JPH04211450A - Fine spherical particle of colored resin and its production - Google Patents

Fine spherical particle of colored resin and its production

Info

Publication number
JPH04211450A
JPH04211450A JP3030207A JP3020791A JPH04211450A JP H04211450 A JPH04211450 A JP H04211450A JP 3030207 A JP3030207 A JP 3030207A JP 3020791 A JP3020791 A JP 3020791A JP H04211450 A JPH04211450 A JP H04211450A
Authority
JP
Japan
Prior art keywords
fine particles
colored resin
spherical fine
resin
inorganic pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3030207A
Other languages
Japanese (ja)
Inventor
Saburo Nakahara
中原 三郎
Yasuhiro Yamamoto
泰裕 山本
Yoji Akazawa
赤沢 陽治
Masao Baba
馬場 将夫
Yoshikuni Mori
悦邦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to TW080107229A priority Critical patent/TW203069B/zh
Priority to EP19910308430 priority patent/EP0501063A3/en
Priority to KR1019910016360A priority patent/KR950005306B1/en
Publication of JPH04211450A publication Critical patent/JPH04211450A/en
Priority to US08/082,525 priority patent/US5288790A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers

Abstract

PURPOSE:To provide fine spherical particles of colored resin having excellent heat-resistance, solvent resistance and chemical resistance, capable of taking a truly spherical form, exhibiting sufficiently satisfactory durability and coloring power and advantageously usable for industrial purpose. CONSTITUTION:The objective spherical fine particle of colored resin is composed of a cured amino resin integrated to carbon black used as an inorganic pigment. The ratio of the carbon black to the sum of the cured amino resin and the carbon black is 1-30wt.%.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、塗料、インキ、プラ
スチック、繊維、ゴム等の着色剤、艶消剤、充填剤、静
電複写機のトナーおよびキャリアー、ならびに、化粧品
等に使用される着色樹脂球状微粒子に関する。更に詳し
くは、アミノ樹脂硬化物と無機顔料を一体化してなる、
工業的に有用な新規の着色樹脂球状微粒子およびその製
造方法に関する。
[Industrial Application Field] This invention is applicable to colorants for paints, inks, plastics, fibers, rubber, etc., matting agents, fillers, toners and carriers for electrostatic copying machines, and colorants used in cosmetics, etc. This invention relates to resin spherical fine particles. More specifically, it is made by integrating a cured amino resin and an inorganic pigment.
The present invention relates to new industrially useful colored resin spherical fine particles and a method for producing the same.

【0002】0002

【従来の技術】従来、プラスチック、塗料、インキ、化
粧品等に種々の着色樹脂球状微粒子が使用されて、それ
ぞれに特徴ある使われ方をされている。着色樹脂球状微
粒子は、染料または顔料と樹脂とを一体化してなるもの
である。このように、染料および顔料をそのままで使用
せずに、樹脂と一体化しておいて使用するのは、塗料、
インキ、プラスチック、繊維、ゴム等のポリマーとの親
和性が向上するという理由による。また、微粒子が球状
であると、球状でない場合に比べて、成形加工時の流動
性が向上したり、塗料、繊維等に使用した場合、表面が
滑らかになり、充填量も増やすことができるという利点
がある。
BACKGROUND OF THE INVENTION Hitherto, various colored resin spherical particles have been used in plastics, paints, inks, cosmetics, etc., and each has its own unique way of being used. The colored resin spherical fine particles are made by integrating a dye or a pigment with a resin. In this way, dyes and pigments are not used as they are, but are integrated with resin and used in paints,
This is because it improves compatibility with polymers such as inks, plastics, fibers, and rubber. In addition, if the particles are spherical, compared to non-spherical particles, the fluidity during molding will be improved, and when used in paints, fibers, etc., the surface will be smoother and the amount of filling can be increased. There are advantages.

【0003】フェノール樹脂、エポキシ樹脂等の熱硬化
性樹脂、あるいは、アクリル樹脂、ビニル樹脂等の熱可
塑性樹脂と有機染料または有機顔料とを複合して得られ
る着色樹脂球状微粒子は鮮明度、着色力に優れている反
面、耐熱性、耐光性、耐溶剤性、耐候性、耐滲色性等に
おいて劣る傾向がある。これに対し、着色に無機顔料を
用いた着色樹脂球状微粒子は、耐溶剤性、耐光性、耐熱
性、耐滲色性の点で染料を用いたものよりも優れており
、耐光性、耐熱性の点で有機顔料を用いたものよりも優
れている。
Colored resin spherical fine particles obtained by combining thermosetting resins such as phenol resins and epoxy resins, or thermoplastic resins such as acrylic resins and vinyl resins, and organic dyes or organic pigments have excellent clarity and coloring power. On the other hand, it tends to be inferior in heat resistance, light resistance, solvent resistance, weather resistance, color bleeding resistance, etc. On the other hand, colored resin spherical fine particles using inorganic pigments for coloring are superior to those using dyes in terms of solvent resistance, light resistance, heat resistance, and color bleeding resistance. In this respect, it is superior to those using organic pigments.

【0004】熱可塑性樹脂が顔料で着色されてなる着色
樹脂微粒子としては、たとえば、熱可塑性樹脂と顔料を
混合粉砕して得られた着色樹脂微粒子(特開昭58−1
7169号公報)、懸濁重合等の反応中に顔料を添加し
て得られる着色樹脂球状微粒子(特公昭57−2232
4号公報)、熱可塑性樹脂微粒子の表面に化学的または
物理的処理等を行ってから顔料をコーティングして得ら
れる着色樹脂球状微粒子(特開昭63−10671号公
報)等が知られている。
[0004] Colored resin fine particles obtained by coloring a thermoplastic resin with a pigment include, for example, colored resin fine particles obtained by mixing and pulverizing a thermoplastic resin and a pigment (JP-A-58-1
7169), colored resin spherical fine particles obtained by adding a pigment during a reaction such as suspension polymerization (Japanese Patent Publication No. 57-2232)
4), colored resin spherical fine particles obtained by applying a chemical or physical treatment to the surface of thermoplastic resin fine particles and then coating them with a pigment (Japanese Unexamined Patent Publication No. 10671/1983) are known. .

【0005】また、熱硬化性樹脂が顔料で着色されてな
る着色樹脂球状微粒子としては、たとえば、フェノール
樹脂、エポキシ樹脂等の熱硬化性樹脂を重付加、付加縮
合で合成する時に顔料を添加して得られる着色熱硬化樹
脂球状微粒子が知られている。
[0005] Colored resin spherical fine particles made of a thermosetting resin colored with a pigment include, for example, a pigment added when a thermosetting resin such as a phenol resin or an epoxy resin is synthesized by polyaddition or addition condensation. Colored thermosetting resin spherical fine particles obtained by this method are known.

【0006】[0006]

【発明が解決しようとする課題】上記熱可塑性樹脂を用
いた従来の着色樹脂微粒子は耐熱性、耐溶剤性、耐薬品
性等が劣っていたり、樹脂粒子と顔料の密着性が悪かっ
たり、着色粒子表面の平滑性が悪かったりする等の問題
がある。また、上記熱硬化性樹脂を用いた従来の着色樹
脂球状微粒子は、粒度分布が広くなり粒子形状も真球状
微粒子ではなく、また粒子が脆い等の欠点があり、用途
によっては分級等が必要になることからコスト的に高く
なる等の問題がある。
[Problems to be Solved by the Invention] Conventional colored resin fine particles using the above-mentioned thermoplastic resin have poor heat resistance, solvent resistance, chemical resistance, etc., poor adhesion between the resin particles and pigment, and coloring. There are problems such as poor particle surface smoothness. In addition, conventional colored resin spherical fine particles using the above-mentioned thermosetting resin have a wide particle size distribution, the particle shape is not true spherical fine particles, and the particles are brittle, which may require classification etc. Therefore, there are problems such as increased costs.

【0007】この発明は、上述した従来技術により得ら
れた着色樹脂球状微粒子の問題点を解決したもので耐熱
性、耐溶剤性、耐薬品性に優れた球状微粒子で、真球状
にすることもでき、さらに耐久性および着色力において
も充分満足しうる工業的に有利な着色樹脂球状微粒子お
よびその製造方法を提供することを課題とする。
The present invention solves the problems of the colored resin spherical fine particles obtained by the above-mentioned conventional technology, and the spherical fine particles have excellent heat resistance, solvent resistance, and chemical resistance, and can be made into true spheres. It is an object of the present invention to provide industrially advantageous colored resin spherical fine particles that can be used in the manufacturing process and that are sufficiently satisfactory in terms of durability and coloring power, as well as a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、この発明は、アミノ樹脂硬化物と無機顔料が一体化
され、アミノ樹脂硬化物と無機顔料の合計量に対する無
機顔料の割合が1〜30重量%(以下、特に断らない限
り「%」は「重量%」のことである)である着色樹脂球
状微粒子を提供する。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a method in which a cured amino resin product and an inorganic pigment are integrated, and the ratio of the inorganic pigment to the total amount of the cured amino resin product and the inorganic pigment is 1. -30% by weight (hereinafter, "%" means "% by weight" unless otherwise specified) colored resin spherical fine particles are provided.

【0009】この発明は、また、アミノ樹脂と無機顔料
を混合し、乳化させて、乳化状態で重縮合を行い、アミ
ノ樹脂硬化物と無機顔料の合計量に対する顔料の割合が
1〜30%となるようにアミノ樹脂硬化物と無機顔料を
一体化させる着色樹脂球状微粒子の製造方法を提供する
。この発明では、アミノ樹脂硬化物と無機顔料の合計量
に対して無機顔料1〜30%の割合となっている必要が
ある。無機顔料の割合がこの範囲よりも少ないと着色樹
脂球状微粒子の着色性が不足するという問題があり、多
いとアミノ樹脂に無機顔料全量を固定できなくなり、粒
子が歪んだ形状になり、粒度分布も広くなるという問題
がある。また、アミノ樹脂を用いることにより、耐熱性
、耐溶剤性、耐薬品性に優れた着色樹脂球状粒子ができ
るという利点がある。
[0009] The present invention also provides a method in which an amino resin and an inorganic pigment are mixed, emulsified, and polycondensed in an emulsified state, so that the ratio of the pigment to the total amount of the cured amino resin product and the inorganic pigment is 1 to 30%. To provide a method for producing colored resin spherical fine particles that integrates an amino resin cured product and an inorganic pigment so as to achieve the following. In this invention, the ratio of the inorganic pigment to the total amount of the cured amino resin product and the inorganic pigment must be 1 to 30%. If the proportion of inorganic pigment is less than this range, there is a problem that the coloring properties of the colored resin spherical fine particles are insufficient, and if it is too large, the entire amount of inorganic pigment cannot be fixed to the amino resin, the particles will have a distorted shape, and the particle size distribution will also be affected. The problem is that it becomes wider. Further, by using an amino resin, there is an advantage that colored resin spherical particles having excellent heat resistance, solvent resistance, and chemical resistance can be produced.

【0010】この発明の着色樹脂球状微粒子は、たとえ
ば、後述のようにして製造されることにより、無機顔料
とアミノ樹脂硬化物が一体化される。これにより、該球
状微粒子が無機顔料により着色される。この発明の着色
樹脂球状微粒子が球状であるとは、たとえば、該着色樹
脂球状微粒子200個の電子顕微鏡撮影像から求めた粒
径比(長径/短径)が1.0〜1.25の範囲のもので
ある。
The colored resin spherical fine particles of the present invention are produced, for example, as described below, so that the inorganic pigment and the cured amino resin are integrated. As a result, the spherical fine particles are colored with the inorganic pigment. The colored resin spherical fine particles of this invention are spherical, for example, when the particle diameter ratio (major axis/breadth axis) determined from electron microscopic images of 200 colored resin spherical fine particles is in the range of 1.0 to 1.25. belongs to.

【0011】この発明におけるアミノ樹脂とは、分子中
にアミノ基が2個以上あるアミノ化合物で、たとえば、
尿素、メラミン、ベンゾグアナミン、シクロヘキサンカ
ルボグアナミン、シクロヘキセンカルボグアナミン、ノ
ルボルナンカルボグアナミン、ノルボルネンカルボグア
ナミン等よりなる群から選ばれた1種または2種以上の
アミノ化合物とホルムアルデヒドを重縮合反応して得ら
れる樹脂であればよく、アルコールによりエーテル化さ
れていてもよい。後述のように、処理されたカーボンブ
ラック(以下では、「カーボンブラック」を「CB」と
言うことがある)を用いる場合には、アミノ樹脂として
、ベンゾグアナミン、シクロヘキサンカルボグアナミン
およびシクロヘキセンカルボグアナミンから選ばれた少
なくとも1種のグアナミンが40〜100%を占めるア
ミノ化合物とホルムアルデヒドを重縮合反応させてなる
初期反応物(予備縮合物)を用いることが好ましく、エ
ーテル化されていてもよい。処理されたCBを用いる場
合に、このようなアミノ樹脂を用いるのが好ましいのは
、処理されたCBとの親和性が良好でCBが均一に分散
できるという理由による。
[0011] The amino resin in this invention is an amino compound having two or more amino groups in the molecule, for example,
A resin obtained by polycondensation reaction of formaldehyde and one or more amino compounds selected from the group consisting of urea, melamine, benzoguanamine, cyclohexanecarboguanamine, cyclohexenecarboguanamine, norbornanecarboguanamine, norbornenecarboguanamine, etc. It may be present, and may be etherified with alcohol. As described below, when using treated carbon black (hereinafter, "carbon black" may be referred to as "CB"), the amino resin is selected from benzoguanamine, cyclohexanecarboguanamine, and cyclohexenecarboguanamine. It is preferable to use an initial reaction product (precondensate) obtained by polycondensing an amino compound containing 40 to 100% of at least one type of guanamine with formaldehyde, and may be etherified. When using treated CB, it is preferable to use such an amino resin because it has good affinity with the treated CB and allows the CB to be uniformly dispersed.

【0012】この発明で用いるアミノ樹脂としては、メ
タノール混和度400%以下のアミノ樹脂初期反応物が
好ましい。初期反応物のメタノール混和度とはアミノ樹
脂の重縮合率の度合を表し、初期反応物の2gをメタノ
ール5gに溶解し、25℃に保ちながら水を滴下し白濁
を生じさせるに要した水の重量と初期反応物の重量の比
に100を乗じた値である。
[0012] As the amino resin used in this invention, an amino resin initial reaction product having a methanol miscibility of 400% or less is preferable. The methanol miscibility of the initial reactant refers to the degree of polycondensation of the amino resin, and is the amount of water required to dissolve 2 g of the initial reactant in 5 g of methanol and add water dropwise while keeping the temperature at 25°C to produce a cloudy state. It is the value obtained by multiplying the ratio of the weight to the weight of the initial reactant by 100.

【0013】この発明に用いられる無機顔料は、種類お
よび形状は特に限定されず、たとえば、酸化チタン、酸
化鉄、酸化亜鉛、硫酸バリウム、硫酸カルシウム、炭酸
バリウム、炭酸カルシウム、炭酸マグネシウム、タルク
、粘土、カーボンブラック等の中から選ばれた1種また
は2種以上が使用され、着色性向上(樹脂中への分散性
向上等)のために必要に応じてボールミル等の粉砕機に
より処理して粒子径を5μm以下にすることが好ましく
、より好ましくは0.1μm以下にしたものがよい。 無機顔料を用いることにより、着色樹脂球状微粒子が隠
蔽性を持つようになる。このような着色樹脂球状微粒子
を用いると、たとえば、生地(または下地)の色が出な
いようにしたり、他の色にまけないように着色したりす
ることができる。
[0013] The inorganic pigment used in the present invention is not particularly limited in type or shape, and examples thereof include titanium oxide, iron oxide, zinc oxide, barium sulfate, calcium sulfate, barium carbonate, calcium carbonate, magnesium carbonate, talc, and clay. , carbon black, etc. are used, and if necessary, the particles are processed with a grinder such as a ball mill to improve coloring properties (improve dispersibility in resin, etc.). The diameter is preferably 5 μm or less, more preferably 0.1 μm or less. By using an inorganic pigment, the colored resin spherical fine particles have concealing properties. By using such colored resin spherical fine particles, it is possible, for example, to prevent the color of the fabric (or base) from coming out or to color it so that it does not blend into other colors.

【0014】この発明においては、無機顔料の使用量は
、着色樹脂球状微粒子に含まれる無機顔料がアミノ樹脂
硬化物と無機顔料の合計量に対して1〜30%、好まし
くは5〜20%の比率となるように、適宜設定すればよ
い。このような比率にするためには、アミノ樹脂の種類
、無機顔料の種類などによって異なるが、たとえば、ア
ミノ樹脂と無機顔料の合計使用量に対して無機顔料0.
9〜27%の比率で使用される。
In the present invention, the amount of inorganic pigment used is such that the amount of inorganic pigment contained in the colored resin spherical fine particles is 1 to 30%, preferably 5 to 20%, based on the total amount of the cured amino resin product and inorganic pigment. The ratio may be set as appropriate. In order to achieve such a ratio, it varies depending on the type of amino resin, the type of inorganic pigment, etc., but for example, the amount of inorganic pigment used is 0.00% for the total amount of amino resin and inorganic pigment used.
Used in proportions of 9-27%.

【0015】この発明に使用される無機顔料はアミノ樹
脂への分散性を向上させるために、表面が処理されてい
てもよい。また、染料および有機顔料のうちの少なくと
も一方を補助的に使用してもよい。特に、CBは、該C
Bの表面に存在する官能基と反応性および/または親和
性を有する化合物(A)で処理された形態のものであれ
ば、アミノ化合物とホルムアルデヒドの初期反応物への
分散性が良く、着色度にも優れた黒色樹脂球状微粒子を
得ることができる。
The inorganic pigment used in the present invention may be surface-treated to improve its dispersibility in the amino resin. Furthermore, at least one of a dye and an organic pigment may be used as an auxiliary agent. In particular, CB is
If it is in a form treated with a compound (A) that has reactivity and/or affinity with the functional group present on the surface of B, it will have good dispersibility in the initial reaction product of the amino compound and formaldehyde, and the degree of coloration will increase. It is possible to obtain black resin spherical fine particles having excellent properties.

【0016】前記化合物(A)は、CBの表面に存在す
る官能基(たとえば、−OH、−COOH、−C=O等
)と容易に反応しうる反応性基および/または親和性を
有する化合物であれば、特に制限なく用いることができ
る。化合物(A)は、たとえば、アジリジン基、オキサ
ゾリン基、N−ヒドロキシアルキルアミド基、エポキシ
基、チオエポキシ基、イソシアネート基、ヒドロキシル
基、アミノ基、イミノ基等を1個以上有する単量体ある
いは重合性単量体でもよいし、必要により1種あるいは
2種以上の重合性単量体とを公知の手順に従って重合し
たものでもよい。化合物(A)の具体例としては、たと
えば、平均分子量300〜10万のポリエチレンイミン
、平均分子量70〜10万のポリエチレングリコールグ
リシジルエーテル、平均分子量200〜10000の(
ポリ)アルキレングリコールなどである。化合物(A)
でCBを処理するには、たとえば、次のように行う。各
種混練機によりCBと化合物(A)を十分混練しながら
一定の温度に上げてCB表面の官能基と化合物(A)の
官能基の反応性または親和性を向上させる。
The compound (A) is a compound having a reactive group and/or affinity that can easily react with a functional group (for example, -OH, -COOH, -C=O, etc.) present on the surface of CB. If so, it can be used without any particular restriction. Compound (A) is, for example, a monomer or polymerizable monomer having one or more of an aziridine group, an oxazoline group, an N-hydroxyalkylamide group, an epoxy group, a thioepoxy group, an isocyanate group, a hydroxyl group, an amino group, an imino group, etc. It may be a monomer, or it may be one obtained by polymerizing one or more polymerizable monomers according to known procedures, if necessary. Specific examples of compound (A) include polyethylene imine with an average molecular weight of 300 to 100,000, polyethylene glycol glycidyl ether with an average molecular weight of 700,000 to 100,000, and (
Poly)alkylene glycol, etc. Compound (A)
To process CB, for example, do as follows. The CB and the compound (A) are sufficiently kneaded using various kneaders and raised to a certain temperature to improve the reactivity or affinity between the functional groups on the CB surface and the functional groups of the compound (A).

【0017】この発明に用いられる乳化剤としては、保
護コロイドを作るような乳化剤であればよく、たとえば
ポリビニルアルコール、ポリビニルピロリドン、カルボ
キシメチルセルロース、ポリアクリル酸のアルカリ金属
塩、スチレン−マレイン酸共重合体のアルカリ金属塩等
が使用され、その中でも特にポリビニルアルコールが好
適である。この発明における乳化剤を用いての乳化は、
アミノ樹脂中に無機顔料の所定量を添加し混合した系に
乳化剤を直接添加するか、あるいは別に乳化剤の水溶液
を用意しておき、これにアミノ樹脂と無機顔料の混合物
を添加し、液に強力な剪断力を与える攪拌機、たとえば
、コロイドミル、ディスパーミル、ホモミキサー、ホモ
ゲナイザー等を用いて攪拌することによって行うことが
できる。以上の乳化の過程で使用されるアミノ樹脂は、
メタノール混和度(重縮合率の度合の指標)400%以
下の初期反応物が好ましく、より好ましくは200%以
下の初期反応物である。メタノール混和度を小さくする
ことによって粒子径は大きくなり、メタノール混和度を
大きくすることによって粒子径は小さくなる。メタノー
ル混和度が400%より大きくなると親水性が大きくな
りすぎ単分散した粒子が得られにくくなる。なお、アミ
ノ樹脂の初期反応物の縮合度合は、上記のようにメタノ
ール混和度でも管理できるが、GPC(ゲル浸透クロマ
トグラフィー)、LC(液体クロマトグラフィー)、ア
セトン混和度等でも管理できる。これらの中でも、操作
性、再現性等からアセトン混和度で管理するとよい。ア
セトン混和度とはアミノ樹脂の重縮合率の度合を表し、
初期反応物2gをアセトン5gに溶解し25℃に保ちな
がら水を滴下し、白濁を生じさせるのに要した水の重量
と初期反応物の重量比に100を乗じた値である。初期
反応物のアセトン混和度は50〜500%が好ましく、
より好ましくは100〜300%である。アセトン混和
度が500%を越えると粒子が得られにくくなり、50
%より小さくなると球状微粒子になりにくくなる。
The emulsifier used in this invention may be any emulsifier that forms a protective colloid, such as polyvinyl alcohol, polyvinylpyrrolidone, carboxymethyl cellulose, alkali metal salts of polyacrylic acid, and styrene-maleic acid copolymers. Alkali metal salts and the like are used, among which polyvinyl alcohol is particularly preferred. Emulsification using an emulsifier in this invention is
Either add the emulsifier directly to the mixture of a predetermined amount of inorganic pigment in the amino resin, or prepare a separate aqueous solution of the emulsifier and add the mixture of the amino resin and inorganic pigment to the mixture to make the liquid strong. This can be carried out by stirring using a stirrer that provides a suitable shearing force, such as a colloid mill, a disper mill, a homomixer, a homogenizer, etc. The amino resin used in the above emulsification process is
The initial reactant has a methanol miscibility (an indicator of the degree of polycondensation) of 400% or less, and more preferably 200% or less. By decreasing the methanol miscibility, the particle size increases, and by increasing the methanol miscibility, the particle size decreases. When the methanol miscibility is greater than 400%, the hydrophilicity becomes too large, making it difficult to obtain monodispersed particles. The degree of condensation of the initial reactant of the amino resin can be controlled by methanol miscibility as described above, but it can also be controlled by GPC (gel permeation chromatography), LC (liquid chromatography), acetone miscibility, etc. Among these, it is preferable to control the degree of miscibility with acetone from the viewpoint of operability, reproducibility, etc. Acetone miscibility refers to the degree of polycondensation of amino resin,
This is the value obtained by multiplying 100 by the weight ratio of the weight of water required to produce cloudiness by dissolving 2 g of the initial reactant in 5 g of acetone and adding water dropwise while maintaining the temperature at 25° C. and the weight of the initial reactant. The acetone miscibility of the initial reactant is preferably 50 to 500%,
More preferably it is 100-300%. If the acetone miscibility exceeds 500%, it becomes difficult to obtain particles;
If it is smaller than %, it becomes difficult to form spherical fine particles.

【0018】乳化剤の添加量はアミノ樹脂に対して1〜
30%の範囲が好ましく、より好ましくは2〜10%の
範囲である。乳化剤の使用量を多くすることによって粒
子径を小さくすることができ、使用量を少なくすること
によって粒子径を大きくすることができる。乳化剤の添
加量が1%を下回ると乳化できないことがあり、30%
を越えると硬化により得られた微粒子を単粒子として分
離することが難しくなるおそれがある。また、攪拌効率
を上げることにより粒子径は小さくなり、攪拌効率を下
げることにより粒子径は大きくなる。これは、乳化状態
にするための攪拌効率の上げ下げが初期反応物を剪断す
る力の大小に関わっているからである。このようにアミ
ノ樹脂の重縮合率、乳化剤量および攪拌効率等を適当に
選択することにより、真球状で粒度分布が狭く、かつ目
標とする粒子径の着色樹脂球状微粒子を任意に合成でき
る。この発明の着色樹脂球状微粒子が真球状であるとは
、該着色樹脂球状微粒子200個の電子顕微鏡撮影像か
ら求めた粒径比(長径/短径)が1.0〜1.1の範囲
のものである。
[0018] The amount of emulsifier added is 1 to 1 to the amino resin.
A range of 30% is preferred, and a range of 2 to 10% is more preferred. By increasing the amount of emulsifier used, the particle size can be reduced, and by decreasing the amount used, the particle size can be increased. If the amount of emulsifier added is less than 1%, emulsification may not be possible;
If it exceeds this, it may become difficult to separate the fine particles obtained by curing as single particles. In addition, by increasing the stirring efficiency, the particle size becomes smaller, and by lowering the stirring efficiency, the particle size becomes larger. This is because increasing or decreasing the stirring efficiency to achieve an emulsified state is related to the magnitude of the force shearing the initial reactants. By appropriately selecting the polycondensation rate of the amino resin, the amount of emulsifier, the stirring efficiency, etc., it is possible to arbitrarily synthesize colored resin spherical fine particles that are perfectly spherical, have a narrow particle size distribution, and have a target particle size. The colored resin spherical fine particles of this invention are truly spherical when the particle diameter ratio (major axis/breadth axis) determined from electron microscopic images of 200 colored resin spherical fine particles is in the range of 1.0 to 1.1. It is something.

【0019】この発明に用いられる硬化触媒はアミノ樹
脂の重縮合触媒であり、たとえば、塩酸、硫酸、燐酸等
の鉱酸類;安息香酸、フタル酸、酢酸、プロピオン酸、
サリチル酸等のカルボン酸類;塩化アンモニウム、燐酸
アンモニウム等のアンモニウム塩類;ベンゼンスルホン
酸、パラトルエンスルホン酸、ドデシルベンゼンスルホ
ン酸等のスルホン酸類等から1種または2種以上を適当
に選んで使用することができる。前記硬化触媒は、無機
顔料で着色された未硬化のアミノ樹脂乳化物の固形分(
ただし、顔料は除く)に対して、好ましくは0.01〜
10%(処理されたCBを用いる場合は、0.01〜5
%)、さらに好ましくは0.2〜5%(処理されたCB
を用いる場合は、0.2〜2%)の範囲で使用される。 硬化触媒の添加量が多すぎると乳化状態が破壊され、凝
集物が生じることがあり、また、添加量が少なすぎると
硬化が不十分であったり、あるいは、硬化に長時間を要
するなどして好ましくない。硬化は、たとえば、10〜
200℃の範囲の温度で少なくとも1時間保持した後、
常圧または加圧下で40〜200℃の範囲の温度で行い
、硬化物が、アセトン、メタノール、メチルエチルケト
ン、ジオキサン、ジメチルホルムアミド等に不溶状態に
なった時を硬化終了とする。
The curing catalyst used in the present invention is a polycondensation catalyst for amino resins, and includes, for example, mineral acids such as hydrochloric acid, sulfuric acid, and phosphoric acid; benzoic acid, phthalic acid, acetic acid, propionic acid,
Carboxylic acids such as salicylic acid; ammonium salts such as ammonium chloride and ammonium phosphate; and sulfonic acids such as benzenesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, etc. One or more types may be appropriately selected and used. can. The curing catalyst is a solid content of an uncured amino resin emulsion colored with an inorganic pigment (
However, pigments are excluded), preferably from 0.01 to
10% (0.01-5 when using treated CB)
%), more preferably 0.2-5% (treated CB
When using, it is used in the range of 0.2 to 2%). If the amount of curing catalyst added is too large, the emulsified state may be destroyed and aggregates may be formed, and if the amount added is too small, curing may be insufficient or curing may take a long time. Undesirable. For example, curing is 10~
After holding at a temperature in the range of 200°C for at least 1 hour,
Curing is carried out at a temperature in the range of 40 to 200° C. under normal pressure or increased pressure, and curing is completed when the cured product becomes insoluble in acetone, methanol, methyl ethyl ketone, dioxane, dimethylformamide, etc.

【0020】硬化反応を終了した後、着色樹脂球状微粒
子を分離するには公知の方法によればよく、たとえば自
然沈降法あるいは遠心沈降法とデカンテーションによる
分離、濾過による分離等の各種分離法が自由に採用でき
る。また、分離して得られた着色樹脂球状微粒子を水お
よび各種有機溶媒、たとえば、トルエン、キシレン等の
無極性溶媒、メチルエチルケトン、メタノール、エタノ
ール、イソプロピルアルコール、ジメチルホルムアミド
、テトラヒドロフラン等の極性溶媒、および、これらか
らなる混合溶媒に分散させることによって、ペーストま
たは分散体として得ることができる。分離操作の後、着
色樹脂球状微粒子を自然乾燥、減圧乾燥、熱風乾燥等の
従来公知の方法により乾燥することができる。乾燥操作
の後で、100〜200℃の温度で加熱処理を施すこと
によって目的とする着色樹脂球状微粒子の耐熱性、耐水
性、耐溶剤性等がさらに向上するので、必要ならばこの
ような加熱処理を施すのが好ましい。しかし、乾燥工程
を比較的高温で行うと加熱処理が同時に行われるので、
このような場合は加熱処理をしなくてもよい。乾燥後の
着色樹脂球状微粒子をボールミル、ハンマーミル、ジェ
ットミル等の粉砕機により凝集状態を解くような力を与
えることにより解砕し、着色樹脂球状微粒子の微粉体と
して得ることができる。また、乾燥操作の後の着色樹脂
球状微粒子を溶媒に分散させ、ペーストまたは分散体と
することはもちろん可能である。
After the curing reaction is completed, the colored resin spherical fine particles may be separated by any known method, including various separation methods such as natural sedimentation, centrifugal sedimentation, separation by decantation, and separation by filtration. Can be freely adopted. In addition, the colored resin spherical fine particles obtained by separation are mixed with water and various organic solvents, for example, nonpolar solvents such as toluene and xylene, polar solvents such as methyl ethyl ketone, methanol, ethanol, isopropyl alcohol, dimethylformamide, and tetrahydrofuran. By dispersing it in a mixed solvent consisting of these, it can be obtained as a paste or dispersion. After the separation operation, the colored resin spherical fine particles can be dried by a conventionally known method such as natural drying, reduced pressure drying, or hot air drying. After the drying operation, heat treatment at a temperature of 100 to 200°C further improves the heat resistance, water resistance, solvent resistance, etc. of the desired colored resin spherical fine particles, so if necessary, such heating may be performed. It is preferable to perform treatment. However, if the drying process is performed at a relatively high temperature, heat treatment is performed at the same time.
In such a case, heat treatment may not be performed. The dried colored resin spherical fine particles are crushed by applying a force to break up the agglomeration using a crusher such as a ball mill, hammer mill, jet mill, etc., and a fine powder of colored resin spherical fine particles can be obtained. Furthermore, it is of course possible to disperse the colored resin spherical fine particles after the drying operation in a solvent to form a paste or a dispersion.

【0021】この発明の着色樹脂球状微粒子は、たとえ
ば乳化状態で重縮合を行うことにより製造されると、0
.1〜50μmの範囲の平均粒子径を有するが、この範
囲外の平均粒子径を有するものであってもよい。なお、
この発明では、乳化状態で重縮合を行うとは、分散媒中
に液滴が分散した状態で重縮合を行うことを指しており
、乳化重合に限定されるわけではなく、懸濁重合なども
含む。
When the colored resin spherical fine particles of the present invention are produced, for example, by polycondensation in an emulsified state,
.. Although it has an average particle diameter in the range of 1 to 50 μm, it may have an average particle diameter outside this range. In addition,
In this invention, polycondensation in an emulsified state refers to polycondensation in a state where droplets are dispersed in a dispersion medium, and is not limited to emulsion polymerization, but may also include suspension polymerization. include.

【0022】[0022]

【実施例】以下に、この発明の具体的な実施例および比
較例を示すが、この発明は下記実施例に限定されない。 表1に、実施例1〜6および比較例1〜4の合成条件を
まとめて示した。 −実施例1− 攪拌機、還流冷却器および温度計を備えたフラスコにベ
ンゾグアナミン150g(0.8モル)、濃度37%の
ホルマリン162g(ホルムアルデヒド2.0モル)お
よび濃度10%の炭酸ナトリウム水溶液0.65gを仕
込み、攪拌しながら94〜95℃の温度で5時間反応さ
せ、メタノール混和度60%およびアセトン混和度25
0%の初期反応物を得た。この初期反応物へ酸化チタン
(富士チタン株式会社製  TA−100)20gを添
加し30分間攪拌を行い、酸化チタンにより白色に着色
した初期反応物を得た。別にクラレポバール205(株
式会社クラレ製のポリビニルアルコール部分加水分解物
)10.5gを水145gに溶解して得た水溶液を90
℃に昇温した後、ホモミキサー(特殊機化工株式会社製
  M型)を用い、6000rpm で攪拌した。攪拌
下にあるクラレポバール水溶液に上記白色に着色された
初期反応物を添加し白色の乳化液を得た。この乳化液を
40℃に冷却し、ついで、ドデシルベンゼンスルホン酸
4.5gを加え、徐々に昇温し、50℃、70℃、80
℃の各温度で順次2時間ずつ加熱攪拌し、乳化状態で重
縮合硬化された着色樹脂球状微粒子の懸濁液を得た。こ
の懸濁液を光学顕微鏡(600倍)で観察すると、粒子
径が約4μmの球状の微粒子からなっていることがわか
った。懸濁液から着色樹脂球状微粒子を濾別して水洗し
、100℃で1時間乾燥し、ついで150℃で3時間加
熱処理をした後、乳鉢で軽く解砕することにより鮮明な
白色を有する着色樹脂球状微粒子の粉体を得た。
[Examples] Specific examples and comparative examples of the present invention are shown below, but the present invention is not limited to the following examples. Table 1 shows the synthesis conditions of Examples 1 to 6 and Comparative Examples 1 to 4. - Example 1 - In a flask equipped with a stirrer, a reflux condenser and a thermometer, 150 g (0.8 mol) of benzoguanamine, 162 g (2.0 mol formaldehyde) of formalin with a concentration of 37% and 0.0 g of an aqueous solution of sodium carbonate with a concentration of 10%. 65g was charged and reacted for 5 hours at a temperature of 94 to 95°C with stirring, resulting in methanol miscibility of 60% and acetone miscibility of 25%.
0% initial reactant was obtained. To this initial reaction product, 20 g of titanium oxide (TA-100 manufactured by Fuji Titanium Co., Ltd.) was added and stirred for 30 minutes to obtain an initial reaction product colored white by titanium oxide. Separately, an aqueous solution obtained by dissolving 10.5 g of Kuraray Poval 205 (polyvinyl alcohol partial hydrolyzate manufactured by Kuraray Co., Ltd.) in 145 g of water was prepared at 90%
After raising the temperature to .degree. C., the mixture was stirred at 6000 rpm using a homomixer (Model M, manufactured by Tokushu Kikako Co., Ltd.). The white colored initial reaction product was added to the Kuraray Poval aqueous solution under stirring to obtain a white emulsion. This emulsion was cooled to 40°C, then 4.5g of dodecylbenzenesulfonic acid was added, and the temperature was gradually raised to 50°C, 70°C, and 80°C.
The mixture was heated and stirred for 2 hours at each temperature in order to obtain a suspension of colored resin spherical particles cured by polycondensation in an emulsified state. When this suspension was observed under an optical microscope (600x magnification), it was found that it consisted of spherical fine particles with a particle diameter of about 4 μm. Colored resin spherical fine particles are separated from the suspension by filtration, washed with water, dried at 100°C for 1 hour, then heated at 150°C for 3 hours, and then lightly crushed in a mortar to obtain colored resin spherical particles with a clear white color. A fine particle powder was obtained.

【0023】このようにして得られた着色樹脂球状微粒
子は走査型電子顕微鏡(日立製作所製  S−570型
)で微粒子200個の電子顕微鏡像を観察すると粒径比
(長径/短径)が1.05であり、粒子化されていない
酸化チタンは観察できなかったことから添加した酸化チ
タンのほとんどが着色樹脂球状微粒子の中に分散されて
いることがわかった。この着色樹脂球状微粒子の粒子径
をコールターカウンター(コールター社製  TA−2
型)で測定したところ、平均粒子径は4.25μmで粒
度分布も非常にシャープであった。また、この着色樹脂
球状微粒子の着色性、耐熱性、分散性および耐水性を下
記のようにして調べた。この着色樹脂球状微粒子は着色
性、耐熱性、分散性および耐水性に優れた白色樹脂球状
微粒子であった。結果を表2に示す。
When observing an electron microscope image of 200 fine particles of the colored resin spherical fine particles thus obtained using a scanning electron microscope (model S-570 manufactured by Hitachi, Ltd.), it was found that the particle size ratio (major axis/breadth axis) was 1. .05, and no unparticulated titanium oxide could be observed, indicating that most of the added titanium oxide was dispersed in the colored resin spherical fine particles. The particle size of the colored resin spherical fine particles was measured using a Coulter counter (TA-2 manufactured by Coulter).
The average particle diameter was 4.25 μm, and the particle size distribution was very sharp. Further, the colorability, heat resistance, dispersibility, and water resistance of the colored resin spherical fine particles were investigated as follows. The colored resin spherical fine particles were white resin spherical fine particles having excellent colorability, heat resistance, dispersibility, and water resistance. The results are shown in Table 2.

【0024】着色性は、使用した顔料と得られた着色樹
脂微粒子の色相を色差計にて比較し、着色度を下記の基
準で評価した。 ○:無機顔料単独と着色樹脂微粒子の色差が10%以内
である。 △:無機顔料単独と着色樹脂微粒子の色差が10%を越
え、20%未満である。
The colorability was evaluated by comparing the hue of the pigment used and the colored resin fine particles obtained using a color difference meter, and evaluating the degree of coloration according to the following criteria. Good: The color difference between the inorganic pigment alone and the colored resin fine particles is within 10%. Δ: The color difference between the inorganic pigment alone and the colored resin fine particles is more than 10% and less than 20%.

【0025】×:無機顔料単独と着色樹脂微粒子の色差
が20%以上である。 耐熱性は、JIS  K−5101(16)に準じて、
180℃で2時間処理して形状の変化を調べ、下記の基
準で評価した。 ○:耐熱テスト後、粒径比を求め粒径比が未処理品に比
べて10%未満の差である。
×: The color difference between the inorganic pigment alone and the colored resin fine particles is 20% or more. Heat resistance is according to JIS K-5101 (16).
After treatment at 180° C. for 2 hours, changes in shape were examined and evaluated using the following criteria. ○: After the heat resistance test, the particle size ratio was determined and the difference in particle size ratio was less than 10% compared to the untreated product.

【0026】×:耐熱テスト後、粒径比を求め粒径比が
未処理品に比べて10%以上の差である。 分散性は、JIS  K−5101(7)に準じて、印
刷ワニス20g、着色樹脂微粒子5gを十分混練した後
、グラインドメーターにて粉体の平均粒子径の3倍に相
当するみぞの引き跡を調べ、下記の基準で評価した。
×: After the heat resistance test, the particle size ratio was determined and the difference in particle size ratio was 10% or more compared to the untreated product. Dispersibility is determined according to JIS K-5101 (7) by thoroughly kneading 20 g of printing varnish and 5 g of colored resin fine particles, and then using a grind meter to find groove marks equivalent to three times the average particle diameter of the powder. It was investigated and evaluated using the following criteria.

【0027】合格:引き跡中に3本未満の線がある。 不合格:引き跡中に3本以上の線がある。 耐水性は、JIS  K−5101(12)に準じて、
着色樹脂微粒子約0.5gをガラス製試験管にとり、水
10mlを加え、95℃まで熱した後、放冷し、上澄液
の色相を調べ、下記の基準で評価した。
Pass: There are less than 3 lines in the trace. Fail: There are three or more lines in the trace. Water resistance is according to JIS K-5101 (12).
Approximately 0.5 g of colored resin particles were placed in a glass test tube, 10 ml of water was added, and the mixture was heated to 95° C., then allowed to cool, and the hue of the supernatant liquid was examined and evaluated according to the following criteria.

【0028】無色透明:着色樹脂微粒子からの顔料の脱
離がないため、耐水性良い。 微白濁  :着色樹脂微粒子からの顔料の脱離があるた
め、耐水性悪い。 淡黒色  :着色樹脂微粒子からの顔料の脱離があるた
め、耐水性悪い。 −実施例2〜4および比較例1〜3− 実施例1の中で樹脂濃度、顔料濃度、乳化剤量、攪拌速
度を表1に記載した条件にしたこと以外は実施例1と同
じ方法で着色樹脂球状微粒子を得た。
[0028] Colorless and transparent: There is no desorption of the pigment from the colored resin fine particles, so water resistance is good. Slight cloudiness: Poor water resistance due to desorption of pigment from colored resin particles. Pale black: Poor water resistance due to detachment of pigment from colored resin fine particles. - Examples 2 to 4 and Comparative Examples 1 to 3 - Coloring was performed in the same manner as in Example 1 except that the resin concentration, pigment concentration, emulsifier amount, and stirring speed were set to the conditions listed in Table 1. Resin spherical fine particles were obtained.

【0029】結果を表2に示す。 −実施例5− 実施例1の中で酸化チタンの代わりにFe3 O4 (
株式会社三菱金属製  スピネル型)20gを用いたこ
と以外は実施例1と同じ方法で着色樹脂球状微粒子を得
た。
The results are shown in Table 2. -Example 5- In Example 1, Fe3 O4 (
Colored resin spherical fine particles were obtained in the same manner as in Example 1 except that 20 g of spinel type (manufactured by Mitsubishi Metals Co., Ltd.) was used.

【0030】この着色樹脂球状微粒子は平均粒子径5.
11μm(コールターカウンター値)で実施例1と同様
に真球状で着色性、耐熱性、分散性および耐水性に優れ
た黒色樹脂球状微粒子であった。結果を表2に示す。 −実施例6− 攪拌機、還流冷却器および温度計を備えたフラスコにベ
ンゾグアナミン112g(0.6モル)、メラミン25
g(0.2モル)、濃度37%のホルマリン145g(
ホルムアルデヒド1.8モル)および濃度10%の炭酸
ナトリウム水溶液0.65gを仕込み、攪拌しながら9
4〜95℃の温度で6時間反応させ、メタノール混和度
35%およびアセトン混和度150%の初期反応物を得
た。この初期反応物へカーボンブラック(三菱化成株式
会社製  MA600)15gを添加し30分間攪拌を
行い、カーボンブラックにより黒色に着色した初期反応
物を得た。別にクラレポバール205(株式会社クラレ
製のポリビニルアルコール部分加水分解物)7.5gを
水140gに溶解して得た水溶液を90℃に昇温した後
、ホモミキサー(特殊機化工株式会社製  M型)を用
い、6000rpm で攪拌した。攪拌下にあるクラレ
ポバール水溶液に上記黒色に着色された初期反応物を添
加し黒色の乳化液を得た。この乳化液を40℃に冷却し
、ついで、ドデシルベンゼンスルホン酸4.1gを加え
、徐々に昇温し、50℃、70℃、90℃の各温度で順
次2時間ずつ加熱攪拌し、乳化状態で重縮合硬化された
着色樹脂球状微粒子の懸濁液を得た。この懸濁液を光学
顕微鏡(600倍)で観察すると、粒子径が約6μmの
球状の微粒子からなっていることがわかった。懸濁液か
ら着色樹脂球状微粒子を濾別して水洗し、100℃で1
時間乾燥し、ついで150℃で5時間加熱処理をした後
、乳鉢で軽く解砕することにより鮮明な黒色を有する着
色樹脂球状微粒子の粉体を得た。
The colored resin spherical fine particles have an average particle diameter of 5.
The black resin spherical fine particles had a diameter of 11 μm (Coulter counter value), were perfectly spherical as in Example 1, and had excellent colorability, heat resistance, dispersibility, and water resistance. The results are shown in Table 2. - Example 6 - In a flask equipped with a stirrer, a reflux condenser and a thermometer, 112 g (0.6 mol) of benzoguanamine and 25 g of melamine were added.
g (0.2 mol), 145 g of formalin with a concentration of 37% (
1.8 mol of formaldehyde) and 0.65 g of a 10% sodium carbonate aqueous solution were added, and the
The reaction was carried out at a temperature of 4 to 95° C. for 6 hours to obtain an initial reactant with a methanol miscibility of 35% and an acetone miscibility of 150%. To this initial reaction product, 15 g of carbon black (MA600 manufactured by Mitsubishi Kasei Corporation) was added and stirred for 30 minutes to obtain an initial reaction product colored black with carbon black. Separately, an aqueous solution obtained by dissolving 7.5 g of Kuraray Poval 205 (polyvinyl alcohol partial hydrolyzate manufactured by Kuraray Co., Ltd.) in 140 g of water was heated to 90°C, and then a homomixer (M type manufactured by Tokushu Kikako Co., Ltd.) was heated. ) and stirred at 6000 rpm. The black colored initial reactant was added to the Kuraray Poval aqueous solution under stirring to obtain a black emulsion. This emulsion was cooled to 40°C, then 4.1 g of dodecylbenzenesulfonic acid was added, the temperature was gradually raised, and the emulsion was heated and stirred at each temperature of 50°C, 70°C, and 90°C for 2 hours in turn, until the emulsified state A suspension of colored resin spherical fine particles polycondensed and cured was obtained. When this suspension was observed under an optical microscope (600 times magnification), it was found that it consisted of spherical fine particles with a particle diameter of about 6 μm. Colored resin spherical fine particles were filtered from the suspension, washed with water, and incubated at 100°C for 1
After drying for an hour and then heat-treating at 150° C. for 5 hours, the powder was lightly crushed in a mortar to obtain a powder of colored resin spherical fine particles having a clear black color.

【0031】このようにして得られた着色樹脂球状微粒
子は走査型電子顕微鏡で観察すると粒径比(長径/短径
)が1.06である真球状微粒子であり、粒子化されて
いないカーボンブラックは観察できなかったことから添
加したカーボンブラックのほとんどが着色樹脂球状微粒
子の中に分散されていることがわかった。この着色樹脂
球状微粒子の粒子径をコールターカウンターで測定した
ところ、平均粒子径は5.87μmで粒度分布も非常に
シャープであった。また、この着色樹脂球状微粒子は着
色性、耐熱性、分散性、耐水性に優れた黒色樹脂球状微
粒子であった。結果を表2に示す。
When observed with a scanning electron microscope, the colored resin spherical fine particles thus obtained were true spherical fine particles with a particle diameter ratio (major axis/minor axis) of 1.06, and were found to be fine spherical particles that had not been granulated. was not observed, indicating that most of the added carbon black was dispersed within the colored resin spherical fine particles. When the particle size of the colored resin spherical fine particles was measured using a Coulter counter, the average particle size was 5.87 μm and the particle size distribution was also very sharp. Further, the colored resin spherical fine particles were black resin spherical fine particles having excellent colorability, heat resistance, dispersibility, and water resistance. The results are shown in Table 2.

【0032】 −比較例4− 攪拌機、還流冷却器および温度計を備えたフラスコにア
クリル酸2g、メチルメタクリレート240g、ジビニ
ルベンゼン29g、スチレン樹脂50g、アゾビスイソ
ブチロニトリル1g、カーボンブラック(三菱化成株式
会社製  MA600)25gを仕込み、充分に攪拌し
て均一混合し黒色溶液を得た。別にクラレポバール20
5(株式会社クラレ製のポリビニルアルコール部分加水
分解物)17gを水600gに溶解して得た水溶液をホ
モミキサー(特殊機化工株式会社製M型)を用いてN2
 雰囲気下6000rpm で攪拌した。攪拌下にある
クラレポバール水溶液に上記黒色溶液を添加した後80
℃に昇温した。昇温30分後、四つ口フラスコに移しN
2 雰囲気下80℃に加熱攪拌しながら5時間重合反応
を進めて黒色に着色された硬化樹脂の懸濁液を得た。こ
の懸濁液を光学顕微鏡(600倍)で観察すると、粒子
径が約6μmの球状の微粒子からなっていることがわか
った。懸濁液から硬化樹脂を濾別し水洗した後、100
℃で乾燥し乳鉢で解砕することにより黒色を有する硬化
樹脂球状微粒子の粉体を得た。このようにして得た硬化
樹脂球状微粒子は走査型電子顕微鏡で観察すると粒径比
(長径/短径)が1.12である球状微粒子であり、粒
子化されていないカーボンブラックが観察された。
- Comparative Example 4 - In a flask equipped with a stirrer, a reflux condenser, and a thermometer, 2 g of acrylic acid, 240 g of methyl methacrylate, 29 g of divinylbenzene, 50 g of styrene resin, 1 g of azobisisobutyronitrile, and carbon black (Mitsubishi Chemical Co., Ltd.) were added. 25 g of MA600 (manufactured by Co., Ltd.) was charged and sufficiently stirred to mix uniformly to obtain a black solution. Separately Kuraray Poval 20
An aqueous solution obtained by dissolving 17 g of 5 (polyvinyl alcohol partial hydrolyzate manufactured by Kuraray Co., Ltd.) in 600 g of water was mixed with N2 using a homomixer (Model M manufactured by Tokushu Kikako Co., Ltd.).
The mixture was stirred at 6000 rpm under atmosphere. After adding the above black solution to the Kuraray Poval aqueous solution under stirring,
The temperature was raised to ℃. After raising the temperature for 30 minutes, transfer to a four-necked flask.
2. The polymerization reaction was allowed to proceed for 5 hours while heating and stirring at 80° C. in an atmosphere to obtain a suspension of a cured resin colored black. When this suspension was observed under an optical microscope (600 times magnification), it was found that it consisted of spherical fine particles with a particle diameter of about 6 μm. After filtering the cured resin from the suspension and washing with water,
By drying at ℃ and crushing in a mortar, a black powder of cured resin spherical fine particles was obtained. When the thus obtained cured resin spherical fine particles were observed with a scanning electron microscope, they were spherical fine particles with a particle size ratio (major axis/breadth axis) of 1.12, and non-particulate carbon black was observed.

【0033】この樹脂球状微粒子の粒子径をコールター
カウンターで測定したところ、平均粒子径は6.23μ
mで粒度分布はブロードであった。また、この樹脂球状
微粒子は着色性、分散性および耐水性が悪かった。結果
を表2に示す。表1には、実施例1〜6および比較例1
〜4の合成条件を示した。
[0033] When the particle size of the resin spherical fine particles was measured using a Coulter counter, the average particle size was 6.23 μm.
m, the particle size distribution was broad. Furthermore, the resin spherical fine particles had poor colorability, dispersibility, and water resistance. The results are shown in Table 2. Table 1 shows Examples 1 to 6 and Comparative Example 1.
-4 synthesis conditions are shown.

【0034】[0034]

【表1】[Table 1]

【0035】[0035]

【表2】[Table 2]

【0036】表2にみるように、実施例の着色樹脂球状
微粒子は、球状であり、着色性、分散性、耐水性および
耐熱性のすべてに優れていた。これに対し、比較例1で
は顔料の比率が高すぎるため分散性と耐水性が悪く、比
較例2では顔料の比率が低すぎるため着色性が悪かった
。比較例3では球状微粒子が得られなかった。これは、
乳化状態で重縮合を行わなかったためである。比較例4
ではアミノ樹脂硬化物ではなく、アクリル樹脂硬化物が
用いられたので、着色性、分散性、耐水性、耐熱性がす
べて悪かった。
As shown in Table 2, the colored resin spherical fine particles of Examples were spherical and had excellent colorability, dispersibility, water resistance, and heat resistance. On the other hand, in Comparative Example 1, the pigment ratio was too high, resulting in poor dispersibility and water resistance, and in Comparative Example 2, the pigment ratio was too low, resulting in poor coloring properties. In Comparative Example 3, spherical fine particles were not obtained. this is,
This is because polycondensation was not performed in an emulsified state. Comparative example 4
Since a cured acrylic resin was used instead of a cured amino resin, colorability, dispersibility, water resistance, and heat resistance were all poor.

【0037】つぎに、この発明において、無機顔料とし
て処理されたカーボンブラックを用いた場合の実施例お
よび比較例を示すが、この発明は下記実施例に限定され
ない。まず、カーボンブラックを処理する場合の例を示
す。 −参考例1− ラボプラストミル(東洋精機株式会社製)にCBとして
MA−600(三菱化成株式会社製)100重量部およ
び分子量30000のポリエチレンイミンであるエポミ
ンSP−300(日本触媒化学工業株式会社製)200
重量部を仕込み、攪拌しながら100〜200℃の温度
で20分間混練した後、冷却し、処理されたカーボンブ
ラックを得た。これをCB(1)と称する。
Next, examples and comparative examples will be shown in which carbon black treated as an inorganic pigment is used in the present invention, but the present invention is not limited to the following examples. First, an example of processing carbon black will be shown. -Reference Example 1- 100 parts by weight of MA-600 (manufactured by Mitsubishi Kasei Co., Ltd.) as a CB and Epomin SP-300 (Nippon Shokubai Chemical Co., Ltd.), which is a polyethyleneimine with a molecular weight of 30,000, were added to Laboplastomil (manufactured by Toyo Seiki Co., Ltd.). made) 200
Parts by weight were added, kneaded for 20 minutes at a temperature of 100 to 200° C. with stirring, and then cooled to obtain treated carbon black. This is called CB(1).

【0038】 −参考例2− 参考例1において、ポリエチレンイミン200重量部の
代わりに分子量902のラウリルアルコールポリエチレ
ングリコールグリシジルエーテルであるデナコールEX
−171(ナガセ化成工業株式会社製)100重量部を
用いたこと以外は参考例1と同様にして処理されたカー
ボンブラックを得た。これをCB(2)と称する。
-Reference Example 2- In Reference Example 1, Denacol EX, which is lauryl alcohol polyethylene glycol glycidyl ether with a molecular weight of 902, was used instead of 200 parts by weight of polyethyleneimine.
Carbon black treated in the same manner as in Reference Example 1 was obtained, except that 100 parts by weight of -171 (manufactured by Nagase Chemical Industries, Ltd.) was used. This is called CB(2).

【0039】 −参考例3− 参考例1において、ポリエチレンイミン200重量部の
代わりに平均分子量1000のポリエチレングリコール
であるPEG1000(関東化学株式会社製)100重
量部を用いたこと以外は参考例1と同様にして処理され
たカーボンブラックを得た。これをCB(3)と称する
-Reference Example 3- Same as Reference Example 1 except that 100 parts by weight of PEG1000 (manufactured by Kanto Kagaku Co., Ltd.), which is a polyethylene glycol with an average molecular weight of 1000, was used instead of 200 parts by weight of polyethyleneimine. Carbon black treated in the same manner was obtained. This is called CB(3).

【0040】表3に、実施例7〜17および比較例5,
6の合成条件をまとめて示した。 −実施例7− 攪拌機、還流冷却器および温度計を備えた四つ口フラス
コにベンゾグアナミン187g(1.0モル)、メラミ
ン25g(0.2モル)、濃度37%のホルマリン24
3g(ホルムアルデヒド3.0モル)および濃度10%
の炭酸ナトリウム水溶液0.95gを仕込み、攪拌しな
がら94〜95℃の温度で3時間30分反応させ、メタ
ノール混和度60%でアセトン混和度250%の初期反
応物を得た。この初期反応物へ参考例2で得られたCB
(2)67.1gを添加し、30分間攪拌を行い、CB
により黒色に着色した初期反応物を得た。別にクラレポ
バール205(株式会社クラレ製のポリビニルアルコー
ル部分加水分解物)15.9gを水183gに溶解して
得た水溶液を90℃に昇温した後、ホモミキサー(特殊
機化工株式会社  HW−M型)を用い、6000rp
m で攪拌した。攪拌下にあるクラレポバール水溶液に
上記黒色に着色された初期反応物を添加し黒色の乳化液
を得た。この乳化液を40℃に冷却し、ついで、ドデシ
ルベンゼンスルホン酸4.62gを加え、徐々に昇温し
、50℃、70℃、90℃の温度で順次2時間ずつ加熱
攪拌し、乳化状態で重縮合硬化された黒色樹脂微粒子の
懸濁液を得た。この懸濁液を光学顕微鏡(600倍)で
観察すると、粒子径が約5μmの球状の微粒子からなっ
ていることがわかった。懸濁液から黒色樹脂微粒子を濾
別して水洗し、100℃で1時間乾燥し、ついで、15
0℃で5時間加熱処理をした後、乳鉢で軽く解砕するこ
とにより鮮明な黒色を有する黒色樹脂微粒子の粉体を得
た。
Table 3 shows Examples 7 to 17 and Comparative Example 5,
The synthesis conditions of 6 are summarized below. - Example 7 - In a four-necked flask equipped with a stirrer, a reflux condenser and a thermometer, 187 g (1.0 mol) of benzoguanamine, 25 g (0.2 mol) of melamine, and 24 formalin at a concentration of 37% were added.
3g (3.0 moles of formaldehyde) and concentration 10%
0.95 g of an aqueous sodium carbonate solution was charged and reacted for 3 hours and 30 minutes at a temperature of 94 to 95° C. with stirring to obtain an initial reaction product having a methanol miscibility of 60% and an acetone miscibility of 250%. CB obtained in Reference Example 2 to this initial reaction product
(2) Add 67.1g, stir for 30 minutes,
An initial reaction product colored black was obtained. Separately, an aqueous solution obtained by dissolving 15.9 g of Kuraray Poval 205 (polyvinyl alcohol partial hydrolyzate manufactured by Kuraray Co., Ltd.) in 183 g of water was heated to 90°C, and then a homomixer (HW-M, Tokushu Kikako Co., Ltd.) was heated to 90°C. type), 6000 rpm
Stirred at m. The black colored initial reactant was added to the Kuraray Poval aqueous solution under stirring to obtain a black emulsion. This emulsion was cooled to 40°C, then 4.62g of dodecylbenzenesulfonic acid was added, the temperature was gradually raised, and the emulsion was heated and stirred at temperatures of 50°C, 70°C, and 90°C for 2 hours each, until the emulsified state was reached. A suspension of polycondensation-cured black resin particles was obtained. When this suspension was observed under an optical microscope (600 times magnification), it was found that it consisted of spherical fine particles with a particle diameter of approximately 5 μm. Black resin fine particles were filtered from the suspension, washed with water, dried at 100°C for 1 hour, and then
After heat treatment at 0° C. for 5 hours, the mixture was lightly crushed in a mortar to obtain a powder of black resin fine particles having a clear black color.

【0041】このようにして得た硬化樹脂微粒子は走査
型電子顕微鏡で微粒子200個について観察すると粒径
比(長径/短径)が1.04である真球状微粒子であり
、粒子化されていないカーボンブラックが観察されなか
ったことから添加したCBのほとんどが黒色樹脂微粒子
の中に分散されていることがわかった。この黒色樹脂微
粒子の粒子径をコールターカウンターで測定したところ
、平均粒子径は5.05μmで粒度分布も非常にシャー
プであった。また、この樹脂微粒子は着色性、分散性、
耐水性等を上記のようにして調べたところ、いずれの物
性にも優れている黒色樹脂球状微粒子であった。
When 200 fine particles of the cured resin thus obtained were observed using a scanning electron microscope, they were true spherical fine particles with a particle diameter ratio (major axis/minor axis) of 1.04, and were not granulated. Since no carbon black was observed, it was found that most of the added CB was dispersed in the black resin fine particles. When the particle size of the black resin fine particles was measured using a Coulter counter, the average particle size was 5.05 μm and the particle size distribution was also very sharp. In addition, this resin fine particle has colorability, dispersibility,
When the water resistance and other properties were examined as described above, the black resin spherical fine particles were excellent in all physical properties.

【0042】結果を表5に示す。 −実施例8〜10− 実施例7においてCB(2)の代わりに参考例1および
3で得られたCB(1)および(3)ならびに未処理C
B(前述のMA−600)を表3の条件で用いたこと以
外は実施例7と同じ方法で黒色樹脂微粒子を得た。
The results are shown in Table 5. - Examples 8 to 10 - In Example 7, CB (1) and (3) obtained in Reference Examples 1 and 3 and untreated C were used instead of CB (2).
Black resin fine particles were obtained in the same manner as in Example 7, except that B (the above-mentioned MA-600) was used under the conditions shown in Table 3.

【0043】結果を表5に示す。 −実施例11〜16および比較例5,6−実施例7にお
いてCB添加量、乳化剤量、メタノール混和度およびア
セトン混和度を表3および4に示す条件にしたこと以外
は実施例7と同じ方法で黒色樹脂微粒子を得た。
The results are shown in Table 5. - Examples 11 to 16 and Comparative Examples 5 and 6 - Same method as Example 7 except that in Example 7, the amount of CB added, the amount of emulsifier, the degree of methanol miscibility, and the degree of acetone miscibility were set to the conditions shown in Tables 3 and 4. Black resin fine particles were obtained.

【0044】結果を表5および6に示す。 −実施例17− 実施例7においてベンゾグアナミンをシクロヘキサンカ
ルボグアナミンにしたこと以外は実施例7と同じ方法で
黒色樹脂微粒子を得た。結果を表6に示す。
The results are shown in Tables 5 and 6. -Example 17- Black resin fine particles were obtained in the same manner as in Example 7 except that cyclohexanecarboguanamine was used instead of benzoguanamine. The results are shown in Table 6.

【0045】なお、実施例7〜17および比較例5,6
の着色樹脂微粒子の着色性の評価基準は次のとおりであ
る。 ○:無機顔料単独と着色樹脂微粒子の色差が5%以内で
ある。 △:無機顔料単独と着色樹脂微粒子の色差が5%を越え
、10%未満である。 ×:無機顔料単独と着色樹脂微粒子の色差が10%以上
である。
Note that Examples 7 to 17 and Comparative Examples 5 and 6
The evaluation criteria for the colorability of the colored resin fine particles are as follows. Good: The color difference between the inorganic pigment alone and the colored resin fine particles is within 5%. Δ: The color difference between the inorganic pigment alone and the colored resin fine particles is more than 5% and less than 10%. ×: The color difference between the inorganic pigment alone and the colored resin fine particles is 10% or more.

【0046】表3および4には、実施例7〜17および
比較例5,6の合成条件を示した。
Tables 3 and 4 show the synthesis conditions of Examples 7 to 17 and Comparative Examples 5 and 6.

【0047】[0047]

【表3】[Table 3]

【0048】[0048]

【表4】[Table 4]

【0049】[0049]

【表5】[Table 5]

【0050】[0050]

【表6】[Table 6]

【0051】表5および6にみるように、実施例の着色
樹脂微粒子は、着色性、分散性、耐水性および耐熱性に
優れた黒色樹脂球状微粒子で、CB処理品はCB未処理
品に比べより優れた着色性を有する。比較例5では、C
B含有量が1〜30%の範囲を上回っていたので、平均
粒径および粒径比が大きくなり、分散性が低かった。比
較例6では、CB含有量が1〜30%の範囲を下回って
いたので、着色性が悪かった。
As shown in Tables 5 and 6, the colored resin fine particles of the examples are black resin spherical fine particles with excellent colorability, dispersibility, water resistance, and heat resistance, and the CB-treated product has a higher resistance than the non-CB-treated product. It has better coloring properties. In Comparative Example 5, C
Since the B content exceeded the range of 1 to 30%, the average particle size and particle size ratio were large, and the dispersibility was low. In Comparative Example 6, the CB content was below the range of 1 to 30%, so the colorability was poor.

【0052】[0052]

【発明の効果】この発明の着色樹脂球状微粒子およびそ
の製造方法は、従来のものに比べて下記のような優位性
がある。■  この発明の着色樹脂球状微粒子はアミノ
樹脂の本来有している優れた諸物性、たとえば耐熱性、
耐溶剤性、耐薬品性、耐久性に優れている。
[Effects of the Invention] The colored resin spherical fine particles of the present invention and the method for producing the same have the following advantages over conventional ones. ■ The colored resin spherical fine particles of this invention have excellent physical properties originally possessed by amino resins, such as heat resistance,
Excellent solvent resistance, chemical resistance, and durability.

【0053】■  この発明の着色樹脂球状微粒子は、
熱可塑性樹脂、熱硬化性樹脂等のプラスチック、天然ゴ
ム、合成ゴム、印刷インキや塗料のビヒクルとの親和性
が極めて優れている。■  この発明の着色樹脂球状微
粒子は、着色力に優れ、真球状で粒度分布が狭いことか
ら成形用樹脂との混合使用において加工時の流動性がよ
くなり、作業性が向上する。また、色や粒子径の異なる
該着色樹脂球状微粒子同士を任意に混合することにより
、従来の顔料と異なった風合の種々の着色ができる。
■ The colored resin spherical fine particles of this invention are:
It has excellent compatibility with plastics such as thermoplastic resins and thermosetting resins, natural rubber, synthetic rubber, and vehicles for printing inks and paints. (2) The colored resin spherical fine particles of the present invention have excellent coloring power, are perfectly spherical, and have a narrow particle size distribution, so when mixed with a molding resin, they have good fluidity during processing and improve workability. Furthermore, by arbitrarily mixing the colored resin spherical fine particles having different colors and particle sizes, various colors with textures different from those of conventional pigments can be produced.

【0054】■  この発明の着色樹脂球状微粒子の製
造方法は、アミノ樹脂の本来有している優れた諸物性、
たとえば耐熱性、耐溶剤性、耐薬品性を損なうことなく
、真球状で粒度分布が狭く、無機顔料が均一に分散した
着色性の優れた着色樹脂球状微粒子を製造することがで
きる。■  この発明の着色樹脂球状微粒子は着色樹脂
球状微粒子の粒径を0.1〜50μm範囲内で任意に工
業的に有利な方法でコントロールして製造できる。
■ The method for producing colored resin spherical fine particles of the present invention utilizes the excellent physical properties originally possessed by amino resins,
For example, it is possible to produce colored resin spherical fine particles that are perfectly spherical, have a narrow particle size distribution, and have excellent colorability in which inorganic pigments are uniformly dispersed, without impairing heat resistance, solvent resistance, and chemical resistance. (2) The colored resin spherical fine particles of the present invention can be produced by controlling the particle size of the colored resin spherical fine particles within the range of 0.1 to 50 μm using any industrially advantageous method.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  アミノ樹脂硬化物と無機顔料が一体化
され、アミノ樹脂硬化物と無機顔料の合計量に対する無
機顔料の割合が1〜30重量%である着色樹脂球状微粒
子。
1. Colored resin spherical fine particles in which a cured amino resin product and an inorganic pigment are integrated, and the ratio of the inorganic pigment to the total amount of the cured amino resin product and inorganic pigment is 1 to 30% by weight.
【請求項2】  アミノ樹脂硬化物が、ベンゾグアナミ
ン、シクロヘキサンカルボグアナミンおよびシクロヘキ
センカルボグアナミンからなる群から選ばれた少なくと
も1種のグアナミンが40〜100重量%を占めるアミ
ノ化合物とホルムアルデヒドの反応生成物であり、無機
顔料がカーボンブラックであってその官能基との反応性
および/または親和性を有する官能基を有する化合物で
処理されている、請求項1記載の着色樹脂球状微粒子。
2. The cured amino resin product is a reaction product of an amino compound and formaldehyde in which at least one guanamine selected from the group consisting of benzoguanamine, cyclohexanecarboguanamine, and cyclohexenecarboguanamine accounts for 40 to 100% by weight. 2. The colored resin spherical fine particles according to claim 1, wherein the inorganic pigment is carbon black and is treated with a compound having a functional group having reactivity and/or affinity with the functional group.
【請求項3】  1.0〜1.1の範囲の粒径比(長径
/短径)を有する請求項1または2記載の着色樹脂球状
微粒子。
3. The colored resin spherical fine particles according to claim 1 or 2, having a particle diameter ratio (major axis/minor axis) in the range of 1.0 to 1.1.
【請求項4】  アミノ樹脂と無機顔料を混合し、乳化
させて、乳化状態で重縮合を行い、アミノ樹脂硬化物と
無機顔料の合計量に対する顔料の割合が1〜30重量%
となるようにアミノ樹脂硬化物と無機顔料を一体化させ
る着色樹脂球状微粒子の製造方法。
4. An amino resin and an inorganic pigment are mixed, emulsified, and polycondensed in the emulsified state, so that the ratio of the pigment to the total amount of the cured amino resin product and the inorganic pigment is 1 to 30% by weight.
A method for producing colored resin spherical fine particles by integrating a cured amino resin and an inorganic pigment so that the following is achieved.
【請求項5】  アミノ樹脂が、ベンゾグアナミン、シ
クロヘキサンカルボグアナミンおよびシクロヘキセンカ
ルボグアナミンからなる群から選ばれた少なくとも1種
のグアナミンが40〜100重量%を占めるアミノ化合
物とホルムアルデヒドの初期反応物であり、無機顔料が
カーボンブラックであってその官能基との反応性および
/または親和性を有する官能基を有する化合物で処理さ
れている、請求項4記載の着色樹脂球状微粒子の製造方
法。
5. The amino resin is an initial reaction product of an amino compound and formaldehyde in which at least one guanamine selected from the group consisting of benzoguanamine, cyclohexanecarboguanamine, and cyclohexenecarboguanamine accounts for 40 to 100% by weight; 5. The method for producing colored resin spherical fine particles according to claim 4, wherein the pigment is carbon black and is treated with a compound having a functional group having reactivity and/or affinity with the functional group.
【請求項6】  乳化剤をアミノ樹脂に対して1〜30
重量%の範囲で用いる請求項4または5記載の着色樹脂
球状微粒子の製造方法。
Claim 6: The emulsifier is 1 to 30% of the amino resin.
The method for producing colored resin spherical fine particles according to claim 4 or 5, wherein the colored resin spherical fine particles are used in a range of % by weight.
JP3030207A 1990-04-02 1991-02-25 Fine spherical particle of colored resin and its production Pending JPH04211450A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW080107229A TW203069B (en) 1990-04-02 1991-09-12
EP19910308430 EP0501063A3 (en) 1991-02-25 1991-09-16 Method for producing spherical fine particles of colored resin
KR1019910016360A KR950005306B1 (en) 1990-04-02 1991-09-19 Method for producing spherical fine particles of colored resin
US08/082,525 US5288790A (en) 1991-02-25 1993-06-25 Method for producing spherical fine particles of colored resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8481790 1990-04-02
JP2-84817 1990-04-02

Publications (1)

Publication Number Publication Date
JPH04211450A true JPH04211450A (en) 1992-08-03

Family

ID=13841297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3030207A Pending JPH04211450A (en) 1990-04-02 1991-02-25 Fine spherical particle of colored resin and its production

Country Status (2)

Country Link
JP (1) JPH04211450A (en)
KR (1) KR950005306B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610818B2 (en) 2000-12-28 2003-08-26 Nippon Shokubai, Co., Ltd. Process for producing amino resin particles
US7026050B2 (en) 2001-09-28 2006-04-11 Nippon Shokubai Co., Ltd. Amino resin crosslinked particles and producing process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251493A (en) * 1975-10-24 1977-04-25 Nippon Shokubai Kagaku Kogyo Co Ltd A process for preparing a dust-size colored resin with excellent dispe rsibility and resistance to migration of color
JPH02115271A (en) * 1988-10-25 1990-04-27 Sumitomo Naugatuck Co Ltd Resin molded

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251493A (en) * 1975-10-24 1977-04-25 Nippon Shokubai Kagaku Kogyo Co Ltd A process for preparing a dust-size colored resin with excellent dispe rsibility and resistance to migration of color
JPH02115271A (en) * 1988-10-25 1990-04-27 Sumitomo Naugatuck Co Ltd Resin molded

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610818B2 (en) 2000-12-28 2003-08-26 Nippon Shokubai, Co., Ltd. Process for producing amino resin particles
US7026050B2 (en) 2001-09-28 2006-04-11 Nippon Shokubai Co., Ltd. Amino resin crosslinked particles and producing process thereof
US7563845B2 (en) 2001-09-28 2009-07-21 Nippon Shokubai Co., Ltd. Amino resin crosslinked particles and producing process thereof

Also Published As

Publication number Publication date
KR920016561A (en) 1992-09-25
KR950005306B1 (en) 1995-05-23

Similar Documents

Publication Publication Date Title
US4994520A (en) Carbon black-graft polymer, method for production thereof, and use thereof
US7115303B2 (en) Process for producing spherical composite cured melamine resin particles
EP0797122B1 (en) Manufacturing method for toner used in electrophotography
JP2561411B2 (en) Toner for electrostatic image development
US5352521A (en) Resin particles, method for production thereof and their uses
US5494964A (en) Polyesters based on hydroxyl-containing prepolymers of olefinically unsaturated monomers and their use as binders for electrophotographic toners
US3836495A (en) Aqueous emulsion paints and pigment bases therefor
US5344673A (en) Resin particles method for production and their uses
JP2515376B2 (en) Organic pigment coated with metal oxide fixed with ethyl cellulose
US5288790A (en) Method for producing spherical fine particles of colored resin
JP2002363291A (en) Biodegradable polyester resin fine particle and biodegradable polyester resin composite fine particle
JPH04211450A (en) Fine spherical particle of colored resin and its production
JP2997092B2 (en) Colored spherical fine particles, production method thereof and use thereof
JP4455752B2 (en) Manufacturing method of colored resin spherical fine particles
JPS584743B2 (en) paint composition
JP2002506900A (en) Process for producing spherical polyester particles with narrow particle size distribution and adjustable average particle size based on non-aqueous dispersion method
KR20030068617A (en) Wax-encapsulated polyester toner composition and method of producing the same
US6610818B2 (en) Process for producing amino resin particles
KR20120072845A (en) Method for preparing toner
KR100429790B1 (en) Toner composition and manufacturing method of toner using the same
JPH0598507A (en) Black rayon fiber
TW203069B (en)
JP2002327066A (en) Production method of biodegradable spherical composite- powder
JPH04220465A (en) Production of surface-treated organic pigment
JPH02211237A (en) Dispersant and dispersion containing the same