JP2017114755A - Zeolite and manufacturing method therefor - Google Patents

Zeolite and manufacturing method therefor Download PDF

Info

Publication number
JP2017114755A
JP2017114755A JP2015255124A JP2015255124A JP2017114755A JP 2017114755 A JP2017114755 A JP 2017114755A JP 2015255124 A JP2015255124 A JP 2015255124A JP 2015255124 A JP2015255124 A JP 2015255124A JP 2017114755 A JP2017114755 A JP 2017114755A
Authority
JP
Japan
Prior art keywords
zeolite
mfi
type zeolite
sio
hydrophobicity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015255124A
Other languages
Japanese (ja)
Inventor
省悟 藤原
Shogo Fujihara
省悟 藤原
実 松倉
Minoru Matsukura
実 松倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Showa KK
Original Assignee
Union Showa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Showa KK filed Critical Union Showa KK
Priority to JP2015255124A priority Critical patent/JP2017114755A/en
Publication of JP2017114755A publication Critical patent/JP2017114755A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide zeolite having enhanced hydrophobic property of MFI type zeolite by a simple treatment and a manufacturing method therefor.SOLUTION: There is provided [1] zeolite obtained by burning MFI type zeolite with SiO/AlOmolar ratio of 100 to 1500 at 500 to 900°C and [2] a manufacturing method of zeolite having a process of burning the MFI type zeolite with SiO/AlOmolar ratio of 100 to 1500 at 500 to 900°C.SELECTED DRAWING: None

Description

本発明は、疎水性を高めたゼオライト、及びその製造方法に関する。   The present invention relates to a zeolite with improved hydrophobicity and a method for producing the same.

ゼオライトは大表面積を有するアルミノシリケ−ト多孔体であり、水分子や、アルデヒド類、ケトン類をはじめとする低分子量の有機物吸着性能に優れている。ゼオライトの吸着特性はSiO2/Al23モル比に依存し、低SiO2/Al23モル比を有するゼオライトは、強い親水性を示すため、エアコンや冷蔵庫等の除湿剤として工業的にも多用されている。一方で高SiO2/Al23モル比を有するゼオライトは、比較的疎水性を示すため、有機溶剤やアルデヒド等の有害有機物除去剤として、ハニカムロータやフィルタ等に用いられている。しかしながら、水の共存下で有機物質を効率的に吸着させるためには、ゼオライトの吸水能力をできる限り低くしなければならない。 Zeolite is an aluminosilicate porous material having a large surface area, and is excellent in the adsorption performance of low molecular weight organic substances such as water molecules, aldehydes and ketones. Adsorption properties of the zeolite depends on the SiO 2 / Al 2 O 3 molar ratio, the zeolite having a low SiO 2 / Al 2 O 3 molar ratio, in order to show a strongly hydrophilic, industrial as dehumidifying agent such as air conditioners and refrigerators Is also frequently used. On the other hand, zeolite having a high SiO 2 / Al 2 O 3 molar ratio is relatively hydrophobic, and is therefore used in honeycomb rotors, filters, and the like as a removal agent for harmful organic substances such as organic solvents and aldehydes. However, in order to efficiently adsorb organic substances in the presence of water, the water absorption capacity of zeolite must be as low as possible.

シリカやゼオライト等の多孔性物質に対する更なる疎水化処理としては、例えば疎水性シリカをトリメチルエトキシシラン[Me3−Si−OEt](例えば、特許文献1)や、ヘキサメチルジシラザン[Me3Si−NH−SiMe3](例えば、特許文献2)などの有機シリル化剤で処理する方法、あるいはゼオライトにポリビニルアルコールを塗付したのち、不活性ガス流通下で加熱して炭化処理を施す方法(例えば、特許文献3)等の技術が知られている。 As a further hydrophobizing treatment for porous materials such as silica and zeolite, for example, hydrophobic silica is trimethylethoxysilane [Me 3 -Si-OEt] (for example, Patent Document 1) or hexamethyldisilazane [Me 3 Si. A method of treating with an organic silylating agent such as —NH—SiMe 3 ] (for example, Patent Document 2), or a method of applying carbonization treatment by applying polyvinyl alcohol to zeolite and then heating under an inert gas flow ( For example, a technique such as Patent Document 3) is known.

特開2009−286936号公報JP 2009-286936 A 特開平11−335115号公報JP-A-11-335115 特開2007−331982号公報JP 2007-331982 A

ゼオライトに対する疎水化処理方法として、前述したように種々の技術が開示又は報告されているが、これらの技術においては、試薬が高価であったり、有機溶媒を必要とするために製造工程や残液処理工程が煩雑であったり、表面が有機物で被覆されているために耐熱性に劣るなど、工業的な実用化には依然として課題が多い。
本発明は、簡便な処理によりMFI型のゼオライトの疎水性を高めたゼオライト及びその製造方法を提供することを課題とする。
As described above, various techniques have been disclosed or reported as hydrophobizing treatment methods for zeolite. However, in these techniques, a reagent is expensive or an organic solvent is required, so that a manufacturing process or residual liquid is used. There are still many problems in industrial practical use such as complicated processing steps and inferior heat resistance because the surface is coated with organic matter.
An object of the present invention is to provide a zeolite in which the hydrophobicity of MFI-type zeolite is increased by a simple treatment and a method for producing the same.

本発明者は、熱的な変性を受けにくいMFI型のゼオライトにおいて、当該ゼオライトを高温で熱処理することで、ゼオライトの疎水性が高められることを見出した。
すなわち本発明は、下記の〔1〕及び〔2〕に関する。
〔1〕SiO2/Al23モル比100〜1500のMFI型ゼオライトを500〜900℃の温度で焼成して得られる、ゼオライト。
〔2〕SiO2/Al23モル比100〜1500のMFI型ゼオライトを500〜900℃の温度で焼成する工程を有するゼオライトの製造方法。
The present inventor has found that the hydrophobicity of the zeolite can be increased by heat-treating the zeolite at a high temperature in the MFI type zeolite which is not easily subjected to thermal modification.
That is, the present invention relates to the following [1] and [2].
[1] A zeolite obtained by calcining MFI type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 100 to 1500 at a temperature of 500 to 900 ° C.
[2] A method for producing a zeolite comprising a step of calcining an MFI type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 100 to 1500 at a temperature of 500 to 900 ° C.

本発明によれば、簡便な処理により疎水性を高めたゼオライト及びその製造方法を提供することができる。   According to the present invention, it is possible to provide a zeolite having improved hydrophobicity by a simple treatment and a method for producing the same.

本発明のゼオライトは、SiO2/Al23モル比100〜1500のMFI型ゼオライトを500〜900℃の温度で焼成して得られる。このように、簡便な処理により疎水性を高めたゼオライトが得られる。 The zeolite of the present invention can be obtained by calcining MFI type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 100 to 1500 at a temperature of 500 to 900 ° C. Thus, a zeolite with improved hydrophobicity can be obtained by a simple treatment.

本明細書において、上記の工程を経て得られた疎水性が高められたゼオライトを「疎水化MFI型ゼオライト」と称する。疎水化MFI型ゼオライトは、同一のSiO2/Al23モル比のMFI型ゼオライトにおいて、未処理のMFI型ゼオライトと比較して、高いnC4/H2O吸着選択比を示すMFI型ゼオライトを意味する。
未処理のMFI型ゼオライトnC4/H2O吸着選択比(S)に対する疎水化MFI型ゼオライトのnC4/H2O吸着選択比(S)の向上率{〔(S−S)/Sc〕×100}(%)は、特に限定されないが、好ましくは1%以上、より好ましくは3%以上、更に好ましくは5%以上、更に好ましくは8%以上、更に好ましくは12%以上、更に好ましくは15%以上である。当該向上率{〔(S−S)/Sc〕×100}(%)は、その上限は特に限定されないが、例えば、30%以下である。
nC4/H2O吸着選択比は、実施例に記載の測定方法による。
In the present specification, the zeolite having increased hydrophobicity obtained through the above-described steps is referred to as “hydrophobized MFI type zeolite”. Hydrophobized MFI-type zeolite is an MFI-type zeolite having a high nC4 / H 2 O adsorption selectivity ratio compared with untreated MFI-type zeolite in the same SiO 2 / Al 2 O 3 molar ratio MFI-type zeolite. means.
Improvement rate of nC4 / H 2 O adsorption selection ratio (S e ) of hydrophobized MFI type zeolite relative to untreated MFI type zeolite nC4 / H 2 O adsorption selection ratio (S c ) {[(S e -S c ) / S c ] × 100} (%) is not particularly limited, but is preferably 1% or more, more preferably 3% or more, still more preferably 5% or more, still more preferably 8% or more, still more preferably 12% or more, More preferably, it is 15% or more. The upper limit of the improvement rate {[(S e −S c ) / S c ] × 100} (%) is not particularly limited, but is, for example, 30% or less.
The nC4 / H 2 O adsorption selection ratio is based on the measurement method described in the examples.

MFI型ゼオライトは、国際ゼオライト学会(International Zeolite Association)により付与されている構造コードMFIの幾何構造を有するゼオライトである。
MFI型ゼオライトのSiO2/Al23モル比は、100〜1500であり、より好ましくは200〜1000、更に好ましくは250〜600、更に好ましくは300〜400である。
MFI型ゼオライトの市販品としては、東ソー株式会社製、商品名「HSZ-800」が挙げられる。
The MFI-type zeolite is a zeolite having the geometric structure of the structure code MFI given by the International Zeolite Association.
SiO 2 / Al 2 O 3 molar ratio of MFI-type zeolite is from 100 to 1500, more preferably 200 to 1000, more preferably 250 to 600, more preferably from 300 to 400.
As a commercial product of MFI type zeolite, the product name “HSZ-800” manufactured by Tosoh Corporation may be mentioned.

以下、本発明の疎水化MFI型ゼオライトの製造方法について説明する。
本発明のゼオライトの製造方法は、SiO2/Al23モル比100〜1500のMFI型ゼオライトを500〜900℃の温度で焼成する工程を有する
焼成の温度は、疎水化MFI型ゼオライトの疎水性を高める観点から、500〜900℃であり、好ましくは550〜800℃、より好ましくは600〜700℃、更に好ましくは630〜680℃である。
焼成時間は、疎水化MFI型ゼオライトの疎水性を高める観点から、好ましくは30分〜60分、より好ましくは35分〜50分、更に好ましくは35〜45分である。
Hereinafter, a method for producing the hydrophobized MFI zeolite of the present invention will be described.
The method for producing a zeolite of the present invention includes a step of calcining MFI type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 100 to 1500 at a temperature of 500 to 900 ° C. The calcining temperature is the hydrophobicity of the hydrophobized MFI type zeolite. From the viewpoint of enhancing the properties, the temperature is 500 to 900 ° C, preferably 550 to 800 ° C, more preferably 600 to 700 ° C, and still more preferably 630 to 680 ° C.
The firing time is preferably 30 minutes to 60 minutes, more preferably 35 minutes to 50 minutes, and even more preferably 35 to 45 minutes, from the viewpoint of increasing the hydrophobicity of the hydrophobized MFI zeolite.

焼成の雰囲気は、窒素、アルゴンなどの不活性ガス雰囲気下であっても、空気中であってもよい。
焼成の雰囲気は、疎水化MFI型ゼオライトの疎水性を高める観点から、加湿雰囲気であることが好ましい。
加湿雰囲気としては、例えば、その湿度レベルは1〜30g/m3である。
加湿雰囲気は、ガスを水中でバブリングしてゼオライトを焼成するオーブンの中に導入すること行うことができる。
The firing atmosphere may be in an inert gas atmosphere such as nitrogen or argon, or in air.
The firing atmosphere is preferably a humidified atmosphere from the viewpoint of increasing the hydrophobicity of the hydrophobized MFI-type zeolite.
As the humidified atmosphere, for example, the humidity level is 1 to 30 g / m 3 .
The humidified atmosphere can be introduced by bubbling a gas in water and introducing it into an oven for firing the zeolite.

本発明の製造方法により得られる疎水化MFI型ゼオライトは、疎水性が高められるため、水分の存在下での有機物の吸着に好ましく用いられ、より具体的には、好ましくは空気中の有機物の吸着に好ましく用いられる。
本発明の疎水化MFI型ゼオライトは、より具体的には、脱臭剤等に用いられる。
Hydrophobized MFI-type zeolite obtained by the production method of the present invention is preferably used for the adsorption of organic substances in the presence of moisture, and more specifically, preferably adsorbs organic substances in air, because the hydrophobicity is enhanced. Is preferably used.
More specifically, the hydrophobized MFI type zeolite of the present invention is used as a deodorizing agent or the like.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
本実施例において、評価は以下の方法で行った。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
In this example, evaluation was performed by the following method.

〔吸着容量及びnC4/H2O吸着選択比〕
マクベインベーカーバランス法により以下に示す条件により、水蒸気(H2O)及びノルマルブタン(nC4)の吸着試験をそれぞれ別々に行い、nC4/H2O吸着選択比を[nC4の吸着量(質量%)/H2Oの吸着量(質量%)]から求めた。
・前処理条件:703K、2時間真空排気
・測定条件:25℃
・HO圧力:3.1kPa
・nC4圧力:33.3kPa
[Adsorption capacity and nC4 / H 2 O adsorption selection ratio]
The adsorption test of water vapor (H 2 O) and normal butane (nC4) was conducted separately under the conditions shown below by the McBain Baker balance method, and the nC4 / H 2 O adsorption selection ratio was set to [nC4 adsorption amount (mass%). / H 2 O adsorption amount (% by mass)].
・ Pretreatment conditions: 703K, evacuation for 2 hours ・ Measurement conditions: 25 ° C.
・ H 2 O pressure: 3.1 kPa
NC4 pressure: 33.3 kPa

実施例1
MFI型ゼオライト(SiO2/Al23モル比=330)を水中でバブリングした空気を導入したオーブン中で、650℃で40分間焼成した。得られたゼオライトの各種物質の吸着容量を評価して、表1に示した。
Example 1
MFI-type zeolite (SiO 2 / Al 2 O 3 molar ratio = 330) was calcined at 650 ° C. for 40 minutes in an oven introduced with air bubbled in water. The adsorption capacity of various substances of the obtained zeolite was evaluated and shown in Table 1.

実施例2
オーブンに対して、水中でバブリングをせずに、空気を導入した以外は実施例1と同様の条件で、MFI型ゼオライトを焼成した。得られたゼオライトの各種物質の吸着容量を評価して表1に示した。
Example 2
The MFI-type zeolite was calcined under the same conditions as in Example 1 except that air was introduced into the oven without bubbling in water. The adsorption capacities of various substances in the obtained zeolite were evaluated and shown in Table 1.

実施例3
MFI型ゼオライト(SiO2/Al23モル比=1000)を水中でバブリングした空気を導入したオーブン中で、650℃で40分間焼成した。得られたゼオライトの各種物質の吸着容量を評価して表1に示した。
Example 3
MFI-type zeolite (SiO 2 / Al 2 O 3 molar ratio = 1000) was calcined at 650 ° C. for 40 minutes in an oven introduced with air bubbled in water. The adsorption capacities of various substances in the obtained zeolite were evaluated and shown in Table 1.

実施例4
オーブンに対して、水中でバブリングをせずに、空気を導入した以外は実施例3と同様の条件で、MFI型ゼオライトを焼成した。得られたゼオライトの各種物質の吸着容量を評価して表1に示した。
Example 4
The MFI zeolite was calcined under the same conditions as in Example 3 except that air was introduced into the oven without bubbling in water. The adsorption capacities of various substances in the obtained zeolite were evaluated and shown in Table 1.

比較例1、2
表1に示すSiO2/Al23モル比を有するMFI型ゼオライトを、加熱処理を行わず、各種物質の吸着容量を評価して、表1に示した。
Comparative Examples 1 and 2
Table 1 shows the MFI-type zeolite having the SiO 2 / Al 2 O 3 molar ratio shown in Table 1 without evaluating the adsorption capacity of various substances.

Figure 2017114755
Figure 2017114755

以上、実施例2と比較例1との対比から、MFI型のゼオライトを焼成することで疎水性が高められることが理解できる。これらのnC4/H2O選択比の結果から、当該焼成によって、SiO2/Al2O3比を3倍程度に高めた場合(比較例2参照)と同等の疎水性向上効果が得られると理解できる。
実施例1と比較例1との対比から、MFI型のゼオライトを、加湿雰囲気下で焼成することでより顕著に疎水性が高められることが理解できる。これらのnC4/H2O選択比の結果から、当該焼成によって、シリカアルミナ比を3倍程度に高めた場合よりも、優れた疎水性向上効果が得られると理解できる。加湿雰囲気とすることで、水分存在下での焼成となるので、むしろ親水性が高まりそうであるところ、疎水性が高まり、その疎水性向上効果が実施例2に示される非加湿の雰囲気下での焼成で得られる効果よりも、顕著であることは予想外である。
SiO2/Al2O3比を1000にまで高めた場合であっても、実施例3及び4と比較例2との対比から、ゼオライトの疎水性が高められると理解できる。
以上、実施例及び比較例の結果から、SiO2/Al23モル比100〜1500のMFI型ゼオライトを焼成することで疎水性を高めたゼオライトが得られるといえる。
As described above, it can be understood from the comparison between Example 2 and Comparative Example 1 that the hydrophobicity is increased by calcining the MFI-type zeolite. From the results of these nC4 / H 2 O selection ratios, it is possible to obtain the same hydrophobicity improvement effect as that obtained when the SiO 2 / Al 2 O 3 ratio is increased about 3 times by the firing (see Comparative Example 2). Understandable.
From the comparison between Example 1 and Comparative Example 1, it can be understood that the hydrophobicity is remarkably increased by calcining MFI-type zeolite in a humidified atmosphere. From the results of these nC4 / H 2 O selection ratios, it can be understood that the effect of improving the hydrophobicity can be obtained by the firing more than when the silica-alumina ratio is increased about 3 times. Since it becomes firing in the presence of moisture by making the humidified atmosphere, the hydrophobicity is likely to increase rather, the hydrophobicity is increased, and the hydrophobicity improving effect is obtained in the non-humidified atmosphere shown in Example 2. It is unexpected that it is more remarkable than the effect obtained by firing.
Even when the SiO 2 / Al 2 O 3 ratio is increased to 1000, it can be understood from the comparison between Examples 3 and 4 and Comparative Example 2 that the hydrophobicity of the zeolite is increased.
As mentioned above, it can be said from the results of Examples and Comparative Examples that a zeolite having improved hydrophobicity can be obtained by calcining MFI type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 100 to 1500.

本発明の製造方法により得られる疎水化MFI型ゼオライトは、疎水性が高められ、水分の存在下での有機物の吸着に好ましく用いられ、より具体的には、脱臭剤等に応用できる。   Hydrophobized MFI-type zeolite obtained by the production method of the present invention has increased hydrophobicity and is preferably used for adsorption of organic substances in the presence of moisture, and more specifically, can be applied to deodorizers and the like.

Claims (6)

SiO2/Al23モル比100〜1500のMFI型ゼオライトを500〜900℃の温度で焼成して得られる、ゼオライト。 A zeolite obtained by calcining MFI-type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 100 to 1500 at a temperature of 500 to 900 ° C. 加湿雰囲気下で焼成を行う、請求項1に記載のゼオライト。   The zeolite according to claim 1, which is calcined in a humidified atmosphere. 焼成時間が30分〜60分である、請求項1又は2に記載のゼオライト。   The zeolite according to claim 1 or 2, wherein the calcining time is from 30 minutes to 60 minutes. SiO2/Al23モル比100〜1500のMFI型ゼオライトを500〜900℃の温度で焼成する工程を有するゼオライトの製造方法。 A method for producing a zeolite comprising a step of calcining an MFI type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 100 to 1500 at a temperature of 500 to 900 ° C. 加湿雰囲気下で焼成を行う、請求項4に記載のゼオライトの製造方法。   The method for producing a zeolite according to claim 4, wherein the firing is performed in a humidified atmosphere. 焼成時間が30分〜60分である、請求項4又は5に記載のゼオライト。   The zeolite according to claim 4 or 5, wherein the calcining time is from 30 minutes to 60 minutes.
JP2015255124A 2015-12-25 2015-12-25 Zeolite and manufacturing method therefor Pending JP2017114755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015255124A JP2017114755A (en) 2015-12-25 2015-12-25 Zeolite and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015255124A JP2017114755A (en) 2015-12-25 2015-12-25 Zeolite and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2017114755A true JP2017114755A (en) 2017-06-29

Family

ID=59233399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015255124A Pending JP2017114755A (en) 2015-12-25 2015-12-25 Zeolite and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2017114755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225835A1 (en) 2017-06-09 2018-12-13 富士フイルム株式会社 Method for producing cell laminate

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210235A (en) * 1990-12-13 1992-07-31 Tosoh Corp Adsorbent and cleaning method for gas containing ketone type organic solvent
JPH0517460A (en) * 1991-07-02 1993-01-26 Tosoh Corp Production of triethylene diamine compounds and piperazine compounds
JPH06126187A (en) * 1992-10-20 1994-05-10 Tosoh Corp Removing method for nitrogen oxide
JPH06192135A (en) * 1992-12-25 1994-07-12 Asahi Chem Ind Co Ltd Method for converting light hydrocarbon
JPH09271374A (en) * 1996-04-04 1997-10-21 Kishimoto Akira Can for canned food having improved flavor preservability
JP2001115048A (en) * 1999-10-19 2001-04-24 Dsmjsr Engineering Plastics Kk Thermoplastic resin composition
JP2002538069A (en) * 1999-03-03 2002-11-12 ピーキュー ホールディング, インコーポレイテッド A method for producing a modified zeolite.
JP2009521318A (en) * 2005-12-22 2009-06-04 サウディ ベーシック インダストリーズ コーポレイション Bound phosphorus-modified zeolite catalyst, its preparation and use
WO2010016338A1 (en) * 2008-08-06 2010-02-11 旭化成ケミカルズ株式会社 Zeolite-containing catalyst, process for producing the zeolite-containing catalyst, and process for producing propylene
JP2011241097A (en) * 2010-05-14 2011-12-01 Osaka Univ Method for producing hydrophobic zeolite and hydrophobic zeolite obtained by the method
WO2012070605A1 (en) * 2010-11-25 2012-05-31 旭化成ケミカルズ株式会社 Shaped silica body, process for producing same, and method for manufacturing propylene using shaped silica body
WO2014076625A1 (en) * 2012-11-13 2014-05-22 Basf Se Production and Use of a Zeolitic Material in a Process for the Conversion of Oxygenates to Olefins
WO2014088723A1 (en) * 2012-12-07 2014-06-12 Exxonmobil Research And Engineering Company Synthesis of zsm-5 crystals with improved morphology

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210235A (en) * 1990-12-13 1992-07-31 Tosoh Corp Adsorbent and cleaning method for gas containing ketone type organic solvent
JPH0517460A (en) * 1991-07-02 1993-01-26 Tosoh Corp Production of triethylene diamine compounds and piperazine compounds
JPH06126187A (en) * 1992-10-20 1994-05-10 Tosoh Corp Removing method for nitrogen oxide
JPH06192135A (en) * 1992-12-25 1994-07-12 Asahi Chem Ind Co Ltd Method for converting light hydrocarbon
JPH09271374A (en) * 1996-04-04 1997-10-21 Kishimoto Akira Can for canned food having improved flavor preservability
JP2002538069A (en) * 1999-03-03 2002-11-12 ピーキュー ホールディング, インコーポレイテッド A method for producing a modified zeolite.
JP2001115048A (en) * 1999-10-19 2001-04-24 Dsmjsr Engineering Plastics Kk Thermoplastic resin composition
JP2009521318A (en) * 2005-12-22 2009-06-04 サウディ ベーシック インダストリーズ コーポレイション Bound phosphorus-modified zeolite catalyst, its preparation and use
WO2010016338A1 (en) * 2008-08-06 2010-02-11 旭化成ケミカルズ株式会社 Zeolite-containing catalyst, process for producing the zeolite-containing catalyst, and process for producing propylene
JP2011241097A (en) * 2010-05-14 2011-12-01 Osaka Univ Method for producing hydrophobic zeolite and hydrophobic zeolite obtained by the method
WO2012070605A1 (en) * 2010-11-25 2012-05-31 旭化成ケミカルズ株式会社 Shaped silica body, process for producing same, and method for manufacturing propylene using shaped silica body
WO2014076625A1 (en) * 2012-11-13 2014-05-22 Basf Se Production and Use of a Zeolitic Material in a Process for the Conversion of Oxygenates to Olefins
WO2014088723A1 (en) * 2012-12-07 2014-06-12 Exxonmobil Research And Engineering Company Synthesis of zsm-5 crystals with improved morphology

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225835A1 (en) 2017-06-09 2018-12-13 富士フイルム株式会社 Method for producing cell laminate

Similar Documents

Publication Publication Date Title
JP5504446B2 (en) Method for producing hydrophobic zeolite and hydrophobic zeolite obtained by the method
Min et al. Macroporous Silica with Thick Framework for Steam‐Stable and High‐Performance Poly (ethyleneimine)/Silica CO2 Adsorbent
US10226752B2 (en) Adsorbent for adsorbing virus and/or bacterium, carbon/polymer composite and adsorbent sheet
US10046264B2 (en) Non-extruded activated carbon honeycomb structures
de Yuso et al. Toluene and n-hexane adsorption and recovery behavior on activated carbons derived from almond shell wastes
US20150018196A1 (en) 5A Molecular Sieve Adsorbent and Method for Preparation of the Same
CN108816190B (en) Alumina-activated carbon composite material and preparation method thereof
KR102051033B1 (en) Composite for the removal of VOC and the preparing method thereof
Martínez de Yuso et al. Adsorption of toluene and toluene–water vapor mixture on almond shell based activated carbons
Alonso-Buenaposada et al. Desiccant capability of organic xerogels: Surface chemistry vs porous texture
KR102056435B1 (en) Activated carbon with improved butane adsorption capacity and method of producing the same
CN111250066A (en) Preparation method of molecular sieve honeycomb carrier for adsorbing volatile organic compounds
Lourenço et al. Carbonization of periodic mesoporous phenylene-and biphenylene-silicas for CO2/CH4 separation
KR101631181B1 (en) Manufacturing method of activated carbon aerogel for carbon dioxide adsorption
JP2017114755A (en) Zeolite and manufacturing method therefor
JP4887493B2 (en) Method for producing hydrophobic zeolite
KR20170028592A (en) A process for the preparation of adsorbent elements for acidic gas by using plasma polymerization and the adsorbent elements prepared therefrom
EP3310744B1 (en) Method of separating c6+hydrocarbons from natural gas by adsorption and tsa-system
JP4378612B2 (en) Fibrous activated carbon for adsorbing organic compounds and exhaust gas treatment apparatus using the same
KR20190063869A (en) Preparation of porous carbon materials by kenaf and manufacturing methode
JP2007223826A (en) Heat-resistant activated carbon and method of manufacturing the same
JP2021080132A (en) Hydrophobic zeolite and method for producing the same
JP2001017859A (en) Adsorbent comprising carbonized wood
KR102315839B1 (en) Method for producing zeolite adsorbent using sonication acid treatment and adsorbent produced thereby
KR20200092106A (en) Method of preparing resin-based activated carbon and the activated carbon thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191105