JPH04213832A - Semiconductor element having solder bump electrode - Google Patents

Semiconductor element having solder bump electrode

Info

Publication number
JPH04213832A
JPH04213832A JP2401211A JP40121190A JPH04213832A JP H04213832 A JPH04213832 A JP H04213832A JP 2401211 A JP2401211 A JP 2401211A JP 40121190 A JP40121190 A JP 40121190A JP H04213832 A JPH04213832 A JP H04213832A
Authority
JP
Japan
Prior art keywords
solder bump
bump electrode
insulating film
electrode
contact hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2401211A
Other languages
Japanese (ja)
Inventor
Takuji Osumi
卓史 大角
Yasumitsu Sugawara
菅原 安光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2401211A priority Critical patent/JPH04213832A/en
Publication of JPH04213832A publication Critical patent/JPH04213832A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Abstract

PURPOSE:To avoid the defective junction of the solder bump electrode of a semiconductor flip chip element due to the gouging on the silicon chip surface. CONSTITUTION:In order to form a solder bump electrode 50 above a semiconductor substrate 41 in PN junction, an opening is made in an insulating film 43; a contact hole 44 is formed in the central part of the surface whereon said bump electrode 50 is formed; while the diameter phi2 of said contact hole 44 is made smaller than the diameter phi1 of the contact surface of said solder bump electrode 50; the ends of the surface whereon said bump electrode 50 is formed are separated from the semiconductor substrate 41 by said insulating film 43.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半田バンプ電極を有す
る半導体素子の構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a semiconductor element having solder bump electrodes.

【0002】0002

【従来の技術】従来、このような分野の技術としては、
例えば、特公昭43−28735号、特開昭62−16
0744号に記載されるものがあった。図3はかかる従
来の半田バンプ電極を有する半導体フリップチップ素子
の半田バンプ電極構造を示す断面図である。
[Prior Art] Conventionally, technologies in this field include:
For example, Japanese Patent Publication No. 43-28735, Japanese Patent Publication No. 62-16
There was one described in No. 0744. FIG. 3 is a sectional view showing a solder bump electrode structure of a semiconductor flip chip device having such a conventional solder bump electrode.

【0003】一般に、半導体フリップチップ素子の半田
バンプを形成する方法としては、選択蒸着法、電気めっ
き法、半田ボール法或いは半田ディップ法がある。電気
めっき法による半導体フリップ素子の半田バンプ電極の
場合は、図3に示すような断面形状を有している。即ち
、大電流を流すことのできるPN接合の直上に半田バン
プ電極を形成するようにしている。通常、半田バンプ電
極は絶縁膜上に形成することが多いが、大電流を流し出
すために大面積の半導体層を出力に配置する場合、この
図に示すように、集積度を向上させる目的で、PN接合
の直上に半田バンプ電極を形成するようにしている。
Generally, methods for forming solder bumps on semiconductor flip chip devices include selective vapor deposition, electroplating, solder ball method, and solder dip method. A solder bump electrode of a semiconductor flip device formed by electroplating has a cross-sectional shape as shown in FIG. That is, the solder bump electrode is formed directly above the PN junction through which a large current can flow. Normally, solder bump electrodes are often formed on an insulating film, but when a large-area semiconductor layer is placed at the output in order to flow a large current, as shown in this figure, it is necessary to , a solder bump electrode is formed directly above the PN junction.

【0004】この図において、1はP型半導体基板、2
はN型半導体拡散層、3は絶縁膜、、4はN型半導体拡
散層2を半田バンプ電極を介して電気的に外部との接続
を得るために設けられた窓あけ領域である。5はAl電
極パッド、6はCVD法にて形成されたガラス膜(パッ
シベーション保護膜)である。7,8はそれぞれ蒸着に
より形成されたAl−Ni合金層,Ni層である。9は
めっき法により形成されたCuめっき層、10はめっき
法により形成された半田めっき層が、その後の溶融処理
において表面張力により球状となった半田バンプである
In this figure, 1 is a P-type semiconductor substrate; 2 is a P-type semiconductor substrate;
is an N-type semiconductor diffusion layer, 3 is an insulating film, and 4 is a window region provided for electrically connecting the N-type semiconductor diffusion layer 2 to the outside via a solder bump electrode. 5 is an Al electrode pad, and 6 is a glass film (passivation protective film) formed by the CVD method. 7 and 8 are an Al--Ni alloy layer and a Ni layer formed by vapor deposition, respectively. 9 is a Cu plating layer formed by a plating method, and 10 is a solder bump in which the solder plating layer formed by a plating method becomes spherical due to surface tension during subsequent melting treatment.

【0005】次に、半田バンプ電極をもつフリップチッ
プ素子がセラミック等の被実装基板に直接実装されて使
用される例について説明する。図4は半田バンプ電極を
もつフリップチップ素子の断面図である。この図におい
て、11は半導体基板(シリコンチップ)、12は絶縁
膜、13は半田バンプ電極である。半田バンプ電極13
と半導体基板11の接続部は詳細に説明すると、図3に
示す構造をしているが、図4以降、接続部は省略して示
すことにする。通常、半導体基板には、外部との接続の
ための半田バンプ電極13は複数個3個〜10個、多い
時は200個近くも有することがあるが、ここではフリ
ップチップ素子22の両端に形成された2個の半田バン
プ電極のみを用いて詳細に説明する。
Next, an example will be described in which a flip chip element having solder bump electrodes is directly mounted on a mounting substrate such as ceramic. FIG. 4 is a cross-sectional view of a flip chip device with solder bump electrodes. In this figure, 11 is a semiconductor substrate (silicon chip), 12 is an insulating film, and 13 is a solder bump electrode. Solder bump electrode 13
A detailed explanation of the connecting portion between the semiconductor substrate 11 and the semiconductor substrate 11 has the structure shown in FIG. 3, but from FIG. 4 onwards, the connecting portion will be omitted from illustration. Normally, a semiconductor substrate has a plurality of 3 to 10 solder bump electrodes 13 for connection with the outside, and sometimes as many as 200 solder bump electrodes 13 are formed on both ends of the flip chip element 22. This will be explained in detail using only the two solder bump electrodes.

【0006】このようにして得られたフリップチップ素
子をセラミック基板等の被実装基板に直接実装した状態
を図5に示す。この図において、21は被実装基板(セ
ラミック基板)であり、これに前記した半田バンプ電極
13を有するフリップチップ素子22を実装する。
FIG. 5 shows a state in which the thus obtained flip chip element is directly mounted on a mounting substrate such as a ceramic substrate. In this figure, reference numeral 21 denotes a mounting substrate (ceramic substrate), on which a flip chip element 22 having the solder bump electrodes 13 described above is mounted.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、以上述
べた半田バンプ電極構造では、フリップチップとセラミ
ック基板等の被実装基板を接続するために、例えば、2
00〜220℃で半田を溶融させ、しかる後に、常温ま
で冷却する工程において、半導体基板とセラミック等の
被実装基板の熱膨張係数の差により、半田バンプ接続部
のずれによる応力がかかり、その結果、フリップチップ
側の半導体基板が破壊され、えぐり取られるという不具
合が生じる。この様子を図6〜図9を用いて説明する。
[Problems to be Solved by the Invention] However, in the solder bump electrode structure described above, for example, two
In the process of melting the solder at 00 to 220°C and then cooling it to room temperature, stress is applied due to misalignment of the solder bump connection due to the difference in thermal expansion coefficient between the semiconductor substrate and the mounted substrate such as ceramic. , a problem occurs in that the semiconductor substrate on the flip chip side is destroyed and gouged out. This situation will be explained using FIGS. 6 to 9.

【0008】図6以降においては、被実装基板21にセ
ラミックを、半導体基板11にシリコンを用いた場合に
ついて説明する。接続工程において、シリコンチップ1
1は、セラミック基板21の上にフェースダウンで半田
バンプ電極13を支点に搭載される。図6において、シ
リコンチップ11のフェース面は絶縁膜12によって覆
われている。しかる後に、セラミック基板21はシリコ
ンチップ11を搭載したまま、220℃のリフロー炉に
挿入され、この220℃の温度で半田バンプ10は溶融
し、セラミック基板21側の所定の位置に予め形成され
ている金属パターンと接着される。
From FIG. 6 onwards, a case will be described in which ceramic is used for the mounting substrate 21 and silicon is used for the semiconductor substrate 11. In the connection process, silicon chip 1
1 is mounted face down on a ceramic substrate 21 with the solder bump electrode 13 as a fulcrum. In FIG. 6, the face surface of the silicon chip 11 is covered with an insulating film 12. Thereafter, the ceramic substrate 21 with the silicon chip 11 mounted thereon is inserted into a 220° C. reflow oven, and the solder bumps 10 are melted at this temperature of 220° C. and are preformed at predetermined positions on the ceramic substrate 21 side. It is glued with a metal pattern.

【0009】次に、セラミック基板21はシリコンチッ
プ11を搭載したまま、リフロー炉より出され、常温ま
で冷却される。この時、セラミック基板21とシリコン
チップ11は、半田溶融時に半田で接続され、そのまま
固定された状態で冷却されることから、セラミック基板
21とシリコンチップ11の熱膨張係数の差により、ず
れの力が生じる。ここで、このずれの量を計算してみる
Next, the ceramic substrate 21 with the silicon chip 11 mounted thereon is taken out of the reflow oven and cooled to room temperature. At this time, the ceramic substrate 21 and the silicon chip 11 are connected by solder when the solder is melted, and are cooled while being fixed as such. occurs. Let's now calculate the amount of this deviation.

【0010】図6に示すように、片側の半田バンプ電極
C点を仮に支点と考えると、もう片側に配した半田バン
プ電極付近13での、シリコンチップ11とセラミック
基板21の収縮の差は、シリコンチップ11の電極間距
離を8mmとすると、セラミック基板21の収縮量Δl
cは、   Δlc=6.5×10−6/℃×(220℃−20
℃)×8mm=10.4μm  シリコンチップ11の
収縮量Δlsは、  Δls=3.5×10−6/℃×
(220℃−20℃)×8mm=5.6μm  収縮の
差=Δlc−Δls=10.4−5.6=4.8μmと
なる。
As shown in FIG. 6, if point C of the solder bump electrode on one side is considered as a fulcrum, the difference in shrinkage between the silicon chip 11 and the ceramic substrate 21 near the solder bump electrode 13 on the other side is as follows. When the distance between the electrodes of the silicon chip 11 is 8 mm, the amount of shrinkage Δl of the ceramic substrate 21 is
c is Δlc=6.5×10-6/℃×(220℃-20
℃)×8mm=10.4μm The shrinkage amount Δls of the silicon chip 11 is Δls=3.5×10-6/℃×
(220° C.-20° C.)×8 mm=5.6 μm Difference in shrinkage=Δlc−Δls=10.4−5.6=4.8 μm.

【0011】実際には、ずれの量は、C点を支点に片側
の電極のみにかかるのではなく、両側対象のチップの場
合、両側に均一にかかると考えるのが妥当であり、1つ
の電極にかかるずれの量は2.4μmと推定される。図
6で説明したずれの力が1つの半田パンプ電極にかかる
様子を図7を用いて説明する。
In reality, it is reasonable to assume that the amount of deviation is not applied only to one electrode with point C as the fulcrum, but is applied uniformly to both sides in the case of a chip that is symmetrical on both sides. The amount of deviation caused by this is estimated to be 2.4 μm. The manner in which the force of displacement described in FIG. 6 is applied to one solder pump electrode will be described with reference to FIG. 7.

【0012】図7において、31は半田バンプ10とシ
リコンチップ11との接続用の電極である。シリコンチ
ップ11もセラミック基板21も同時に収縮するが、そ
の量に差があることから1つの半田バンプ電極に着目し
てみると、半田バンプ10には、図7の矢印D,Eで示
す反対方向の応力が加わることとなる。この応力により
、シリコンチップ11/半田バンプ10/セラミック基
板21の接続系において、一番弱い部分、つまり、シリ
コンチップ11の表面で、図8に示すように、シリコン
チップ11がえぐり取られるという現象が生じ、シリコ
ンチップ11とセラミック基板21との接続が不具合と
なるオープン不良を発生させることがあった。
In FIG. 7, reference numeral 31 denotes an electrode for connecting the solder bump 10 and the silicon chip 11. As shown in FIG. Both the silicon chip 11 and the ceramic substrate 21 shrink at the same time, but there is a difference in the amount, so when focusing on one solder bump electrode, the solder bump 10 shrinks in the opposite direction as shown by arrows D and E in FIG. This results in the addition of stress. Due to this stress, the silicon chip 11 is gouged out at the weakest point in the silicon chip 11/solder bump 10/ceramic substrate 21 connection system, that is, the surface of the silicon chip 11, as shown in FIG. This may cause an open failure in which the connection between the silicon chip 11 and the ceramic substrate 21 becomes defective.

【0013】このシリコンチップ11側がえぐれる現象
について、更に詳しく説明する。図3の部分拡大を示す
図9において、F〜Jの英文字と矢印で示す境界面は、
それぞれ半田と銅、銅とNi、NiとAl−Ni合金、
Al−Ni合金とAl、Alとシリコンの接合面である
が、それぞれの面は、接着強度が非常に強く、図中矢印
Kのような応力が加わると、図中Lで示す領域は、あた
かも1つの物体であるかのような動きを示し、シリコン
チップ11にかかる力の方向Mと逆の方向に応力が発生
する。
The phenomenon in which the silicon chip 11 side is gouged will be explained in more detail. In FIG. 9 showing a partial enlargement of FIG. 3, the boundary surfaces indicated by letters F to J and arrows are:
Solder and copper, copper and Ni, Ni and Al-Ni alloy, respectively.
These are the bonding surfaces of Al-Ni alloy and Al, and Al and silicon, but each surface has very strong adhesive strength, and when stress as shown by arrow K in the figure is applied, the area indicated by L in the figure appears as if it were It moves as if it were a single object, and stress is generated in the direction opposite to the direction M of the force applied to the silicon chip 11.

【0014】また、この時、発生した図中矢印Kで示す
応力の分布を調べると、接合面の端の点Nと接合面の中
心O点で比較すると、N点における応力はO点における
応力より大きいことは、よく知られている。このように
接合面の強度が非常に強い半田バンプ電極構造において
、半田バンプ電極に応力が発生すると、比較的もろいシ
リコンチップ11表面の応力の集中した部分、N点付近
でシリコンがえぐり取られオープン不良を発生する。
[0014] Also, if we examine the distribution of the stress generated at this time, indicated by the arrow K in the figure, we will see that when we compare the point N at the end of the joint surface with the point O at the center of the joint surface, the stress at point N is the stress at point O. It is well known that it is larger. In this solder bump electrode structure where the strength of the bonding surface is extremely strong, when stress is generated in the solder bump electrode, the silicon is gouged out near the N point, which is the area where stress is concentrated on the surface of the relatively fragile silicon chip 11, resulting in an open hole. Generate defects.

【0015】本発明は、以上述べた半田バンプ電極のシ
リコンチップ表面でのえぐれによる接合不良が防止でき
る半田バンプ電極を有する半導体素子を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor element having a solder bump electrode which can prevent bonding failure due to the solder bump electrode going into the surface of a silicon chip as described above.

【0016】[0016]

【課題を解決するための手段】本発明は、上記目的を達
成するために、半導体基板と、該半導体基板上に形成さ
れる絶縁膜と、該絶縁膜の一部に半導体基板と外部端子
とを電気的に接合するコンタクトホールを有し、該コン
タクトホールを覆うように絶縁膜上の一部に形成される
配線金属電極と、該配線金属電極を含め、半導体表面全
体を覆うようにパッシベーション保護膜が形成され、前
記配線金属電極を覆う領域のパッシベーション保護膜の
一部が開孔され、この開孔部を通して配線金属電極と半
田バンプ電極が接続される半田バンプ電極を有する半導
体素子において、前記絶縁膜に開孔され、かつ前記半田
バンプ電極が形成される面の中心にコンタクトホールを
形成し、該コンタクトホールの直径を前記半田バンプ電
極の接続面の直径よりも小さくし、前記半田バンプ電極
が形成される面の端部を前記絶縁膜により半導体基板と
分離するようにしたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a semiconductor substrate, an insulating film formed on the semiconductor substrate, and a semiconductor substrate and an external terminal formed on a part of the insulating film. A wiring metal electrode is formed on a part of the insulating film to cover the contact hole, and a passivation protection is applied to cover the entire semiconductor surface, including the wiring metal electrode. A semiconductor element having a solder bump electrode in which a film is formed, a part of the passivation protective film in a region covering the wiring metal electrode is opened, and the wiring metal electrode and the solder bump electrode are connected through the opening. A contact hole is formed in the insulating film at the center of the surface on which the solder bump electrode is formed, and the diameter of the contact hole is made smaller than the diameter of the connection surface of the solder bump electrode. The end portion of the surface where is formed is separated from the semiconductor substrate by the insulating film.

【0017】[0017]

【作用】本発明によれば、上記したように、半田バンプ
電極を有する半導体素子において、PN接合の半導体基
板直上に半田バンプ電極を形成する場合、半田バンプ電
極の直下の絶縁膜の窓あけ領域を、比較的応力の小さな
半田バンプ電極接合部の中心に、しかも小さく設ける。 従って、半導体基板に直接伝わる力は、半田バンプ接合
部中心に発生する小さな力のみとなり、半田バンプ接合
部の端に発生する大きな力は、密着力の比較的弱い絶縁
膜上で緩和される。つまり、半田バンプ電極接合部の端
の応力が集中しやすい部分は、応力に強い絶縁膜で半田
バンプ電極とPN接合部で分離され、半田バンプ電極に
かかる応力が直接半導体基板にかからないようにするこ
とができる。
[Operation] According to the present invention, as described above, in a semiconductor element having solder bump electrodes, when the solder bump electrodes are formed directly on the semiconductor substrate of the PN junction, the window opening area of the insulating film directly under the solder bump electrodes is provided. is provided in the center of the solder bump electrode joint where stress is relatively low, and in a small size. Therefore, the only force directly transmitted to the semiconductor substrate is a small force generated at the center of the solder bump joint, and a large force generated at the edge of the solder bump joint is relaxed on the insulating film, which has relatively weak adhesion. In other words, the part where stress tends to concentrate at the end of the solder bump electrode joint is separated by a stress-resistant insulating film between the solder bump electrode and the PN junction, so that the stress applied to the solder bump electrode is not directly applied to the semiconductor substrate. be able to.

【0018】従って、半田バンプ電極にかかる応力によ
り、シリコンがえぐり取られるオープン不良の発生を防
止することができる。半導体基板に直接伝わる力は、半
田バンプ接合部中心に発生する小さな力のみとなり、半
田バンプ接合部の端に発生する大きな力は、密着力の比
較的弱い絶縁膜上で緩和される。
[0018] Therefore, it is possible to prevent open failures in which silicon is gouged out due to stress applied to the solder bump electrodes. The only force directly transmitted to the semiconductor substrate is a small force generated at the center of the solder bump joint, and a large force generated at the edge of the solder bump joint is relaxed on the insulating film, which has relatively weak adhesion.

【0019】[0019]

【実施例】以下、本発明の実施例について図面を参照し
ながら詳細に説明する。図1は本発明の実施例を示す電
気めっき法による半導体フリップチップ素子の半田バン
プ電極構造を示す断面図である。この図において、41
はP型半導体基板、42はN型半導体層、43は絶縁膜
、44は絶縁膜43に窓あけされた接続用のコンタクト
ホール、45はAl電極パッド、46はCVD法にて形
成されたガラス膜(パッシベーション膜)、47,48
はそれぞれ蒸着により形成されたAl−Ni合金層、N
i層、49はめっき法により形成されたCuめっき層、
50はめっき法により形成された半田めっき層がその後
の溶融処理で表面張力により球状となった半田バンプで
ある。また、51はガラス膜46に窓あけされたコンタ
クトホールである。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing a solder bump electrode structure of a semiconductor flip-chip device formed by electroplating according to an embodiment of the present invention. In this figure, 41
42 is a P-type semiconductor substrate, 42 is an N-type semiconductor layer, 43 is an insulating film, 44 is a contact hole for connection made in the insulating film 43, 45 is an Al electrode pad, and 46 is a glass formed by the CVD method. Film (passivation film), 47, 48
are an Al-Ni alloy layer formed by vapor deposition, and N
i layer, 49 is a Cu plating layer formed by plating method,
50 is a solder bump in which a solder plating layer formed by a plating method becomes spherical due to surface tension during subsequent melting treatment. Further, 51 is a contact hole formed in the glass film 46.

【0020】この図に示すように、半田バンプ電極とN
型半導体層42の接続は、Al電極パッド45で半田バ
ンプ電極直下の接合部中心に、少なくとも接合部より小
さく可能な限り小さく開孔された絶縁膜43に窓あけさ
れたコンタクトホール44で接続されている。この半田
バンプ電極をフリップチップ素子に形成し、セラミック
基板等に直接搭載し、半田リフローによる接続後の冷却
で半田バンプ電極に熱膨張係数の違いによる応力が加わ
るまでの説明は、従来技術の項で説明したので、ここで
は省略する。
As shown in this figure, the solder bump electrode and N
The type semiconductor layer 42 is connected to an Al electrode pad 45 through a contact hole 44 made in the insulating film 43 at the center of the joint directly under the solder bump electrode and made as small as possible at least smaller than the joint. ing. The process of forming this solder bump electrode on a flip chip element, directly mounting it on a ceramic substrate, etc., and applying stress due to the difference in thermal expansion coefficient to the solder bump electrode by cooling after connection by solder reflow is explained in the conventional technology section. I have already explained this, so I will omit it here.

【0021】次に、半田バンプ電極に加わる応力が、直
接シリコン基板にかからない構造にした点について詳細
に説明する。図2は図1の半田バンプ電極直下の接合部
中心に、少なくとも接合部より小さく可能な限り小さく
開孔された絶縁膜にあけられたコンタクトホールの部分
示す拡大断面図である。
Next, a detailed description will be given of the structure in which the stress applied to the solder bump electrodes is not directly applied to the silicon substrate. FIG. 2 is an enlarged sectional view showing a portion of a contact hole formed in an insulating film, which is at least as small as possible and smaller than the bonding portion, at the center of the bonding portion directly below the solder bump electrode in FIG.

【0022】この図に示すように、セラミック基板とシ
リコン基板の熱膨張係数の差により発生する応力は、半
田バンプ電極とシリコン基板との接続部にL,Mの矢印
で示す反対方向への力となり加わる。しかしながら、半
田バンプ接合部における応力は、接合中心では小さく、
接合部の端では大きいという分布をもつので、直接P型
半導体基板41、N型半導体層42で示すシリコン基板
に係る応力は絶縁膜43にあけられたコンタクトホール
44の内側に働く。例えば、O点より矢印で示された小
さな応力のみである。また、接合部の端に働く、例えば
N点より矢印で示された大きな応力については、Al電
極パッド45と絶縁膜43(一般には、SiO2 膜)
との境界53は、N型半導体層42とAl電極パッド4
5との境界52に比較すると、密着強度が弱く、Alが
絶縁膜43上をスライドするため、緩和され、直接絶縁
膜43やP型半導体基板41、N型半導体層42に大き
な応力が働くことはなく、シリコンがえぐり取られるこ
とはなくなる。
As shown in this figure, the stress generated due to the difference in thermal expansion coefficients between the ceramic substrate and the silicon substrate causes forces in opposite directions indicated by arrows L and M at the connection between the solder bump electrode and the silicon substrate. Join next. However, the stress in solder bump joints is small at the joint center;
Since the stress distribution is large at the end of the bonding portion, the stress on the silicon substrate represented by the P-type semiconductor substrate 41 and the N-type semiconductor layer 42 acts directly on the inside of the contact hole 44 made in the insulating film 43. For example, there is only a small stress indicated by the arrow from point O. Also, regarding the large stress acting on the edge of the joint, for example, as indicated by the arrow from the N point, the Al electrode pad 45 and the insulating film 43 (generally a SiO2 film)
The boundary 53 between the N-type semiconductor layer 42 and the Al electrode pad 4
Compared to the boundary 52 with 5, the adhesion strength is weak, and as Al slides on the insulating film 43, it is relaxed, and large stress acts directly on the insulating film 43, the P-type semiconductor substrate 41, and the N-type semiconductor layer 42. This means that the silicone will no longer be gouged out.

【0023】例えば、図4に示すような半田バンプ電極
間距離が8mm、半田バンプ電極接合面がφ1 (10
0μmφ)ある半導体フリップチップ素子の場合、絶縁
膜43のコンタクトホール径を100μmφからφ2 
(50μmφ)に変更することによって、えぐり不良の
発生率が略0%となることが判明している。しかし、絶
縁膜のコンタクトホール径があまり小さくなると、電気
抵抗の増加、成膜上の限界等の問題が生じる。
For example, as shown in FIG. 4, the distance between the solder bump electrodes is 8 mm, and the solder bump electrode bonding surface is φ1 (10
0 μmφ) In the case of a certain semiconductor flip chip device, the contact hole diameter of the insulating film 43 is changed from 100 μmφ to φ2.
It has been found that by changing the diameter to (50 μmφ), the incidence of gouging defects becomes approximately 0%. However, if the diameter of the contact hole in the insulating film becomes too small, problems such as an increase in electrical resistance and limitations in film formation will occur.

【0024】そこで、本発明においては、絶縁膜のコン
タクトホールの直径を前記半田バンプ電極の接続面の直
径の50乃至60%に形成することが望ましい。なお、
本発明は上記実施例に限定されるものではなく、本発明
の趣旨に基づいて種々の変形が可能であり、これらを本
発明の範囲から排除するものではない。
Therefore, in the present invention, it is desirable that the diameter of the contact hole in the insulating film is 50 to 60% of the diameter of the connection surface of the solder bump electrode. In addition,
The present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0025】[0025]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、半田バンプ電極直下に、半導体基板との電気的
接続を行うために、絶縁膜にコンタクトホールをあける
場合、半田バンプ電極接合面の中心に小さくあけるよう
にしたので、半導体基板に直接伝わる力は、半田バンプ
接合部中心に発生する小さな力のみとなり、半田バンプ
接合部の端に発生する大きな力は、密着力の比較的弱い
絶縁膜上で緩和される。そのため、シリコン基板がえぐ
り取られることのない高信頼性の半田バンプ電極を有す
る半導体素子を得ることができる。
As described above in detail, according to the present invention, when a contact hole is formed in an insulating film directly under a solder bump electrode for electrical connection with a semiconductor substrate, the solder bump electrode Since we have made a small hole in the center of the bonding surface, the only force directly transmitted to the semiconductor substrate is the small force generated at the center of the solder bump joint, and the large force generated at the edge of the solder bump joint is due to the comparison of adhesion strength. It is relaxed on a weak insulating film. Therefore, it is possible to obtain a semiconductor element having highly reliable solder bump electrodes in which the silicon substrate is not gouged out.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を示す電気めっき法による半導
体フリップチップ素子の半田バンプ電極の断面図である
FIG. 1 is a cross-sectional view of a solder bump electrode of a semiconductor flip-chip device formed by electroplating according to an embodiment of the present invention.

【図2】図1の半田バンプ電極直下の接合部中心に、少
なくとも接合部より小さく可能な限り小さく開孔された
絶縁膜にあけられたコンタクトホールの部分示す拡大断
面図である。
2 is an enlarged cross-sectional view showing a portion of a contact hole formed in an insulating film, which is at least as small as possible and smaller than the bonding portion, at the center of the bonding portion directly below the solder bump electrode in FIG. 1; FIG.

【図3】従来の電気めっき法による半導体フリップチッ
プ素子の半田バンプ電極の断面図である。
FIG. 3 is a cross-sectional view of a solder bump electrode of a semiconductor flip-chip device formed by conventional electroplating.

【図4】従来の半田バンプ電極を有する半導体フリップ
チップ素子の断面図である。
FIG. 4 is a cross-sectional view of a semiconductor flip chip device having conventional solder bump electrodes.

【図5】従来の半田バンプ電極を有する半導体フリップ
チップ素子のセラミック基板への実装状態を示す断面図
である。
FIG. 5 is a sectional view showing a state in which a conventional semiconductor flip chip element having solder bump electrodes is mounted on a ceramic substrate.

【図6】従来の半田バンプ電極を有する半導体フリップ
チップ素子のセラミック基板への実装時の応力の発生状
態を示す断面図である。
FIG. 6 is a cross-sectional view showing how stress is generated when a conventional semiconductor flip-chip element having solder bump electrodes is mounted on a ceramic substrate.

【図7】従来の半田バンプ電極を有する半導体フリップ
チップ素子のセラミック基板への実装時の半田バンプ電
極へのずれ力の発生状態を示す断面図である。
FIG. 7 is a cross-sectional view showing a state in which shear force is generated on the solder bump electrodes when a semiconductor flip-chip element having conventional solder bump electrodes is mounted on a ceramic substrate.

【図8】従来の問題点を示すシリコンチップのえぐれ状
態を示す断面図である。
FIG. 8 is a cross-sectional view showing a gouged state of a silicon chip, which shows a conventional problem.

【図9】従来の半導体フリップチップ素子の半田バンプ
電極への応力の発生状態を示す図3の部分拡大断面図で
ある。
9 is a partially enlarged cross-sectional view of FIG. 3 showing how stress is generated on solder bump electrodes of a conventional semiconductor flip-chip device.

【符号の説明】[Explanation of symbols]

41    P型半導体基板 42    N型半導体層 43    絶縁膜 44,51    コンタクトホール 45    Al電極パッド 46    ガラス膜(パッシベーション膜)47,4
8    Al−Ni合金層,Ni層49    Cu
めっき層 50    半田バンプ
41 P-type semiconductor substrate 42 N-type semiconductor layer 43 Insulating film 44, 51 Contact hole 45 Al electrode pad 46 Glass film (passivation film) 47, 4
8 Al-Ni alloy layer, Ni layer 49 Cu
Plating layer 50 Solder bump

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板と、該半導体基板上に形成
される絶縁膜と、該絶縁膜の一部に半導体基板と外部端
子とを電気的に接合するコンタクトホールを有し、該コ
ンタクトホールを覆うように絶縁膜上の一部に形成され
る配線金属電極と、該配線金属電極を含め、半導体表面
全体を覆うようにパッシベーション保護膜が形成され、
前記配線金属電極を覆う領域のパッシベーション保護膜
の一部が開孔され、この開孔部を通して配線金属電極と
半田バンプ電極が接続される半田バンプ電極を有する半
導体素子において、 (a)前記絶縁膜に開孔され、かつ前記半田バンプ電極
が形成される面の中心にコンタクトホールを形成し、(
b)該コンタクトホールの直径を前記半田バンプ電極の
接続面の直径よりも小さくし、前記半田バンプ電極が形
成される面の端部を前記絶縁膜により半導体基板と分離
することを特徴とする半田バンプ電極を有する半導体素
子。
1. A semiconductor substrate, an insulating film formed on the semiconductor substrate, and a contact hole for electrically connecting the semiconductor substrate and an external terminal in a part of the insulating film, the contact hole being A wiring metal electrode is formed on a part of the insulating film so as to cover it, and a passivation protection film is formed to cover the entire semiconductor surface including the wiring metal electrode,
In a semiconductor element having a solder bump electrode in which a part of the passivation protective film in a region covering the wiring metal electrode is opened, and the wiring metal electrode and the solder bump electrode are connected through the opening, (a) the insulating film A contact hole is formed in the center of the surface on which the solder bump electrode is formed, and (
b) Soldering characterized in that the diameter of the contact hole is smaller than the diameter of the connection surface of the solder bump electrode, and the end of the surface on which the solder bump electrode is formed is separated from the semiconductor substrate by the insulating film. A semiconductor element with bump electrodes.
【請求項2】  前記コンタクトホールの直径を前記半
田バンプ電極の接続面の直径の50乃至60%にしてな
る請求項1記載の半田バンプ電極を有する半導体素子。
2. A semiconductor device having a solder bump electrode according to claim 1, wherein the diameter of the contact hole is 50 to 60% of the diameter of the connection surface of the solder bump electrode.
JP2401211A 1990-12-11 1990-12-11 Semiconductor element having solder bump electrode Withdrawn JPH04213832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2401211A JPH04213832A (en) 1990-12-11 1990-12-11 Semiconductor element having solder bump electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2401211A JPH04213832A (en) 1990-12-11 1990-12-11 Semiconductor element having solder bump electrode

Publications (1)

Publication Number Publication Date
JPH04213832A true JPH04213832A (en) 1992-08-04

Family

ID=18511054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2401211A Withdrawn JPH04213832A (en) 1990-12-11 1990-12-11 Semiconductor element having solder bump electrode

Country Status (1)

Country Link
JP (1) JPH04213832A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2434557A2 (en) 2010-09-27 2012-03-28 Fujifilm Corporation Photoelectric conversion element, solid-state imaging element, imaging apparatus, and method for manufacturing photoelectric conversion element
US8368788B2 (en) 2010-05-18 2013-02-05 Fujifilm Corporation Solid-state imaging device and imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8368788B2 (en) 2010-05-18 2013-02-05 Fujifilm Corporation Solid-state imaging device and imaging apparatus
EP2434557A2 (en) 2010-09-27 2012-03-28 Fujifilm Corporation Photoelectric conversion element, solid-state imaging element, imaging apparatus, and method for manufacturing photoelectric conversion element

Similar Documents

Publication Publication Date Title
JP5435849B2 (en) Fusible input / output interconnect system and method for flip chip packaging with stud bumps attached to a substrate
JPH06283571A (en) Inter connection structure of integrated circuit and substrate and its manufacture
JPH02246335A (en) Bump structure for reflow bonding of ic device
US20030122237A1 (en) Semiconductor device
JP4026882B2 (en) Semiconductor device
JPH0378230A (en) Bump electrode for integrated circuit device
US20060087039A1 (en) Ubm structure for improving reliability and performance
JP2002368155A (en) Wiring board, manufacturing method therefor, and semiconductor device
JP3261912B2 (en) Semiconductor device with bump and method of manufacturing the same
JPH04213832A (en) Semiconductor element having solder bump electrode
JPH0793341B2 (en) Semiconductor device and manufacturing method thereof
JP2001053432A (en) Flip chip mounted structure
JPS63168028A (en) Fine connection structure
JPH02168640A (en) Connection structure between different substrates
JPH09148693A (en) Flip chip mounting board and manufacture thereof
JPH07183330A (en) Method for connecting semiconductor device to wiring board
JPH0214536A (en) Flip-chip mounting structure
JP2564827B2 (en) Semiconductor device and manufacturing method thereof
JPH04127547A (en) Lsi mounting structure
JPS60214538A (en) Mounting for semiconductor chip
KR0138843B1 (en) Method for interconnection of optical device
JPH01286430A (en) Mounting method for semiconductor chip
JP3674550B2 (en) Semiconductor device
KR100460075B1 (en) Method of forming diffusion barrier layer of semiconductor package
JPH09102517A (en) Semiconductor device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312