JPH04210235A - Adsorbent and cleaning method for gas containing ketone type organic solvent - Google Patents

Adsorbent and cleaning method for gas containing ketone type organic solvent

Info

Publication number
JPH04210235A
JPH04210235A JP2410097A JP41009790A JPH04210235A JP H04210235 A JPH04210235 A JP H04210235A JP 2410097 A JP2410097 A JP 2410097A JP 41009790 A JP41009790 A JP 41009790A JP H04210235 A JPH04210235 A JP H04210235A
Authority
JP
Japan
Prior art keywords
adsorbent
zeolite
organic solvent
ketone
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2410097A
Other languages
Japanese (ja)
Other versions
JP3096989B2 (en
Inventor
Masashi Harada
原田 雅志
Takahiko Inoue
孝彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP02410097A priority Critical patent/JP3096989B2/en
Priority to EP19910116924 priority patent/EP0490037B2/en
Priority to DE1991600534 priority patent/DE69100534T3/en
Priority to CA 2054254 priority patent/CA2054254C/en
Publication of JPH04210235A publication Critical patent/JPH04210235A/en
Priority to US07/987,538 priority patent/US5256385A/en
Application granted granted Critical
Publication of JP3096989B2 publication Critical patent/JP3096989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To obtain a useful adsorbent for cleaning gas containing keton type organic solvent by using hydrophobic zeolite hydrothermally treated. CONSTITUTION:A natural or synthetic zeolite is dealuminized by treating with an inorganic acid to produce a hydrophobic zeolite having >=50 ratio of SiO2/Al2 O3. A binder, etc., is added to this zeolite and molded. The product is calcined hydrothermally at 0-1200 deg.C for >=30min in the air containing >=2vol.% moisture. The adsorbent thus obtained can adsorb ketone type organic solvents without causing decomposition or polymerization thereto and with a high durable capacity of adsorptivity thereof. Therefore ketone type organic solvent can be recovered stable and in high purity.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は、ケトン系有機溶剤を含
むガスの浄化に有用な吸着剤およびその使用法に関する
ものである。 [o o O2] 【従来の技術】従来、溶剤を含むガスの浄化には吸着剤
として活性炭が広範に使用されてきた。しかし、ガス中
にケトン系有機溶剤が含まれる場合には、活性炭の触媒
作用によりしばしば微量の分解生成物の生成が確認され
る。これらの分解生成物のうち、脱着され易いものは回
収溶剤の純度低下、脱着されにくいものは活性炭を汚染
して吸着障害の原因となる。また、分解生成物は酸であ
る場合が多く、これが装置材料の腐食などの悪影響をお
よぼす。 [0003]ケトン類は、吸着剤表面における酸化作用
によってエノール型中間体を経てカルボン酸を生成する
。この反応は発熱を伴うため、急激に進行し、かつ発生
した反応熱が蓄積し、十分な酸素の供給がある場合には
反応は連鎖的に進み、ついには活性炭層自体が発火する
こともある。新鮮な活性炭の着火温度は、400〜50
0℃程度であるが、高沸物が多鳳に蓄積したものでは2
00℃以下になることもある。 [0004]この様にケトン系有機溶剤を含むガスの浄
化に活性炭を使用する場合には、様々な問題がある。こ
のため、触媒活性の低い活性炭を使用したり、吸着層の
上流部に過湿装置を設置し、吸着熱、反応熱などによる
層の温度上昇を防止するなどの工夫がなされてきた。し
かし、吸着剤として活性炭を使用する以上、ケトン系有
機溶剤に対する多少の触媒作用は避けられない。過湿装
置を取り付けた場合には、触媒作用の抑制は可能となる
が、相対湿度が高くなると活性炭の有機溶剤に対する吸
着量が低下する。このため、吸着装置の運転管理には細
心の注意が必要であった。 [0005]また、近年活性炭にかわる新しい吸着剤と
して疎水性を高めたゼオライトも有機化合物の吸着に使
用され始めている(特公表60−501495号公報お
よび特開昭64−85113号公報)。 [0006]
[Industrial Field of Application] The present invention relates to an adsorbent useful for purifying gases containing ketone organic solvents and a method for using the same. [o o O2] [Prior Art] Activated carbon has heretofore been widely used as an adsorbent for purifying gases containing solvents. However, when the gas contains a ketone organic solvent, the production of a small amount of decomposition products is often observed due to the catalytic action of activated carbon. Among these decomposition products, those that are easily desorbed reduce the purity of the recovered solvent, and those that are difficult to desorb contaminate the activated carbon and cause adsorption problems. Furthermore, the decomposition products are often acids, which have adverse effects such as corrosion on equipment materials. [0003] Ketones generate carboxylic acids through enol-type intermediates due to oxidation on the surface of the adsorbent. This reaction is exothermic, so it progresses rapidly, and the generated reaction heat accumulates. If there is a sufficient supply of oxygen, the reaction proceeds in a chain reaction, and the activated carbon layer itself may ignite. . The ignition temperature of fresh activated carbon is 400-50
The temperature is about 0℃, but if high boiling substances have accumulated in Taho, it will be 2℃.
Temperatures may drop below 00°C. [0004] When activated carbon is used to purify gas containing ketone organic solvents, there are various problems. For this reason, efforts have been made to use activated carbon with low catalytic activity and to install a humidifying device upstream of the adsorption layer to prevent the temperature of the layer from rising due to heat of adsorption, heat of reaction, etc. However, as long as activated carbon is used as an adsorbent, some catalytic action on the ketone organic solvent is unavoidable. If a humidifying device is installed, it is possible to suppress the catalytic action, but as the relative humidity increases, the amount of organic solvent adsorbed by activated carbon decreases. For this reason, careful attention was required to manage the operation of the adsorption device. [0005] Also, in recent years, zeolite with increased hydrophobicity has begun to be used as a new adsorbent to replace activated carbon for adsorbing organic compounds (Japanese Patent Publication No. 60-501495 and Japanese Patent Application Laid-Open No. 64-85113). [0006]

【発明が解決しようとする課題】しかし、本発明者らが
この疎水性ゼオライトによる、ケトン系有機溶剤の吸着
を試みたところ、活性炭と同様触媒活性を示すことを見
出だした。すなわち、活性炭や疎水性ゼオライトなどに
よるケトン系有機溶剤を含む排ガスの浄化においてケト
ン系有機溶剤の吸着操作は可能であるが、吸着剤の加熱
再生等の過程においてケトン系有機溶剤が吸着剤上でそ
の触媒作用により分解または重合反応を起こす。その結
果、濃縮したまたは回収した有機溶剤中のケトン系有機
溶剤の純度は低く、再利用することができなかった。ま
た、吸脱着操作を繰り返すうちに吸着剤自体の吸着性能
も低下し、安定した排ガス浄化が出来ないだけでなく、
発火や装置腐食など安全や保守上の問題もあった。 [0007]発明者らは、特に吸着剤のケトン系有機溶
剤に対する触媒活性に注目し、特別な操作を行うことな
く排ガスから高純度のケトン系有機を回収でき、さらに
は発火や吸着性能低下の恐れがない、ケトン系有機溶剤
に対して触媒性を示さない吸着剤を提供すべく鋭意検討
を重ねた。 [0008]
[Problems to be Solved by the Invention] However, when the present inventors attempted to adsorb ketone organic solvents using this hydrophobic zeolite, they found that it exhibited catalytic activity similar to that of activated carbon. In other words, it is possible to adsorb ketone-based organic solvents in the purification of exhaust gas containing ketone-based organic solvents using activated carbon or hydrophobic zeolite. Its catalytic action causes decomposition or polymerization reactions. As a result, the purity of the ketone organic solvent in the concentrated or recovered organic solvent was low and could not be reused. In addition, as adsorption and desorption operations are repeated, the adsorption performance of the adsorbent itself deteriorates, and not only is stable exhaust gas purification not possible,
There were also safety and maintenance problems such as ignition and equipment corrosion. [0007] The inventors paid particular attention to the catalytic activity of the adsorbent against ketone organic solvents, and found that it is possible to recover high-purity ketone organic solvents from exhaust gas without performing special operations, and to prevent ignition and deterioration of adsorption performance. We have conducted extensive research to provide a fear-free adsorbent that does not exhibit catalytic properties against ketone organic solvents. [0008]

【課題を解決するための手段】本発明は、ケトン系有機
溶剤を含む排ガスの浄化に好適な、水熱焼成を行った疎
水性ゼオライトからなる吸着剤およびその使用法を提供
するものである。 [00091以下、本発明の詳細について説明する。 [−00101ゼオライト結晶の基本構造はSiO4お
よびその置換体のAlO4のそれぞれの四面体であり、
それらが互いに頂点の酸素原子を共有し、3次元方向に
発達した結晶構造を形成している。その結果、ゼオライ
ト結晶は他の鉱物にみられないような非常に大きな空洞
や孔路を有している。これらの細孔の入口径はゼオライ
トによって異なるが、通常3〜9オングストロームであ
り種々の分子を細孔内部に捕捉することができる。また
、結晶内部にはAlO4の負電荷を補うために陽イオン
が存在している。この陽イオンによって形成された静電
場の影響により極性分子や分極性分子を選択的に吸着す
る。汎用の吸着剤として一般的に使用されているA型ゼ
オライト、X型ゼオライト、Y型ゼオライト等のSiO
2/ A 1203モル比は2〜5と低く、これらのゼ
オライトは有機化合物よりも水を選択的に吸着する。し
たがって、有機溶剤を含む排ガスの浄化用吸着剤として
は適当ではない。 [0011]ゼオライトはSiO2/Al:+03モル
比20以上で親水性失い、次第に疎水性を示すようにな
る。このように疎水性を示すゼオライトは、有機溶剤を
含む排ガスの浄化に対して、活性炭と同様に疎水性吸着
剤として有用である。しかし、疎水性ゼオライトは同時
に触媒作用も備えている。従って、ケトン系有機溶剤等
のように反応性の高い有機化合物と接触させた場合、加
熱再生の過程で吸着されたケトン系有機溶剤はゼオライ
トの触媒作用により分解または重き反応をおこす。さら
に、長期間吸着剤として使用しているうちに残留してい
るケトン系有機溶剤は低重合物あるいは分解物となり、
発火、吸着能低下、装置腐食等の原因となる。この様な
触媒反応は再生を加熱によって行う場合の脱着操作では
特に激しくおこり、低温で行うPSA操作でもわずかで
はあるが進行する。さらに、ケトン系有機溶剤の分解反
応が発熱反応であるために、熱再生を伴わないPSA法
の場合でも反応熱が吸着剤層に蓄積し、吸着剤温度が急
激に上昇する場合がある。 [0012]この触媒反応の活性点は疎水性ゼオライト
結晶中の酸点または塩基点と考えられる。したがって、
SiO2/ A 1203モル比が無限大のゼオライト
は触媒作用がないと考えられる。しかしながら、実際に
入手または調整の可能なゼオライトのS i 02 /
A 1203モル比は、500程度が限界である。これ
は、ゼオライトの原料として使用可能な珪素源中に微量
ではあるが珪素以外の金属酸化物が含まれていることに
よる。例えば、直接合成法の場合には、珪素源中の微量
のアルミニウム等の金属原子が結晶化の過程で選択的に
ゼオライト結晶骨格に取り込まれる。また、鉱酸等によ
る酸抽出法の場合でもゼオライト中の微量の金属原子を
完全に除去することは実際上不可能である。 [0013]この様な理由から、疎水性を示すゼオライ
トは、反応性の高いケトン系有機溶剤を含む排ガスに対
してその触媒作用により、従来吸着剤としての使用が困
難であった。 [0014]Lかしながら、ゼオライトの結晶骨格はS
iO4やAlO4等の無機酸化物で形成されており、不
燃性である。このため、有機溶剤等の可燃性物質を含む
排ガスの浄化に対して吸着剤自体が着火する事がなく、
安全上極めて魅力的な吸着剤である。 [0015]本発明者らは、各種ゼオライトを直接合成
法または合成ゼオライトに修飾処理を施す方法によって
調製し、ケトン系有機溶剤に対して触媒活性のないゼオ
ライト系吸着剤を得るべく鋭意検討を重ねた。その結果
、水熱焼成を行った疎水性ゼオライトはケトン系有機溶
剤に対して、触媒活性を示さず、発火等の危険性のない
優れた吸着剤であることを見いだした。 [0016]疎水性ゼオライ1へのS jo2/A12
03モル比が50未満の場合は、水熱焼成処理を行って
もケトン系有機溶剤に対する活性点を完全に消滅させる
ことが困難であり、よりよく活性点を消滅させるうえで
、疎水性ゼオライトとしてはS i Oz / A 1
203モル比50以上のものが好適である。水熱焼成処
理の条件は、疎水性ゼオライトの構造やS l 02 
/A 1203モル比によって異なるが、水熱焼成処理
の条件を工夫することによってケトン系有機溶剤に対し
て触媒活性を示さない吸着剤を得ることが可能である。 [0017]疎水性ゼオライトの調製方法としては、天
然ゼオライト或は合成ゼオライトを出発原料として鉱酸
などを用いた脱アルミニウム処理等によって調製する方
法或はシリカ源、アルミナ源、アルカリ源及び有機鉱化
剤を混合し結晶化する直接合成法がある。 [0018]脱アルミニウム処理等によって調製された
疎水性ゼオライトとしては、脱アルミニウムモルデナイ
ト((N、Y、Chen、J、Phy、Chem、、8
0、  (1)、60−64 (1976))、超疎水
性Y型ゼオライト(特開昭54−122700号公報、
5tudies  in  5urface  5ci
enceand  Catalysis、Volume
  5,203−2LO(1980))、疎水性り型ゼ
オライト(特開昭63−50312号公報)などが知ら
れている。 [0019]直接合成法によって調製された疎水性ゼオ
ライトとしては、ZSM−5(特公昭46−10064
号公報)、ZSM−11(特公昭53−23280号公
報)、ZSM−12(特公昭52−16079号公報)
、ZSM−22(特開昭51−111912号公報)、
ZSM−23(特開昭51−149900号公報)、Z
SM−48(特開昭56−22622号公報)、シリカ
ライト(特開昭54−72795号公報)等が知られて
いる。 [00201これらいずれをも本発明の疎水性ゼオライ
トとして好適に使用することができる。 [00211また、ゼオライトは分子ふるい効果を示す
ため、吸着可能な分子の種類はぜオライド種類によって
決まる。ケトン系有機溶剤を排ガス中から回収する場合
は、ゼオライトの細孔入口径が吸着される分子径よりも
大きければよい。通常は、細孔入口が酸素8.10また
は12員環のゼオライトであればよく、チャバサイト、
オフレタイト、モルデナイト、フォージャサイト、し、
Ω、ZSM−5、ZSM−11型などの結晶構造のもの
が適している。 [0022]疎水性ゼオライトに対する水熱焼成処理の
水蒸気濃度は2vo1%以上がよく、5vo1%以上の
水蒸気濃度が実用的な実施条件である。水蒸気濃度が高
い場合は焼成温度が比較的穏やかな条件下でも本発明の
吸着剤を得ることが可能である。しかし、500℃未満
の温度での水熱焼成では、吸着剤のケトン系有機溶剤に
対する触媒活性は完全に消滅させることは困難である。 また、1200℃をこえると、疎水性ゼオライトの結晶
構造自体が崩壊しがちである。すなわち、水熱焼成を実
施するのに好適な温度範囲は、r500〜1200℃で
あり、望ましくは600〜1000℃である。水熱焼成
処理の時間は水蒸気濃度及び焼成温度によって異なるが
、上記温度範囲において30分以上行う必要がある。 [0023]吸着剤は通常、円柱状1球状またはハニカ
ム状の形態で使用される。ゼオライト粉末をこれらの形
状のものとするには、疎水性ゼオライト結晶自体に結合
性がないので、担体とゼオライト結晶またはゼオライト
結晶相互の結合性を高めるためシリカゾル、シリカゲル
、粘土鉱物等の無機系バインダー成分を添加し、成形や
ハニカム化等の2次加工を行う。バインダー成分として
は不活性なものが望ましく、アルミナゾルやアルミナゲ
ルのようにケトン系有機溶剤に対して反応活性を示すも
のは不適当である。また、成形やハニカム化の後、これ
ら2次加工品の形状を維持させるために焼成処理が必要
である。このとき、水熱条件下で焼成操作をおこなえば
、疎水性ゼオライ1〜粉末をあらかじめ水熱焼成してお
く必要はない。すなわち、本発明の吸着剤を製造する合
理的な実施方法として、まず疎水性ゼオライト粉末の2
次加工を行い、引続き水熱焼成を行う方法が可能である
。もちろん、水熱焼成を行った疎水性ゼオライト粉末を
2次加工し、穏やかな条件下で焼成しても本発明の吸着
剤を得ることができる。 [0024]ところで、バインダーを使用しないで製造
されたゼオライト成形体が特開昭62−70225号や
特開昭62−138320号などの公報に示されている
。この様な、バインダー成分を含まないゼオライト成形
体を脱アルミニウム処理し、疎水性ゼオライトとしたも
のを水熱焼成したものは、吸着量が大きく本発明の吸着
剤としてさらに好適である。 [0025]本発明の吸着剤は、メチルエチルケトン、
メチルイソブチルケトン、シクロヘキサノンなどのケト
ン系有機溶剤を含む排ガスの浄化用吸着剤として特に有
用であり、固定層吸着装置、流動層吸着装置、移動層吸
着装置、ハニカムローター濃縮装置などいずれの装置に
おいても好適に使用できる。また、吸脱着操作の方法と
してPSA法、PTSA法、TSA法などがあるがいず
れの方式にも適用することができる。 [0026]
[Means for Solving the Problems] The present invention provides an adsorbent made of hydrophobic zeolite subjected to hydrothermal calcining, which is suitable for purifying exhaust gas containing a ketone organic solvent, and a method for using the same. [00091 The details of the present invention will be explained below. [-00101 The basic structure of zeolite crystal is a tetrahedron of SiO4 and its substituted product AlO4,
They share oxygen atoms at the apex with each other, forming a three-dimensionally developed crystal structure. As a result, zeolite crystals have extremely large cavities and pores not found in other minerals. Although the entrance diameter of these pores varies depending on the zeolite, it is usually 3 to 9 angstroms, and various molecules can be trapped inside the pores. Furthermore, cations exist inside the crystal to compensate for the negative charge of AlO4. Polar molecules and polarizable molecules are selectively adsorbed under the influence of the electrostatic field formed by these cations. SiO such as A-type zeolite, X-type zeolite, and Y-type zeolite, which are commonly used as general-purpose adsorbents.
The 2/A1203 molar ratio is as low as 2-5, and these zeolites selectively adsorb water over organic compounds. Therefore, it is not suitable as an adsorbent for purifying exhaust gas containing organic solvents. [0011] Zeolite loses its hydrophilicity at a SiO2/Al:+03 molar ratio of 20 or more and gradually becomes hydrophobic. Zeolites exhibiting such hydrophobic properties are useful as hydrophobic adsorbents, similar to activated carbon, for purifying exhaust gases containing organic solvents. However, hydrophobic zeolites also have catalytic activity. Therefore, when brought into contact with a highly reactive organic compound such as a ketone organic solvent, the ketone organic solvent adsorbed during the heating regeneration process decomposes or undergoes a heavy reaction due to the catalytic action of the zeolite. Furthermore, when used as an adsorbent for a long period of time, residual ketone organic solvents become low polymers or decomposed products.
It may cause ignition, decrease in adsorption capacity, equipment corrosion, etc. Such a catalytic reaction occurs particularly vigorously in a desorption operation when regeneration is performed by heating, and also proceeds, albeit slightly, in a PSA operation performed at low temperatures. Furthermore, since the decomposition reaction of the ketone organic solvent is an exothermic reaction, even in the case of the PSA method that does not involve thermal regeneration, the reaction heat may accumulate in the adsorbent layer and the adsorbent temperature may rise rapidly. [0012] The active sites for this catalytic reaction are considered to be acid sites or basic sites in the hydrophobic zeolite crystal. therefore,
A zeolite with an infinite SiO2/A 1203 molar ratio is considered to have no catalytic activity. However, S i 02 / of zeolite that can actually be obtained or adjusted
The limit of the A1203 molar ratio is about 500. This is because a silicon source that can be used as a raw material for zeolite contains a trace amount of metal oxides other than silicon. For example, in the case of a direct synthesis method, trace amounts of metal atoms such as aluminum in the silicon source are selectively incorporated into the zeolite crystal skeleton during the crystallization process. Further, even in the case of acid extraction using mineral acids, etc., it is practically impossible to completely remove trace amounts of metal atoms in zeolite. [0013] For these reasons, it has been difficult to use hydrophobic zeolite as an adsorbent due to its catalytic action on exhaust gas containing highly reactive ketone organic solvents. [0014] Although L, the crystal skeleton of zeolite is S
It is made of inorganic oxides such as iO4 and AlO4, and is nonflammable. For this reason, the adsorbent itself does not ignite when purifying exhaust gas containing flammable substances such as organic solvents.
It is an extremely attractive adsorbent from a safety standpoint. [0015] The present inventors prepared various zeolites by a direct synthesis method or a method of modifying synthetic zeolites, and conducted extensive studies in order to obtain a zeolite-based adsorbent that has no catalytic activity against ketone-based organic solvents. Ta. As a result, it was found that hydrophobic zeolite subjected to hydrothermal calcining shows no catalytic activity against ketone organic solvents and is an excellent adsorbent with no risk of ignition. [0016] S jo2/A12 to hydrophobic zeolite 1
When the 03 molar ratio is less than 50, it is difficult to completely eliminate the active sites for ketone organic solvents even if hydrothermal calcination is performed, and in order to better eliminate the active sites, it is necessary to use hydrophobic zeolite as a hydrophobic zeolite. is S i Oz / A 1
203 molar ratio of 50 or more is preferred. The conditions for the hydrothermal calcination treatment are based on the structure of the hydrophobic zeolite and the S l 02
/A1203 Although it depends on the molar ratio, it is possible to obtain an adsorbent that does not exhibit catalytic activity toward ketone organic solvents by devising the conditions of the hydrothermal calcination treatment. [0017] Hydrophobic zeolite can be prepared by using natural zeolite or synthetic zeolite as a starting material and by dealumination treatment using mineral acids, etc., or by using a silica source, an alumina source, an alkali source, and organic mineralization. There is a direct synthesis method in which the agents are mixed and crystallized. [0018] Hydrophobic zeolites prepared by dealumination treatment etc. include dealumination mordenite ((N, Y, Chen, J, Phy, Chem, 8
0, (1), 60-64 (1976)), superhydrophobic Y-type zeolite (JP-A-54-122700,
5tudies in 5urface 5ci
ence and Catalysis, Volume
5,203-2LO (1980)), hydrophobic zeolite (Japanese Unexamined Patent Publication No. 63-50312), and the like. [0019] As a hydrophobic zeolite prepared by a direct synthesis method, ZSM-5 (Japanese Patent Publication No. 46-10064
ZSM-11 (Japanese Patent Publication No. 53-23280), ZSM-12 (Japanese Patent Publication No. 52-16079)
, ZSM-22 (Japanese Unexamined Patent Publication No. 111912/1983),
ZSM-23 (Japanese Unexamined Patent Publication No. 51-149900), Z
SM-48 (Japanese Unexamined Patent Publication No. 56-22622), Silicalite (Japanese Unexamined Patent Publication No. 54-72795), etc. are known. [00201 Any of these can be suitably used as the hydrophobic zeolite of the present invention. [00211 Furthermore, since zeolite exhibits a molecular sieving effect, the types of molecules that can be adsorbed are determined by the type of zeolide. When recovering a ketone organic solvent from exhaust gas, it is sufficient that the pore entrance diameter of the zeolite is larger than the molecular diameter to be adsorbed. Usually, zeolite with 8,10 or 12-membered oxygen rings at the pore entrance is sufficient, such as chabasite,
offretite, mordenite, faujasite,
Crystal structures such as Ω, ZSM-5, and ZSM-11 types are suitable. [0022] The water vapor concentration in the hydrothermal calcination treatment for hydrophobic zeolite is preferably 2 vol% or more, and a water vapor concentration of 5 vol% or more is a practical implementation condition. When the water vapor concentration is high, it is possible to obtain the adsorbent of the present invention even under conditions where the calcination temperature is relatively mild. However, in hydrothermal calcination at a temperature of less than 500° C., it is difficult to completely eliminate the catalytic activity of the adsorbent toward ketone organic solvents. Furthermore, when the temperature exceeds 1200°C, the crystal structure of the hydrophobic zeolite itself tends to collapse. That is, the temperature range suitable for carrying out hydrothermal firing is r500 to 1200°C, preferably 600 to 1000°C. The time for the hydrothermal calcination treatment varies depending on the water vapor concentration and the calcination temperature, but it is necessary to perform the hydrothermal calcination treatment for 30 minutes or more in the above temperature range. [0023] The adsorbent is typically used in a cylindrical, spherical or honeycomb form. In order to make zeolite powder into these shapes, since hydrophobic zeolite crystals themselves have no bonding properties, an inorganic binder such as silica sol, silica gel, clay mineral, etc. is used to increase the bonding properties between the carrier and zeolite crystals or between the zeolite crystals. Components are added and secondary processing such as molding and honeycomb formation is performed. As the binder component, it is desirable to use an inert material, and it is unsuitable to use a material that shows reactivity with ketone organic solvents, such as alumina sol or alumina gel. Furthermore, after forming or forming a honeycomb, a firing process is required to maintain the shape of these secondary processed products. At this time, if the calcination operation is performed under hydrothermal conditions, it is not necessary to hydrothermally calcinate the hydrophobic zeolite 1 to powder in advance. That is, as a rational method for producing the adsorbent of the present invention, firstly, two-dimensional hydrophobic zeolite powder is prepared.
It is possible to perform the next processing and then perform hydrothermal firing. Of course, the adsorbent of the present invention can also be obtained by secondary processing hydrophobic zeolite powder subjected to hydrothermal calcination and calcination under mild conditions. [0024] By the way, zeolite molded bodies produced without using a binder are disclosed in publications such as JP-A-62-70225 and JP-A-62-138320. Such a zeolite molded body containing no binder component is dealuminated to form a hydrophobic zeolite, which is then hydrothermally calcined, which has a large adsorption amount and is more suitable as the adsorbent of the present invention. [0025] The adsorbent of the present invention comprises methyl ethyl ketone,
It is particularly useful as an adsorbent for purifying exhaust gas containing ketone organic solvents such as methyl isobutyl ketone and cyclohexanone, and can be used in any equipment such as fixed bed adsorption equipment, fluidized bed adsorption equipment, moving bed adsorption equipment, and honeycomb rotor concentrators. It can be used suitably. Moreover, there are PSA method, PTSA method, TSA method, etc. as a method of adsorption/desorption operation, and any method can be applied. [0026]

【発明の効果】この発明は、以上述べたように、水熱焼
成を行った疎水性ゼオライト粉rトン系有機溶剤を含む
排ガス浄化用吸着剤として提供するものである。これに
より、従来困難であったケトン系有機溶剤排ガスの濃縮
や溶剤回収などの吸着操作が、吸着装置に特別な工夫を
施すことなく可能となった。また、本発明の吸着剤が触
媒性をまったく示さないため、従来問題となっていた吸
着装置の腐食や吸着剤層の発火等の危険性がなくなった
。 [0027]
As described above, the present invention provides an adsorbent for purifying exhaust gas containing hydrophobic zeolite powder subjected to hydrothermal calcination and an organic solvent. As a result, adsorption operations such as concentration of ketone organic solvent exhaust gas and solvent recovery, which were difficult in the past, have become possible without special modifications to the adsorption device. Furthermore, since the adsorbent of the present invention exhibits no catalytic properties, the dangers of corrosion of the adsorption device and ignition of the adsorbent layer, which were problems in the past, are eliminated. [0027]

【実施例】以下に、本発明の詳細な説明する。 実施例1.比較例1 (実施例1) S i02 /A1203モル比14、格子定数24.
33オングストロームのY型ゼオライトを50℃の1.
5Nの塩酸水溶液により脱アルミニウム処理し、5iC
h/Al2O3モル比500の疎水性Y型ゼオライトを
得た。この疎水性ゼオライト100重量部に対してバイ
ンダーとして25重量部の粘土を加え、直径3mmの円
柱状成形体を得た。この成形体を水蒸気濃度20vo1
%の空気流通下、800℃で2時間焼成し、吸着剤をえ
た。 (0028]  (比較例1) 一方、塩酸水溶液による脱アルミニウム処理を行ってい
ないS iOz /AI203モル比14のY型ゼオラ
イト100重量部に対してバインダーとして25重量部
の粘土を加え、直径3mmの円柱状成形体を得た。この
成形体を水蒸気濃度20vo1%の空気流通下、800
℃で2時間焼成し、吸着剤をえた。 [0029]メチルエチルケトンに対するこれら吸着剤
の吸脱着試験を以下の方法によって行った。 [00301<吸脱着試験方法〉 吸脱着試験用カラムはガラス製の内径6cm、長さ45
cmのものを使用した。このカラムに吸着剤を層高35
cmとなるように充填し、吸脱着試験を行った。吸着試
験は、25℃でおこなった。メチルエチルケトン濃度3
000 p pmの空気(水分濃度1010000pp
を流速0.2m/秒で吸着剤層に流し、出口部のメチル
エチルケトン濃度が150ppmとなった時間を破過時
間(分)とした。さらに、出口部のメチルエチルケトン
濃度が3000 p pmになるまで吸着試験を行い、
吸着試験終了後のカラム重量(Wa)を測定した。 [00311脱離試験は、メチルエチルケトンを吸着し
た吸着剤層に0.075m/秒で乾燥空気を流しながら
カラムをリボンヒーターで150℃まで加熱し、メチル
エチルケトンの出口濃度が10ppm以下となるまで行
い、カラムを冷却し、脱離試験終了後のカラム重量(W
d)を測定した。また、脱離ガス中のメチルエチルケト
ン濃度を図積分し、メチルエチルケトン回収量(W r
 )をもとめた。 [0032]メチル工チルケトン回収率(%)は、次式
により求めた。結果を表1に示す。 [0033]メチル工チルケトン回収率(%)=WrX
100/ (Wa −Wd) 吸着層の入口および出口のメチルエチルケトン濃度は、
ガスクロマトグラフィー(検出計: F I D)で測
定した。 実施例2.比較例2 (実施例2) 合成モルデナイト型ゼオライトを脱アルミニウム処理し
、S i 02 /A 1203モル比200の疎水性
モルデナイト型ゼオライトを得た。この疎水性モルデナ
イト型ゼオライト100重量部に対してバインダーとし
て25重量部のシリカゾルを加え、直径3mmの円柱状
成形体を得た。この成形体を水蒸気濃度20vo1%の
空気流通下、700℃で10時間焼成し、吸着剤をえた
。 (00341(比較例2) 焼成を乾燥空気中で行った以外は実施例2と同様に行い
、吸着剤をえた。 [0035]これらの吸着剤についても、実施例1と同
様の方法て吸脱着試験を行い、メチルエチルケトン回収
率を求めた。 [0036] 表1
EXAMPLES The present invention will be explained in detail below. Example 1. Comparative Example 1 (Example 1) S i02 /A1203 molar ratio 14, lattice constant 24.
33 angstrom Y-type zeolite was heated to 50°C in 1.
Dealuminated with 5N hydrochloric acid aqueous solution and 5iC
A hydrophobic Y-type zeolite with an h/Al2O3 molar ratio of 500 was obtained. 25 parts by weight of clay as a binder was added to 100 parts by weight of this hydrophobic zeolite to obtain a cylindrical molded body with a diameter of 3 mm. This molded body is heated to a water vapor concentration of 20 vol.
% of air circulation at 800° C. for 2 hours to obtain an adsorbent. (0028) (Comparative Example 1) On the other hand, 25 parts by weight of clay was added as a binder to 100 parts by weight of Y-type zeolite with a SiOz /AI203 molar ratio of 14 that had not been subjected to dealumination treatment with an aqueous hydrochloric acid solution, and a 3 mm diameter A cylindrical molded body was obtained.This molded body was heated at 800 °C under air circulation with a water vapor concentration of 20 vol.
The adsorbent was obtained by calcining at ℃ for 2 hours. [0029] An adsorption/desorption test of these adsorbents for methyl ethyl ketone was conducted by the following method. [00301 <Adsorption/desorption test method> The adsorption/desorption test column was made of glass with an inner diameter of 6 cm and a length of 45 cm.
cm was used. Add adsorbent to this column at a bed height of 35
cm, and an adsorption/desorption test was conducted. The adsorption test was conducted at 25°C. Methyl ethyl ketone concentration 3
000 ppm air (moisture concentration 1010000 ppm)
was flowed through the adsorbent layer at a flow rate of 0.2 m/sec, and the time when the methyl ethyl ketone concentration at the outlet reached 150 ppm was defined as the breakthrough time (minutes). Furthermore, an adsorption test was conducted until the concentration of methyl ethyl ketone at the outlet reached 3000 ppm.
The column weight (Wa) after completion of the adsorption test was measured. [00311 The desorption test was performed by heating the column to 150°C with a ribbon heater while flowing dry air at 0.075 m/sec through the adsorbent layer that had adsorbed methyl ethyl ketone until the outlet concentration of methyl ethyl ketone became 10 ppm or less. The weight of the column after the desorption test (W
d) was measured. In addition, the methyl ethyl ketone concentration in the desorbed gas is integrated graphically, and the amount of methyl ethyl ketone recovered (W r
) was sought. [0032] The recovery rate (%) of methyl methyl ketone was determined by the following formula. The results are shown in Table 1. [0033] Methyl engineered methyl ketone recovery rate (%) = WrX
100/ (Wa - Wd) The methyl ethyl ketone concentration at the inlet and outlet of the adsorption layer is
It was measured by gas chromatography (detector: FID). Example 2. Comparative Example 2 (Example 2) A synthetic mordenite-type zeolite was dealuminated to obtain a hydrophobic mordenite-type zeolite with a Si 02 /A 1203 molar ratio of 200. 25 parts by weight of silica sol as a binder was added to 100 parts by weight of this hydrophobic mordenite type zeolite to obtain a cylindrical molded body with a diameter of 3 mm. This molded body was calcined at 700° C. for 10 hours under air circulation with a water vapor concentration of 20vol% to obtain an adsorbent. (00341 (Comparative Example 2) Adsorbents were obtained in the same manner as in Example 2 except that the calcination was performed in dry air. [0035] These adsorbents were also adsorbed and desorbed in the same manner as in Example 1. A test was conducted to determine the methyl ethyl ketone recovery rate. [0036] Table 1

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】水熱焼成処理が施された疎水性ゼオライト
からなる、吸着剤。
1. An adsorbent comprising hydrophobic zeolite subjected to hydrothermal calcination treatment.
【請求項2】疎水性ゼオライトSiO_2/Al_2O
_3モル比が50以上である、請求項1記載の吸着剤。
Claim 2: Hydrophobic zeolite SiO_2/Al_2O
The adsorbent according to claim 1, wherein the _3 molar ratio is 50 or more.
【請求項3】水熱焼成処理が、水蒸気濃度2vol%以
上、焼成温度500〜1200℃および焼成時間30分
以上の条件で行われたものである、請求項1または2記
載の吸着剤。
3. The adsorbent according to claim 1, wherein the hydrothermal calcination treatment is performed at a water vapor concentration of 2 vol % or more, a calcination temperature of 500 to 1200° C., and a calcination time of 30 minutes or more.
【請求項4】ケトン系有機溶剤を含むガスを、請求項1
、2または3のいずれかの項記載の吸着剤と接触させる
ことを特徴とする、ケトン系有機溶剤含有ガスの浄化方
Claim 4: A gas containing a ketone organic solvent as claimed in claim 1.
, 2 or 3. A method for purifying a gas containing a ketone organic solvent, the method comprising bringing the gas into contact with the adsorbent according to any one of paragraphs 2 and 3.
JP02410097A 1990-12-13 1990-12-13 Adsorbent and gas purification method containing ketone organic solvent Expired - Fee Related JP3096989B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP02410097A JP3096989B2 (en) 1990-12-13 1990-12-13 Adsorbent and gas purification method containing ketone organic solvent
EP19910116924 EP0490037B2 (en) 1990-12-13 1991-10-04 Method of cleaning waste gas containing ketonic organic solvents
DE1991600534 DE69100534T3 (en) 1990-12-13 1991-10-04 Purification method of exhaust gases containing organic ketone solvents
CA 2054254 CA2054254C (en) 1990-12-13 1991-10-25 Adsorbent and cleaning method of waste gas containing ketonic organic solvents
US07/987,538 US5256385A (en) 1990-12-13 1992-12-07 Adsorbent and cleaning method of waste gas containing ketonic organic solvents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02410097A JP3096989B2 (en) 1990-12-13 1990-12-13 Adsorbent and gas purification method containing ketone organic solvent

Publications (2)

Publication Number Publication Date
JPH04210235A true JPH04210235A (en) 1992-07-31
JP3096989B2 JP3096989B2 (en) 2000-10-10

Family

ID=18519323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02410097A Expired - Fee Related JP3096989B2 (en) 1990-12-13 1990-12-13 Adsorbent and gas purification method containing ketone organic solvent

Country Status (1)

Country Link
JP (1) JP3096989B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990490A (en) * 2014-05-16 2014-08-20 上海纳米技术及应用国家工程研究中心有限公司 Integral type ozone catalyst applicable to printing and dyeing wastewater and preparation method of catalyst
JP2017114755A (en) * 2015-12-25 2017-06-29 ユニオン昭和株式会社 Zeolite and manufacturing method therefor
KR20200062590A (en) * 2018-11-27 2020-06-04 주식회사 에코프로 Chemical filter
JP2021080132A (en) * 2019-11-19 2021-05-27 東ソー株式会社 Hydrophobic zeolite and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990490A (en) * 2014-05-16 2014-08-20 上海纳米技术及应用国家工程研究中心有限公司 Integral type ozone catalyst applicable to printing and dyeing wastewater and preparation method of catalyst
JP2017114755A (en) * 2015-12-25 2017-06-29 ユニオン昭和株式会社 Zeolite and manufacturing method therefor
KR20200062590A (en) * 2018-11-27 2020-06-04 주식회사 에코프로 Chemical filter
JP2021080132A (en) * 2019-11-19 2021-05-27 東ソー株式会社 Hydrophobic zeolite and method for producing the same

Also Published As

Publication number Publication date
JP3096989B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
US10486976B2 (en) Synthesis of zeolite with the CHA crystal structure, synthesis process and use thereof for catalytic applications
JP7094992B2 (en) Molecular Sheave SCM-15, its synthesis method and use
JP3429011B2 (en) Method for dealumination of large pore synthetic zeolite, catalyst and organophilic selective adsorbent containing dealuminated zeolite obtained by the method, and silica-based zeolite β
KR20180023890A (en) Direct synthesis of CU-CHA by combination of CU complex and tetraethylammonium and its application to catalyst
JP2514996B2 (en) Method for producing highly hydrophobic dealuminated zeolite Y
JP2011241097A (en) Method for producing hydrophobic zeolite and hydrophobic zeolite obtained by the method
US6517611B1 (en) Olefin separations employing CTS molecular sieves
JP2014526429A (en) Method of synthesizing zeolitic material using recycled mother liquor without using organic template
JP7244502B2 (en) Molecular sieve SSZ-110, its synthesis and use
JP3839565B2 (en) Synthesis method of high silica silicate molecular sieve
KR870000267B1 (en) Gas separation kinetics in commercial pallets
MXPA06004512A (en) Light hydrocarbon separation using 8-member ring zeolites.
JPH04210235A (en) Adsorbent and cleaning method for gas containing ketone type organic solvent
EP0490037B1 (en) Adsorbent and cleaning method of waste gas containing ketonic organic solvents
WO1994027709A1 (en) Nitrous oxide decomposition catalyst
JP3221024B2 (en) Method for producing ε-caprolactam and method for activating solid catalyst for producing ε-caprolactam
JP2002191973A (en) Method for preparing adsorbent particle
JP3149443B2 (en) Adsorbent and gas purification method containing ketone organic solvent
WO2021015129A1 (en) Hydrophobic zeolite, method for producing same and use of same
JP3111519B2 (en) Adsorbent for purifying exhaust gas containing high-boiling components and purification method
JPH0780248A (en) Purification of formaldehyde-containing gas
US5256385A (en) Adsorbent and cleaning method of waste gas containing ketonic organic solvents
JP3489904B2 (en) Method for producing methylamines
JP3211254B2 (en) Nitrogen oxide adsorbent
Barton et al. As in previous issues, a selection of the more interesting patents which have been published recently is given below under the headings: synthesis, catalysis, separa-tion processes, detergents, and miscellaneous applica-tions.

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees