10, and a method in which a combustion exhaust gas containing nitrogen oxides is brought into contact with the catalyst. The present invention provides a method for treating exhaust gas characterized by:

以下、本発明をより詳細に説明する。The present invention will be explained in more detail below.

本発明にかかる排ガス浄化用触媒は、カリウム及び遷移
金属を含有させたS i 02 /A47203モル比
が少なくとも10であるゼオライトである。
The exhaust gas purifying catalyst according to the present invention is a zeolite containing potassium and a transition metal and having a Si 02 /A47203 molar ratio of at least 10.

本発明において用いられるゼオライトとしては、S i
 02 / AF 203モル比が10以上であること
を必須とする。S I 02 / All 20aモル
比はその上限が限定されるものではない。5iO7/A
lI2O3モル比が10未満であると、十分な耐久性が
得られない。
As the zeolite used in the present invention, Si
It is essential that the molar ratio of 02/AF203 is 10 or more. The upper limit of the S I 02 / All 20a molar ratio is not limited. 5iO7/A
When the lI2O3 molar ratio is less than 10, sufficient durability cannot be obtained.

本発明で用いられるゼオライトの種類は特に限定されな
いか、例えば、モルデナイト、フェリエライト、ZSM
−5、ZSM−3、ZSM−11、ZSM−12)ZS
M−20,ZSM−35等のゼオライトが使用でき、そ
の中でもZSM−5が好適に用いられる。またこれらの
ゼオライトの製造方法は限定されるものではない。また
Y型ゼオライト、L型ゼオライト等のゼオライトを脱ア
ルミニウムしたものであっても良い。
The type of zeolite used in the present invention is not particularly limited; for example, mordenite, ferrierite, ZSM
-5, ZSM-3, ZSM-11, ZSM-12) ZS
Zeolites such as M-20 and ZSM-35 can be used, and among them, ZSM-5 is preferably used. Furthermore, the method for producing these zeolites is not limited. Alternatively, dealuminated zeolites such as Y-type zeolite and L-type zeolite may be used.

また、本発明で用いられるゼオライトの結晶径は特に限
定されないが、1a以上であることが望ましい。結晶径
が1μ未満であると結晶自体の耐熱性が悪くなり、触媒
の耐久性が低くなる恐れがある。
Moreover, the crystal diameter of the zeolite used in the present invention is not particularly limited, but is preferably 1a or more. If the crystal diameter is less than 1 μm, the heat resistance of the crystal itself will be poor, and the durability of the catalyst may be reduced.

本発明の排ガス浄化用触媒は、カリウム及び遷移金属を
含有することが必須である。カリウム及び遷移金属の含
有量は特に限定されないが、カリウムをに20/Al2
O3モル比で表わして0.2〜1.0、遷移金属をM2
.・、0/Al2O5モル比(nは遷移金属Mの原子価
)で表わして1.5以下含有することが好ましい。カリ
ウムが0.2未満であると十分な耐久性が得られない恐
れがあり、また、カリウムが1.0を越えるかあるいは
遷移金属が1.5を越えると、カリウムあるいは遷移金
属が酸化物等でゼオライト表面に存在し易くなり、耐久
性が低くなる恐れがアル。マタ、(Kz O+M、7a
 O)/AfI20aモル比が2.0を越えると、カリ
ウムあるいは遷移金属が酸化物等としてゼオライト表面
に存在し昌くなり、耐久性が低くなる恐れがある。
It is essential that the exhaust gas purifying catalyst of the present invention contains potassium and a transition metal. The contents of potassium and transition metals are not particularly limited, but potassium is added to 20/Al2
O3 molar ratio is 0.2 to 1.0, transition metal is M2
.. ., 0/Al2O5 molar ratio (n is the valence of the transition metal M) is preferably 1.5 or less. If the potassium content is less than 0.2, sufficient durability may not be obtained, and if the potassium content exceeds 1.0 or the transition metal content exceeds 1.5, potassium or transition metals may become oxides, etc. However, there is a risk that it will be more likely to exist on the zeolite surface, reducing its durability. Mata, (Kz O+M, 7a
When the molar ratio of O)/AfI20a exceeds 2.0, potassium or transition metals exist as oxides on the zeolite surface and become bulky, which may reduce durability.

また、本発明の排ガス浄化用触媒の原料ゼオライト中の
ナトリウム等の含有量としては特に限定されないが、N
!L20/An 20aモル比で表わして0.01以下
であることが好ましい。
In addition, the content of sodium, etc. in the raw material zeolite of the exhaust gas purification catalyst of the present invention is not particularly limited, but N
! The L20/An20a molar ratio is preferably 0.01 or less.

0.01を越えると、耐久性に悪影響を及ぼす恐れがあ
る。
If it exceeds 0.01, durability may be adversely affected.

遷移金属としては、特に限定されないが、例えばFe、
Cu、Co、Ni、Cr、Mn等が使用できる。
The transition metal is not particularly limited, but includes, for example, Fe,
Cu, Co, Ni, Cr, Mn, etc. can be used.

本発明の排ガス浄化用触媒は、SiO2/Al201モ
ル比が少なくとも10以上であるゼオライトに、カリウ
ム及び遷移金属を含有させて製造される。
The exhaust gas purifying catalyst of the present invention is produced by incorporating potassium and a transition metal into zeolite having a SiO2/Al201 molar ratio of at least 10 or more.

カリウム及び遷移金属は、担持あるいはイオン交換等で
含有されるが、カリウムの中性塩を用いたイオン交換処
理、及び、遷移金属の中性塩を用いたイオン交換処理す
ることが好ましい。
Potassium and transition metals are contained by support or ion exchange, but ion exchange treatment using a neutral salt of potassium and ion exchange treatment using a neutral salt of a transition metal are preferably performed.

原料ゼオライトは合成品あるいはそのが廃品等が用いら
れるが、ゼオライトの耐熱性に悪影響を及ぼす原料ゼオ
ライト中のナトリウム等のイオンをアンモニア処理等で
除去してから用いることが望ましい。
The raw material zeolite may be a synthetic product or its waste product, but it is desirable to use it after removing ions such as sodium in the raw material zeolite, which have an adverse effect on the heat resistance of the raw material zeolite, by ammonia treatment or the like.

アンモニア処理は、アンモニアを含む水溶液に原料ゼオ
ライトを混合、攪拌し、洗浄して行われる。アンモニア
としては塩化アンモニウム、硝酸アンモニウム、硫酸ア
ンモニウム、アンモニア水等が用いられる。アンモニア
処理条件は、原料ゼオライトのイオン交換サイトに存在
するナトリウム等のイオンをNa2O/AΩ203モル
比で表わして0,01以下にする条件を選定することか
望ましい。Na等のイオンが0,01を越えると、耐久
性が低くなる恐れがある。
Ammonia treatment is performed by mixing raw material zeolite with an aqueous solution containing ammonia, stirring, and washing. As ammonia, ammonium chloride, ammonium nitrate, ammonium sulfate, ammonia water, etc. are used. It is preferable to select conditions for the ammonia treatment such that the ions such as sodium present in the ion exchange sites of the raw zeolite are reduced to 0.01 or less expressed as a Na2O/AΩ203 molar ratio. If the content of ions such as Na exceeds 0.01, the durability may decrease.

アンモニアの添加量としては、ゼオライト中のアルミニ
ウムに対し2〜10倍当量か望ましい。
The amount of ammonia added is preferably 2 to 10 times equivalent to aluminum in the zeolite.

2倍当量未満ではNa等のイオンがNa2O/Aρ20
3モル比で表わして0.01以下にならない恐れがあり
、]0倍を越えてもそれに見合うだけの効果が得られな
い。アンモニア処理のスラリー濃度は、通常行われる5
%〜5090が好ましい。
At less than 2 times the equivalent, ions such as Na are Na2O/Aρ20
There is a possibility that the molar ratio will not be 0.01 or less, and even if it exceeds 0 times, the corresponding effect will not be obtained. The slurry concentration for ammonia treatment is 5
% to 5090 is preferred.

また、処理条件は、通常行われる室温〜100℃の温度
、1時間〜3日の時間であることが望ましい。室温未満
の温度、1時間未満の時間では、ナトリウム等のイオン
がN a 20 / AΩ201モル比て表わして0.
01以下とならない恐れがあり、100℃を越える温度
、3日を越える時間では、それに見合うだけの効果が得
られない。
Further, the treatment conditions are preferably a temperature of room temperature to 100° C. and a time of 1 hour to 3 days, which are usually carried out. At a temperature below room temperature and for a period of less than 1 hour, ions such as sodium have a mol ratio of 0.20/AΩ201.
01 or less, and if the temperature exceeds 100°C and the time exceeds 3 days, the corresponding effect will not be obtained.

また、ナトリウム等のイオンを除去する方法として、鉱
酸で処理する方法も用いることかできる。
Furthermore, as a method for removing ions such as sodium, a method of treatment with a mineral acid can also be used.

原料ゼオライトは、カリウム及び遷移金属でイオン交換
される。イオン交換の順序は、カリウムイオン交換した
後遷移金属イオン交換することが望ましい。また、カリ
ウムイオン及び遷移金属イオンの共存下で同時にイオン
交換しても良い。遷移金属イオン交換した後カリウムイ
オン交換すると、イオン交換された遷移金属イオンかカ
リウム交換時に交換サイトから脱離し、酸化物等でゼオ
ライト表面に多く存在するようになるため、耐久性が低
くなる恐れがある。
The raw material zeolite is ion-exchanged with potassium and transition metals. The order of ion exchange is preferably potassium ion exchange followed by transition metal ion exchange. Further, ion exchange may be performed simultaneously in the coexistence of potassium ions and transition metal ions. If potassium ions are exchanged after transition metal ion exchange, the ion-exchanged transition metal ions will be desorbed from the exchange site during potassium exchange, and oxides etc. will be present in large quantities on the zeolite surface, which may reduce durability. be.

カリウムイオン交換は、原料ゼオライトをカリウムの中
性塩を含む水溶液に混合し、攪拌、洗浄して行われる。
Potassium ion exchange is performed by mixing raw material zeolite with an aqueous solution containing a neutral salt of potassium, stirring and washing.

カリウムの中性塩としては、カリウムの塩化物、硝酸塩
、硫酸塩、酢酸塩等の中性塩が好適に用いられる。
As the neutral salt of potassium, neutral salts such as potassium chloride, nitrate, sulfate, and acetate are preferably used.

カリウム・イオンの添加量は、ゼオライト中のアルミニ
ウムに対し1〜30倍当量か望ましい。1倍当量未満で
はカリウムイオンが十分に交換されず、K 20 / 
AΩ201モル比で表わして0,2未満になる恐れがあ
り、また、30倍を越えてもそれに見合うだけの効果が
得られない。イオン交換のスラリー濃度は、通常行われ
る5%〜50°6が好ましい。
The amount of potassium ion added is preferably 1 to 30 times equivalent to aluminum in the zeolite. If the amount is less than 1 equivalent, potassium ions will not be exchanged sufficiently, and K 20 /
There is a possibility that the AΩ201 molar ratio will be less than 0.2, and even if it exceeds 30 times, no commensurate effect will be obtained. The slurry concentration for ion exchange is preferably 5% to 50°6, which is usually carried out.

また、処理条件は通常行われる室温〜100℃の温度、
1時間〜3日の時間であることが望ましい。室温未満の
温度、1時間未満の時間では、カリウムイオンが十分に
交換されず、320/AN 20qモル比で表わして0
.2未満になる恐れがあり、100℃を越える温度、3
日を越える時間では、それに見合うだけの効果が得られ
ない。
In addition, the processing conditions are a temperature between room temperature and 100°C, which is usually carried out;
It is desirable that the time is 1 hour to 3 days. If the temperature is below room temperature and the time is less than 1 hour, the potassium ions will not be sufficiently exchanged, and the 320/AN 20q molar ratio will be 0.
.. Temperatures exceeding 100℃, 3.
If you spend more than a day, you won't get the desired effect.

また、必要に応じて、イオン交換操作を繰返し行うこと
もできる。
Moreover, the ion exchange operation can be repeated as necessary.

遷移金属イオン交換は、カリウムイオン交換したゼオラ
イトを遷移金属の中性塩を含む水溶液に混合し、攪拌、
洗浄して行われる。
In transition metal ion exchange, potassium ion-exchanged zeolite is mixed with an aqueous solution containing a neutral salt of a transition metal, stirred,
It is done by washing.

遷移金属の中性塩としては、遷移金属の塩化物、硝酸塩
、硫酸塩、酢酸塩等の中性塩か好適に用いられる。
As the neutral salt of the transition metal, neutral salts such as chlorides, nitrates, sulfates, and acetates of transition metals are preferably used.

遷移金属イオンの添加量は、ゼオライト中のアルミニウ
ムに対し20倍当量以下が望ましい。
The amount of transition metal ions added is preferably 20 times or less equivalent to aluminum in the zeolite.

20倍を越えるとM2.・−0/AN203モル比で表
わして1.5を越える恐れかある。イオン交換のスラリ
ー濃度は、通常行われる5%〜50%が好ましい。
If it exceeds 20 times, M2. - There is a possibility that the molar ratio of -0/AN203 exceeds 1.5. The concentration of the slurry for ion exchange is preferably 5% to 50%, which is usually carried out.

また、処理条件は通常行われる室温〜100℃の温度、
3日以下の時間であることが望ましい。
In addition, the processing conditions are a temperature between room temperature and 100°C, which is usually carried out;
It is desirable that the time be 3 days or less.

100℃を越える温度、3日を越える時間では、M2.
z40 / AN 203モル比で表わして1.5を越
える恐れがある。また、必要に応じて、イオン交換操作
を繰返し行うこともできる。
If the temperature exceeds 100°C and the time exceeds 3 days, M2.
The z40/AN203 molar ratio may exceed 1.5. Moreover, the ion exchange operation can be repeated as necessary.

本発明の排ガス浄化用触媒の5io2/Alx0*モル
比は、使用したゼオライト基材のS i 02 /AD
 20sモル比と実質的に変わらない。また、排ガス浄
化用触媒の結晶構造もイオン交換前後で本質的に異なる
ものではない。
The 5io2/Alx0* molar ratio of the exhaust gas purification catalyst of the present invention is S i 02 /AD of the zeolite base material used.
There is no substantial difference from the 20s molar ratio. Further, the crystal structure of the exhaust gas purifying catalyst is not essentially different before and after ion exchange.

本発明の排ガス浄化用触媒は、粘土鉱物等のバインダー
と混合し成形して使用することもできる。
The exhaust gas purifying catalyst of the present invention can also be used by being mixed with a binder such as clay minerals and molded.

また、予めゼオライトを成形し、その成形体にカリウム
及び遷移金属を含有させることもできる。
Alternatively, zeolite may be formed in advance and the formed body may contain potassium and a transition metal.

ゼオライトを成形する際に用いられるバインダーとして
は、カオリン、アタパルガイド、モンモリロナイト、ベ
ントナイト、アロフェン、セビオライト等の粘土鉱物で
ある。あるいは、バインダーを用いずに成形体を直接合
成したバインダレスゼオライト成形体であっても良い。
Binders used in forming zeolite include clay minerals such as kaolin, attapulgide, montmorillonite, bentonite, allophane, and seviolite. Alternatively, it may be a binderless zeolite molded product that is directly synthesized without using a binder.

また、ニージェライト製あるいは金属製のハニカム状基
材に本発明の排ガス浄化用触媒をウォッシュコツトして
用いることもできる。
Further, the exhaust gas purifying catalyst of the present invention can be washed and used on a honeycomb-shaped base material made of Nigelite or metal.

窒素酸化物を含む燃焼排ガスの処理は、本発明の排ガス
浄化用触媒と該排ガスを接触させることにより行う。本
発明で用いられる排ガスは、窒素酸化物を含むことが必
須であるが、酸素、−酸化炭素、炭化水素、水素8アン
モニア等が含まれている場合に特に有効である。好まし
くは、窒素酸化物1−酸化炭素、炭化水素を含む酸素過
剰の排ガスである。酸素過剰の排ガスとは、排ガス中に
含まれる一酸化炭素、炭化水素、水素を完全に酸化する
のに必要な酸素量よりも過剰な酸素が含まれていること
を示す。例えば、自動車等の内燃機関から排出される排
ガスの場合には、空燃管が大きい状態(リーン領域)で
ある。
The combustion exhaust gas containing nitrogen oxides is treated by bringing the exhaust gas into contact with the exhaust gas purifying catalyst of the present invention. Although it is essential that the exhaust gas used in the present invention contains nitrogen oxides, it is particularly effective when it contains oxygen, carbon oxide, hydrocarbons, hydrogen 8 ammonia, and the like. Preferably, it is an oxygen-excessive exhaust gas containing nitrogen oxides, carbon oxides, and hydrocarbons. Excessive oxygen exhaust gas indicates that the exhaust gas contains oxygen in excess of the amount of oxygen required to completely oxidize carbon monoxide, hydrocarbons, and hydrogen contained in the exhaust gas. For example, in the case of exhaust gas discharged from an internal combustion engine such as an automobile, the air/fuel pipe is in a large state (lean region).

(作用) 本発明の排ガス浄化用触媒は、耐久性か非常に高く、水
蒸気を含む高温の排ガスで処理しても劣化はほとんどな
い。本発明の排ガス浄化用触媒が高耐久性を示す理由に
ついては詳しくは分らないか、カリウムを共存させるこ
とにより、脱アルミニウムを起こしにくくなりゼオライ
ト自体の耐久性が向上すること、また、活性種である遷
移金属の凝集による活性劣化を防ぐことが考えられる。
(Function) The exhaust gas purifying catalyst of the present invention has very high durability and hardly deteriorates even when treated with high temperature exhaust gas containing water vapor. The reason why the exhaust gas purification catalyst of the present invention exhibits high durability is not known in detail, but it is also possible that the coexistence of potassium makes dealumination less likely to occur and improves the durability of the zeolite itself. It is possible to prevent activity deterioration due to aggregation of certain transition metals.

(発明の効果) 本発明の排ガス浄化用触媒は、窒素酸化物を含む燃焼排
ガスを効率良く除去することができ、また、耐熱・耐久
性に非常に優れた性能を示す。
(Effects of the Invention) The exhaust gas purifying catalyst of the present invention can efficiently remove combustion exhaust gas containing nitrogen oxides, and exhibits extremely excellent heat resistance and durability.

(実施例) 以下、実施例において本発明を更に詳細に説明する。し
かし、本発明はこれら実施例のみに限定されるものでは
ない。
(Examples) Hereinafter, the present invention will be explained in more detail in Examples. However, the present invention is not limited to these examples.

実施例1 攪拌状態にある実容積2gのオーバーフロータイプの反
応槽に、珪酸ソーダ水溶液(SiO2;250g/N 
、Na2O; 82g/fl。
Example 1 A sodium silicate aqueous solution (SiO2; 250 g/N
, Na2O; 82g/fl.

Aff 203 : 2.8g/I )と、硫酸アルミ
ニウム水溶液CAN 203  ; 8.8g/l 。
Aff 203: 2.8 g/l) and aluminum sulfate aqueous solution CAN 203: 8.8 g/l.

H2SO4; 370g/l’ )とをそれぞれ31/
h r、  lj! /h rの速度で連続的に供給し
た。反応温度は30〜32℃、排出されるスラリーのp
Hは6.7〜7.0であった。
H2SO4; 370g/l') and 31/l' respectively.
h r, lj! It was fed continuously at a rate of /hr. The reaction temperature is 30-32℃, and the p of the slurry discharged is
H was 6.7-7.0.

排出スラリーを固液分離し十分水洗した後、NJ!20
:0.75wt%、 All 203;0.77wt%
、5i02  ;36.1wt%。
After separating the discharged slurry into solid and liquid and thoroughly washing it with water, NJ! 20
: 0.75wt%, All 203; 0.77wt%
, 5i02; 36.1 wt%.

H,0; 62.5wt%の粒状無定形アルミノ珪酸塩
均一化合物を得た。該均一化合物2,860gと3.2
 w t%のNaOH水溶液6,15C1gとをオート
クレーブに仕込み、160”Cで72時間攪拌下で結晶
化した。生成物を固液分離、水洗、乾燥してZSM−5
類似ゼオライトTs21を得た。TSZIの結晶径は2
〜3μであり、また、化学分析の結果、その組成は無水
ベースにおける酸化物のモル比で表わして次の組成を有
していた。
H,0; 62.5 wt% of a granular amorphous aluminosilicate homogeneous compound was obtained. 2,860 g of the homogeneous compound and 3.2
1 g of wt% NaOH aqueous solution was charged into an autoclave and crystallized under stirring at 160"C for 72 hours. The product was solid-liquid separated, washed with water, and dried to form ZSM-5.
A similar zeolite Ts21 was obtained. The crystal diameter of TSZI is 2
~3μ, and as a result of chemical analysis, its composition, expressed as the molar ratio of oxides on an anhydrous basis, was as follows:

1.4Na20.A!! 203.41.lSiO2こ
のゼオライト100gを、NH,CIl 。
1.4Na20. A! ! 203.41. lSiO2 100 g of this zeolite was mixed with NH, CIl.

20.0gを含む水溶液1000ccに添加し、60℃
にて20時間攪拌した後、洗浄、乾燥し、てNH,型T
SZIを得た。得られたNH4型TSZ1のNa含有量
はNa20/Ai!20gモル比で表わして0,01以
下であった。
Add to 1000cc of aqueous solution containing 20.0g and heat at 60°C.
After stirring for 20 hours, washing and drying, NH, type T
Obtained SZI. The Na content of the obtained NH4 type TSZ1 is Na20/Ai! It was 0.01 or less expressed as a 20g molar ratio.

:のNH4型TSZI ; 50gを、KCfI。: NH4 type TSZI; 50 g, KCfI.

14゜5gを含む水溶液500ccに添加し、60℃に
て20時間攪拌した後、洗浄し、Kイオン交換操作を行
った。この操作を2回繰返した後、乾燥してに型TSZ
Iを得た。
It was added to 500 cc of an aqueous solution containing 14.5 g, stirred at 60° C. for 20 hours, washed, and subjected to K ion exchange operation. After repeating this operation twice, dry and mold TSZ.
I got I.

得られたに型TSZI;20gを0.1mol、77g
酢酸銅水溶液76c cに添加し、室温で20時間攪拌
した後、洗浄し、Cuイオン交換操作を行った。この操
作を2回繰返した後、乾燥して(Cυ→−K)型TSZ
1(触媒1)を得た。化学分析の結果、その組成は無水
ベースにおける酸化物のモル比で表わして次の組成を有
していた。
Obtained ni-type TSZI; 20g to 0.1mol, 77g
The mixture was added to 76cc of aqueous copper acetate solution, stirred at room temperature for 20 hours, washed, and subjected to Cu ion exchange operation. After repeating this operation twice, it is dried to form (Cυ→-K) type TSZ.
1 (Catalyst 1) was obtained. As a result of chemical analysis, its composition, expressed as molar ratio of oxides on an anhydrous basis, was as follows:

(’I1.68に20,0.63CuO,Ajj 20
3 。
('I1.68 to 20, 0.63CuO, Ajj 20
3.

41.2SiO2 実施例2 攪拌状態にある実容積2gのオーバーフロータイプの反
応槽に、珪酸ソーダ水溶液(Sin2 ;153g/N
 、Na2O; 50g/l)、。
41.2SiO2 Example 2 A sodium silicate aqueous solution (Sin2; 153 g/N
, Na2O; 50 g/l).

八N 20*  : 0.8g/l )と、硫酸アルミ
ニウム水溶液(AN 20v  ; 38.4 g/I
I 。
8N 20*: 0.8 g/l) and aluminum sulfate aqueous solution (AN 20v; 38.4 g/l)
I.

H2S04  ; 275g/F )とをそれぞれ3,
2g/h r、0.8N /h rの速度で連続的に供
給した。反応温度は30〜32℃、排出されるスラリー
のpHは6.4〜6.6であった。
H2S04; 275g/F) and 3, respectively.
It was continuously fed at a rate of 2 g/hr, 0.8 N/hr. The reaction temperature was 30-32°C, and the pH of the slurry discharged was 6.4-6.6.

排出スラリーを固液分離し十分水洗した後、Na、  
0  ;  1. 72wt  %、AN  20i2
.53wt  %、  Sin 2 ;39. 3wt
  %、H20; 56.4w t 96の粒状無定形
アルミノ珪酸塩均一化合物を得た。該均一化合物2,8
40gと1.39wt%のNaOH水溶液5,160g
とをオートクレーブに仕込み、160℃で72時間攪拌
下で結晶化した。生成物を固液分離、水洗、乾燥してZ
SM−5類似ゼオライトTS22を得た。TSZ2の結
晶径は0.1〜0.5μであり、また、化学分析の結果
、その組成は無水ベースにおける酸化物のモル比で表わ
して次の組成を有していた。
After separating the discharged slurry into solid and liquid and thoroughly washing it with water, Na,
0; 1. 72wt%, AN 20i2
.. 53wt%, Sin2; 39. 3wt
%, H20; 56.4 wt 96 granular amorphous aluminosilicate homogeneous compound was obtained. The homogeneous compound 2,8
40g and 5,160g of 1.39wt% NaOH aqueous solution
and were placed in an autoclave and crystallized under stirring at 160°C for 72 hours. The product is separated into solid and liquid, washed with water, and dried.
SM-5 similar zeolite TS22 was obtained. The crystal size of TSZ2 was 0.1 to 0.5 μm, and chemical analysis revealed that the composition had the following composition expressed in molar ratio of oxides on an anhydrous basis.

1、INa、、o、Ajj 203.23.3S io
2このゼオライト100gを、NH4Cl1 ;34、
Ogを含む水溶液1000ccに添加し、60℃にて2
0時間攪拌した後、洗浄、乾燥してNH,型TSZ2を
得た。得られたNH4型TSZ2のNa含有量はNa2
0/AIJ20sモル比で表わして0.01以下であっ
た。
1,INa,,o,Ajj 203.23.3S io
2 100g of this zeolite was mixed with NH4Cl1 ;34,
Added to 1000cc of aqueous solution containing Og and heated at 60℃ for 2 hours.
After stirring for 0 hours, the mixture was washed and dried to obtain NH type TSZ2. The Na content of the obtained NH4 type TSZ2 is Na2
0/AIJ20s molar ratio was 0.01 or less.

このNH4型TSZ2 ; 50gを、KCI ;24
.8gを含む水溶液500ccに添加し、60℃にて2
0時間攪拌した後、洗浄し、Kイオン交換操作を行った
。この操作を2回繰返した後、乾燥してに型TSZ2を
得た。
50 g of this NH4 type TSZ2, KCI; 24
.. Added to 500 cc of aqueous solution containing 8 g, and heated at 60°C for 2 hours.
After stirring for 0 hours, the mixture was washed and subjected to K ion exchange operation. After repeating this operation twice, it was dried to obtain a mold TSZ2.

得られたに型TSZ2 ; 20gを0.1mol/g
酢酸銅水溶液120ccに添加し、室温で20時間攪拌
した後、洗浄し、Cuイオン交換操作を行った。この操
作を2回繰返した後、乾燥して(Cu+K)型TSZ2
 (触媒2)を得た。化学分析の結果、その組成は無水
ベースにおける酸化物のモル比で表わして次の組成を有
していた。
Obtained TSZ2; 20g to 0.1mol/g
The mixture was added to 120 cc of an aqueous copper acetate solution, stirred at room temperature for 20 hours, washed, and subjected to Cu ion exchange operation. After repeating this operation twice, it is dried and the (Cu+K) type TSZ2
(Catalyst 2) was obtained. As a result of chemical analysis, its composition, expressed as molar ratio of oxides on an anhydrous basis, was as follows:

0.54に20,0.58Cuo、AN 20s 。0.54 to 20, 0.58 Cuo, AN 20s.

23.3SiO□ 実施例3 特開昭56−45,819号公報実施例6に従ってZS
M−5型ゼオライトであるTSZ3を合成した。TS2
3の結晶径は3〜5μであり、また、化学分析の結果、
その組成は無水ベースにおける酸化物のモル比で表わし
て次の組成を有していた。
23.3SiO□ Example 3 ZS according to Example 6 of JP-A-56-45,819
TSZ3, an M-5 type zeolite, was synthesized. TS2
The crystal diameter of No. 3 is 3 to 5 μ, and as a result of chemical analysis,
Its composition, expressed as molar ratios of oxides on an anhydrous basis, was as follows:

0.4Na20.Al120..73.2S i 0゜
530℃で5時間か焼したTSZ3 ; 100gを、
NH4CD ; 12.Ogを含む水溶液1000cc
に添加し、60℃にて20時間攪拌した後、洗浄、乾燥
してNH4型TSZ3を得た。
0.4Na20. Al120. .. 73.2S i TSZ3 calcined at 0°530°C for 5 hours; 100g;
NH4CD; 12. 1000cc of aqueous solution containing Og
After stirring at 60° C. for 20 hours, the mixture was washed and dried to obtain NH4 type TSZ3.

得られたNH,型TSZ3のNa含有量はN a 20
/ AD 20gモル比で表わして0.01以下であっ
た。
The Na content of the obtained NH, type TSZ3 is Na 20
/AD20g molar ratio was 0.01 or less.

このNH4型TSZ3 ; 50gを、KCl1゜8.
3gを含む水溶液500ccに添加し、60℃にて20
時間攪拌した後、洗浄し、Kイオン交換操作を行った。
50 g of this NH4 type TSZ3 was mixed with 1°8.
Added to 500 cc of aqueous solution containing 3 g, and heated at 60°C for 20 minutes.
After stirring for an hour, the mixture was washed and subjected to K ion exchange operation.

この操作を2回繰返した後、乾燥してに型TSZ3を得
た。
After repeating this operation twice, it was dried to obtain mold TSZ3.

得られたに型TSZ3 ; 20gを0,05mol/
i!酢酸銅水溶液90ccに添加し、室温で20時間攪
拌した後、洗浄し、Cuイオン交換操作を行った。この
操作を2回繰返した後、乾燥して(Cu+K)型TSZ
3 (触媒3)を得た。
Obtained mold TSZ3; 20g to 0.05mol/
i! It was added to 90 cc of an aqueous copper acetate solution, stirred at room temperature for 20 hours, washed, and subjected to Cu ion exchange operation. After repeating this operation twice, drying (Cu+K) type TSZ
3 (Catalyst 3) was obtained.

化学分析の結果、その組成は無水ベースにおける酸化物
のモル比で表わして次の組成を有していた。
As a result of chemical analysis, its composition, expressed as molar ratio of oxides on an anhydrous basis, was as follows:

0.57に20,0.49CuO,A1!203 。0.57 to 20, 0.49CuO, A1!203.

72.9SiO。72.9SiO.

実施例4 実施例1で得られたに型TSZI ;20gを、酢酸コ
バルト(■)4水和物10.1gを含む水溶液200c
cに添加し、60℃で20時間攪拌した後、洗浄し、C
oイオン交換操作を行った。
Example 4 20g of the diamond-shaped TSZI obtained in Example 1 was added to 200ml of an aqueous solution containing 10.1g of cobalt acetate (■) tetrahydrate.
After stirring at 60°C for 20 hours, washing and adding to C
o Ion exchange operation was performed.

この操作を2回繰返した後、乾燥して(Co+K)型T
SZI (触媒4)を得た。化学分析の結果、その組成
は無水ベースにおける酸化物のモル比で表わして次の組
成を有していた。
After repeating this operation twice, drying (Co+K) type T
SZI (catalyst 4) was obtained. As a result of chemical analysis, its composition, expressed as molar ratio of oxides on an anhydrous basis, was as follows:

0、 36に20,1.23Co0.41)20s、4
]、、05i02 実施例5 実施例2で得られたに型TSZ2 ; 20gを、酢酸
コバルト(■)4永和物1.5.7gを含む水溶液20
0CCに添加し、60℃で20時間攪拌した後、洗浄し
、Coイオン交換操作を行った。
0, 36 to 20,1.23Co0.41) 20s, 4
],,05i02 Example 5 20 g of the TSZ2 obtained in Example 2 was mixed into an aqueous solution 20 containing 1.5.7 g of cobalt acetate (■) 4 eigen.
After adding to 0CC and stirring at 60°C for 20 hours, the mixture was washed and subjected to Co ion exchange operation.

この操作を2回繰返した後、乾燥して(Co+K)型T
SZ2 (触媒5)を得た。化学分析の結果、その組成
は無水ベースにおける酸化物のモル比で表わして次の組
成を有していた。
After repeating this operation twice, drying (Co+K) type T
SZ2 (catalyst 5) was obtained. As a result of chemical analysis, its composition, expressed as molar ratio of oxides on an anhydrous basis, was as follows:

0.40に2 O,1,14COO,A、Q 203 
0.40 to 2 O, 1, 14 COO, A, Q 203
.

23.2SiO。23.2SiO.

実施例6 実施例3で得られたに型TSZ3 ; 20gを、酢酸
コバルト(■)4永和物5.9gを含む水溶液200c
cに添加し、60℃で20時間攪拌]また後、洗浄し、
Coイオン交換操作を行った。この操作を2回繰返した
後、乾燥して(Co+K)型TSZ3 (触媒6)を得
た。化学分析の結果、その組成は無水ベースにおける酸
化物のモル比で表わして次の組成を有していた。
Example 6 20 g of the diamond-shaped TSZ3 obtained in Example 3 was mixed with 200 c of an aqueous solution containing 5.9 g of cobalt acetate (■) 4-eternal product.
[C] and stirred at 60°C for 20 hours] After washing,
A Co ion exchange operation was performed. This operation was repeated twice and then dried to obtain (Co+K) type TSZ3 (catalyst 6). As a result of chemical analysis, its composition, expressed as molar ratio of oxides on an anhydrous basis, was as follows:

0.41に20.1.18COO,Ag2O,。0.41 to 20.1.18 COO, Ag2O,.

73、 3 S i 02 実施例7 実施例1で得られたに型TSZ1.;20gを、酢酸ニ
ッケル(■)4水和物10.2gを含む水溶液200c
cに添加し、60℃で20時間攪拌した後、洗浄し5、
Niイオン交換操作を行った。
73, 3 S i 02 Example 7 Ni-type TSZ1. obtained in Example 1. ; 20g of an aqueous solution containing 10.2g of nickel acetate (■) tetrahydrate
c, stirred at 60°C for 20 hours, washed,
Ni ion exchange operation was performed.

この操作を2回繰返した後、乾燥して(N i 十K)
型TSZI (触媒7)を得た。化学分析の結果、その
組成は無水ベースにおける酸化物のモル比で表わして次
の組成を有していた。
After repeating this operation twice, dry (N i 10K)
Type TSZI (catalyst 7) was obtained. As a result of chemical analysis, its composition, expressed in molar ratio of oxides on an anhydrous basis, was as follows:

0.38に20,1.17NiO,A、C’ 203 
0.38 to 20, 1.17NiO, A, C' 203
.

41.08iO。41.08iO.

4 1、  OS  1 02 実施例9 実施例1において、Kイオン交換操作とCuイオン交換
操作の順序を逆にしまた以外は実施例1と同様ニして(
K+Cu)型TSZI (触媒9)を得た。化学分析の
結果、その組成は無水ベースにおける酸化物のモル比で
表わして次の組成を有していた。
4 1, OS 1 02 Example 9 The same procedure as in Example 1 was carried out except that the order of K ion exchange operation and Cu ion exchange operation was reversed.
K+Cu) type TSZI (catalyst 9) was obtained. As a result of chemical analysis, its composition, expressed as molar ratio of oxides on an anhydrous basis, was as follows:

0.72CuO,0,92に20.AN 203 。0.72CuO, 0.92 to 20. AN 203 .

41、 2S l 02 実施例8 実施例1において、アンモニア処理を行わなかったこと
以外は実施例1と同様にして(Cu+に+Na)型TS
ZI (触媒8)を得た。化学分析の結果、その組成は
無水ベースにおける酸化物のモル比で表わして次の組成
を有していた。
41, 2S l 02 Example 8 A (Cu++Na) type TS was prepared in the same manner as in Example 1 except that the ammonia treatment was not performed.
ZI (catalyst 8) was obtained. As a result of chemical analysis, its composition, expressed as molar ratio of oxides on an anhydrous basis, was as follows:

0、44 K20. 0. 57 Cu O。0, 44 K20. 0. 57 Cu O.

0.04Na20、Al2O2゜ 実施例10 実施例1〜9で得られた触媒1〜9を用いて耐久性評価
を行った。
0.04Na20, Al2O2゜Example 10 Durability evaluation was performed using catalysts 1 to 9 obtained in Examples 1 to 9.

各触媒をプレス成形した後粉砕して42〜80メツシユ
に整粒した。その2ccを常圧固定床流通式反応管に充
填し、リーンバーンエンジンの排ガスを模擬したガス(
第1表)を空間速度30.000/hrで流した。50
0℃で30分の前処理を行なった後、400℃での定常
浄化活性を測定した。定常浄化活性は、400℃で1時
間保持した後のNOx浄化率とした。
Each catalyst was press-molded and then pulverized to size 42 to 80 mesh. 2 cc of it was filled into a normal pressure fixed bed flow reaction tube, and a gas simulating the exhaust gas of a lean burn engine (
Table 1) was flowed at a space velocity of 30,000/hr. 50
After 30 minutes of pretreatment at 0°C, steady-state purification activity was measured at 400°C. The steady-state purification activity was defined as the NOx purification rate after being held at 400°C for 1 hour.

また、各触媒について、第1表の組成のガスを空間速度
30,000/hrで流しながら800℃で15時間耐
久処理した。その後、上記と同様の方法で定常浄化活性
を測定し耐久性の試験を行なった。
Further, each catalyst was subjected to durability treatment at 800° C. for 15 hours while flowing a gas having the composition shown in Table 1 at a space velocity of 30,000/hr. Thereafter, the steady-state purification activity was measured in the same manner as above, and a durability test was conducted.

得られた結果を第2表に示す。The results obtained are shown in Table 2.

第1表 第2表 久処理後の結晶化度の比で表わした。得られた結果を第
3表に示す。
Tables 1 and 2 are expressed as the ratio of crystallinity after treatment. The results obtained are shown in Table 3.

第3表 また、耐久処理前後の結晶化度をX線回折によって評価
し、ゼオライト結晶の耐久性を求めた。
Table 3 Also, the crystallinity before and after the durability treatment was evaluated by X-ray diffraction to determine the durability of the zeolite crystals.

結晶耐久性は、耐久処理前の結晶化度に対する耐比較例
1 実施例1.4及び7において、Kイオン交換操作を行わ
なかったこと以外は実施例15,4及び7と同様にして
、Cu型TSZI、Co型TSZI及びNi型TSZI
を得た。化学分析の結果、その組成は無水ベースにおけ
る酸化物のモル比で表わして次の組成を有していた。
Crystal durability was determined based on the crystallinity before durability treatment in Comparative Example 1. In Examples 1.4 and 7, Cu Type TSZI, Co type TSZI and Ni type TSZI
I got it. As a result of chemical analysis, its composition, expressed as molar ratio of oxides on an anhydrous basis, was as follows:

Cu型TSZ1.(比較触媒1) 0、82 Cu O,An 203 40.9SiO。Cu type TSZ1. (Comparative catalyst 1) 0, 82 Cu O, An 203 40.9SiO.

Co型TSZI (比較触媒2) 1.35COO,AN 203 41.08iOz Ni型TSZI (比較触媒3) 1.41NiO,AN 203 。Co type TSZI (comparison catalyst 2) 1.35COO, AN 203 41.08iOz Ni type TSZI (comparison catalyst 3) 1.41NiO, AN 203.

40.8Si02 無水ベースにおける酸化物のモル比で表わし5て次の組
成を有していた。
40.8Si02 It had the following composition expressed as the molar ratio of oxides on an anhydrous basis.

2.5CoO,0,87に20、Ag2O,。2.5CoO, 0.87 to 20, Ag2O,.

41.2Si02 比較例3 比較例1及び2て得られた比較触媒1〜4を用いて、実
施例10と同様にして排ガス浄化性能及び耐久性を評価
した。
41.2Si02 Comparative Example 3 Using Comparative Catalysts 1 to 4 obtained in Comparative Examples 1 and 2, exhaust gas purification performance and durability were evaluated in the same manner as in Example 10.

得られた結果を第4,5表に示す。The results obtained are shown in Tables 4 and 5.

比較例2 実施例1で得られたに型TSZI;20gを、酢酸コバ
ルト(■)4水和物5.0gを含む水溶液100eeに
混合し、90℃で蒸発乾固を行い比較触媒4を得た。化
学分析の結果、その組成は第4表 実施例及び比較例より明らかなように、本発明の排ガス
浄化用触媒は、排ガス浄化能が高く、かつ、水蒸気の存
在する高温の排ガスにさらされてもゼオライトの結晶性
の低下が少なく、耐久性の非常に優れた性能を示した。
Comparative Example 2 20 g of Ni-type TSZI obtained in Example 1 was mixed with 100 ee of an aqueous solution containing 5.0 g of cobalt acetate (■) tetrahydrate, and the mixture was evaporated to dryness at 90°C to obtain Comparative Catalyst 4. Ta. As a result of chemical analysis, the composition of the exhaust gas purifying catalyst of the present invention is clear from the Examples and Comparative Examples in Table 4. The crystallinity of the zeolite also showed little deterioration, and it exhibited very excellent durability.

Claims (2)

【特許請求の範囲】[Claims] (1)SiO_2/Al_2O_3モル比が少なくとも
10のゼオライトにカリウム及び遷移金属を含有させた
ことを特徴とする排ガス浄化用触媒。
(1) An exhaust gas purifying catalyst characterized by containing potassium and a transition metal in zeolite having a SiO_2/Al_2O_3 molar ratio of at least 10.
(2)特許請求の範囲第1項に記載の触媒に、窒素酸化
物を含む燃焼排ガスを接触させることを特徴とする排ガ
スの処理方法。
(2) A method for treating exhaust gas, which comprises bringing combustion exhaust gas containing nitrogen oxides into contact with the catalyst according to claim 1.
JP2193063A 1990-06-20 1990-07-23 Catalyst for purification of exhaust gas and its using method Pending JPH0478444A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2193063A JPH0478444A (en) 1990-07-23 1990-07-23 Catalyst for purification of exhaust gas and its using method
CA002044893A CA2044893C (en) 1990-06-20 1991-06-18 Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same
US07/717,659 US5374409A (en) 1990-06-20 1991-06-19 Purifying gases with an alkali metal and transition metal containing zeolite
DE69125420T DE69125420T2 (en) 1990-06-20 1991-06-19 Zeolite containing transition metal with high hydrothermal stability, process for its preparation and process for its use
AU79165/91A AU643294B2 (en) 1990-06-20 1991-06-19 Transition metal-ion exchange zeolite having high hydrothermal stability production method thereof and method of using same
EP91110088A EP0462598B1 (en) 1990-06-20 1991-06-19 Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2193063A JPH0478444A (en) 1990-07-23 1990-07-23 Catalyst for purification of exhaust gas and its using method

Publications (1)

Publication Number Publication Date
JPH0478444A true JPH0478444A (en) 1992-03-12

Family

ID=16301585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2193063A Pending JPH0478444A (en) 1990-06-20 1990-07-23 Catalyst for purification of exhaust gas and its using method

Country Status (1)

Country Link
JP (1) JPH0478444A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822728B1 (en) * 2005-03-30 2008-04-17 주식회사 엘지화학 Decomposition catalyst for hydrocarbon and preparation method thereof
CZ300579B6 (en) * 1997-12-31 2009-06-17 Grande-Paroisse S.A. Catalyst for conversion of nitrous oxide, process for preparing such catalyst, process for reducing nitrous oxide content in gas and use of such a catalyst
JP2013095653A (en) * 2011-11-04 2013-05-20 Tosoh Corp Zeolite having copper and alkali metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ300579B6 (en) * 1997-12-31 2009-06-17 Grande-Paroisse S.A. Catalyst for conversion of nitrous oxide, process for preparing such catalyst, process for reducing nitrous oxide content in gas and use of such a catalyst
KR100822728B1 (en) * 2005-03-30 2008-04-17 주식회사 엘지화학 Decomposition catalyst for hydrocarbon and preparation method thereof
JP2013095653A (en) * 2011-11-04 2013-05-20 Tosoh Corp Zeolite having copper and alkali metal

Similar Documents

Publication Publication Date Title
JP5261189B2 (en) Zeolite catalyst with improved NOx selective catalytic reduction efficiency
AU668614B2 (en) Process for removing nitrogen oxides from oxygen rich exhaust gas
EP0462598B1 (en) Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same
JP2928853B2 (en) Nitrogen oxide catalytic cracking catalyst and catalytic cracking method
JPH0478444A (en) Catalyst for purification of exhaust gas and its using method
JPH07112121A (en) Method for removing nox
JP2659840B2 (en) Purification method of exhaust gas containing nitrogen oxides
KR0146879B1 (en) Mordenite containing zeolite catalyst for nox removal
JPH06170166A (en) Removal of nitrogen oxide
JP3110921B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3395219B2 (en) Nitrogen oxide removal method
JPH06238131A (en) Removing method for nitrogen oxide
JP3395221B2 (en) Nitrogen oxide removal method
JP3395220B2 (en) Nitrogen oxide removal method
JP3482658B2 (en) Nitrogen oxide removal method
JPH09168720A (en) Removing method for nitrogen oxide
JPH0760059A (en) Removing process for nitrogen oxide
JPH0478443A (en) Catalyst for purification of exhaust gas and its using method
JPH05269386A (en) Catalyst for reduction removing nitrogen oxide and method for reduction removing
JPH0417096B2 (en)
JP3511637B2 (en) Exhaust gas purification method
JPH08164326A (en) Method for removing nitrogen oxides
JPH07171345A (en) Removal of nitrogen oxide
JPH06170168A (en) Removal of nitrogen oxide
JPH0824580A (en) Method for removing nitrogen oxide