KR102051033B1 - Composite for the removal of VOC and the preparing method thereof - Google Patents

Composite for the removal of VOC and the preparing method thereof Download PDF

Info

Publication number
KR102051033B1
KR102051033B1 KR1020170173585A KR20170173585A KR102051033B1 KR 102051033 B1 KR102051033 B1 KR 102051033B1 KR 1020170173585 A KR1020170173585 A KR 1020170173585A KR 20170173585 A KR20170173585 A KR 20170173585A KR 102051033 B1 KR102051033 B1 KR 102051033B1
Authority
KR
South Korea
Prior art keywords
voc
sample
composite molded
less
molded body
Prior art date
Application number
KR1020170173585A
Other languages
Korean (ko)
Other versions
KR20190072322A (en
Inventor
유영우
서정권
허일정
정윤호
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020170173585A priority Critical patent/KR102051033B1/en
Publication of KR20190072322A publication Critical patent/KR20190072322A/en
Application granted granted Critical
Publication of KR102051033B1 publication Critical patent/KR102051033B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique

Abstract

활성탄, 폐FCC촉매, 벤토나이트 및 실리카졸(SiO2) 을 혼합하여 성형체를 만들고, 이를 수열합성하여 형성된 휘발성 유기화합물(VOC) 제거용 복합 성형체로서, 상기 실리카졸의 함량이 0 초과 15 wt% 미만인 것인 휘발성 유기화합물(VOC) 제거용 복합 성형체가 개시된다.
또한, 활성탄, 폐촉매, 벤토나이트 및 실리카졸을 포함하는 복합 성형체의 제조 방법으로서,
활성탄, 폐촉매, 벤토나이트 및 실리카졸을 혼합한 시료를 성형한 후 건조하는 단계;
성형된 시료를 비활성(inert) 분위기에서 열처리하는 단계; 및
상기 열처리한 시료를 80 내지 100℃ 의 온도에서 10 내지 14 시간동안 수열합성하는 단계;
를 포함하는 것을 특징으로 하는 휘발성 유기화합물(VOC) 제거용 복합 성형체의 제조 방법이 개시된다.
Activated carbon, spent FCC catalyst, bentonite, and silica sol (SiO 2 ) are mixed to form a molded body, and a hydro-synthesized composite molded body for removing volatile organic compounds (VOC) formed, the content of the silica sol is greater than 0 and less than 15 wt% Disclosed is a composite molded article for volatile organic compound (VOC) removal.
Moreover, as a manufacturing method of the composite molded object containing activated carbon, a waste catalyst, bentonite, and a silica sol,
Molding and drying a sample mixed with activated carbon, spent catalyst, bentonite and silica sol;
Heat-treating the shaped sample in an inert atmosphere; And
Hydrothermally synthesizing the heat-treated sample at a temperature of 80 to 100 ° C. for 10 to 14 hours;
Disclosed is a method of manufacturing a composite molded article for volatile organic compound (VOC) removal, comprising:

Description

VOC 제거용 복합 성형체 및 이의 제조방법{Composite for the removal of VOC and the preparing method thereof}Composite molded article for VOC removal and its manufacturing method {Composite for the removal of VOC and the preparing method

VOC(Volatile Organic Compound) 제거용 복합 성형체 및 이의 제조방법에 관한 발명으로서, 상세하게는, 활성탄 및 폐FCC(Fluid Catalytic Cracking; 유동 접촉 분해) 촉매 등을 활용한 VOC 제거용 복합 성형체 및 이의 제조방법에 관한 발명이다.The present invention relates to a composite molded body for removing VOC (Volatile Organic Compound) and a method for manufacturing the same, and more particularly, to a composite molded body for VOC removal using activated carbon and waste Catalytic Cracking (FCC) catalyst, etc. The invention relates to.

FCC 공정에서 나오는 폐촉매 (spent equilibrium FCC catalyst) 는 불순물이 있고 비표면적이 낮아 그 자체로는 활용도가 낮기 때문에, 현재는 시멘트 원료로 사용되거나 매립되고 있는 실정이며, FCC 공정 이후의 폐촉매를 보다 적극적으로 다양하게 활용하려는 연구가 필요하다.Spent equilibrium FCC catalysts from FCC processes are currently used or buried as cement raw materials due to their impurity and low specific surface area, and thus their low utilization. Research needs to be actively used in various ways.

한편, 활성탄은 가스에서 액상에 이르기까지 다양한 흡착 분리/제거 공정에 사용될 수 있는 장점이 있어, 이러한 공정에 널리 이용되고 있으나, 활성탄은 그 우수한 성능에도 불구하고, 낮은 발화안정성으로 인하여, 흡착시 흡착열에 의한 화재가 발생할 수 있다는 단점이 있다. 또한, 탈착 시에도 화재 위험성으로 인하여, 재생 물질로서 공기 대신 물을 사용하고 있는 상황이나, 물은 활성탄의 형상을 무너뜨릴 수 있을 뿐만 아니라, 공정 후단에서 분리 또는 응축과 같은 추가 공정이 필요하다는 문제를 안고 있다.On the other hand, activated carbon has the advantage that it can be used in various adsorptive separation / removal processes from gas to liquid phase, but it is widely used in such a process. There is a disadvantage that a fire may occur. In addition, due to the risk of fire during desorption, the situation is that water is used instead of air as a regeneration material, but water can not only destroy the shape of activated carbon, but also require further processing such as separation or condensation at the end of the process. Is holding.

이러한 상황에, 본 출원인은 폐FCC 촉매에는 Si, Al 과 같은 성분이 포함되어 있는 점을 활용하여, 유용한 물질인 제올라이트의 원료로서 사용하고자 하였으며, 폐FCC 촉매와 활성탄을 활용하여, 수열 합성이 가능하고, 흡착성능이 우수한 발화안정성이 향상된 복합 성형체를 개발하고자 하였다.In such a situation, the applicant intends to use as a raw material of the zeolite which is a useful substance by utilizing the components such as Si and Al in the waste FCC catalyst, and hydrothermal synthesis is possible by utilizing the waste FCC catalyst and activated carbon. In addition, the present invention was to develop a composite molded article having excellent adsorption performance and improved fire stability.

이에 따라, 본 발명의 일 목적은 활성탄, 폐촉매, 벤토나이트 및 실리카졸(SiO2) 을 혼합하여 성형체를 만들고, 이를 수열합성하여 형성된 휘발성 유기화합물(VOC) 제거용 복합 성형체를 제공하는 것이다.Accordingly, an object of the present invention is to provide a composite molded body for removing volatile organic compounds (VOC) formed by mixing activated carbon, spent catalyst, bentonite and silica sol (SiO 2 ) to make a molded body, and hydrothermally synthesizing it.

본 발명의 다른 목적은 활성탄, 폐촉매, 벤토나이트 및 실리카졸(SiO2) 을 혼합하여 성형체를 만들고, 이를 수열합성하여 형성된 휘발성 유기화합물(VOC) 제거용 복합 성형체로서, 폐촉매가 유동 접촉 분해(FCC) 공정에서 생성되는 것이며, 상기 실리카졸의 함량은 0 초과 15 wt% 미만인 것을 특징으로 하는 휘발성 유기화합물(VOC) 제거용 복합 성형체를 제공하는 것이다.Another object of the present invention is to form a molded body by mixing activated carbon, waste catalyst, bentonite and silica sol (SiO 2 ), and a composite molded body for removing volatile organic compounds (VOC) formed by hydrothermal synthesis, the waste catalyst is a fluid catalytic decomposition ( It is produced in the FCC) process, the content of the silica sol is to provide a composite molded body for removing volatile organic compounds (VOC), characterized in that more than 0 and less than 15 wt%.

본 발명의 또 다른 목적은, 활성탄, 폐촉매, 벤토나이트 및 실리카졸을 포함하는 복합 성형체의 제조 방법으로서,Still another object of the present invention is to provide a composite molded body comprising activated carbon, spent catalyst, bentonite and silica sol,

활성탄, 폐촉매, 벤토나이트 및 실리카졸을 혼합한 시료를 성형한 후 건조하는 단계;Molding and drying a sample mixed with activated carbon, spent catalyst, bentonite and silica sol;

성형된 시료를 비활성(inert) 분위기에서 열처리하는 단계; 및Heat-treating the shaped sample in an inert atmosphere; And

상기 열처리한 시료를 80 내지 100℃ 의 온도에서 10 내지 14 시간동안 수열합성하는 단계;Hydrothermally synthesizing the heat-treated sample at a temperature of 80 to 100 ° C. for 10 to 14 hours;

를 포함하는 것을 특징으로 하는 휘발성 유기화합물(VOC) 제거용 복합 성형체의 제조 방법을 제공하는 것이다.It provides a method for producing a composite molded body for removing volatile organic compounds (VOC) comprising a.

본 발명의 일 측면에 따른 VOC 제거용 복합 성형체는 활성탄과 폐FCC 촉매를 포함함으로써, 비표면적이 높고, 흡착성능이 우수하며, 강도가 우수하고, 발화안정성이 활성탄 대비 향상된다는 장점이 있다. 더욱이, FCC 공정에서 나오는 폐촉매를 단순히 시멘트 원료로 사용하거나 매립하는 것이 아닌, 제올라이트의 원료로서 재활용함으로써, 비용이나 자원의 효율성 측면에서도 바람직하고, 나아가 친환경적이다는 점에서 장점이 있다.The composite molded body for VOC removal according to an aspect of the present invention includes an activated carbon and a waste FCC catalyst, and thus has a high specific surface area, excellent adsorption performance, excellent strength, and improved ignition stability compared to activated carbon. Moreover, the waste catalyst from the FCC process is recycled as a raw material of zeolite rather than simply used as a cement raw material or landfill, and is advantageous in terms of cost and resource efficiency, and is also environmentally friendly.

도 1 은 공탑에서 시간에 따라 온도를 상승시키면서 각각의 시료의 온도 변화를 측정한 결과를 나타낸 것이다.Figure 1 shows the results of measuring the temperature change of each sample while increasing the temperature with time in the tower.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 측면은, 활성탄, 폐촉매, 벤토나이트 및 실리카졸(SiO2) 을 혼합하여 성형체를 만들고, 이를 수열합성하여 형성된 휘발성 유기화합물(VOC) 제거용 복합 성형체를 제공한다.An aspect of the present invention provides a composite molded body for removing volatile organic compounds (VOC) formed by mixing activated carbon, spent catalyst, bentonite, and silica sol (SiO 2 ) to make a molded body, and hydrothermally synthesizing it.

특히, 상기 복합 성형체에 포함되는 폐촉매는 유동 접촉 분해(FCC) 공정에서 생성되는 것이며, 상기 폐FCC촉매에서는 Si, Al 과 같은 성분이 포함되어 있어, 유용한 물질인 제올라이트 원료로 사용될 수 있기 때문에, 이러한 폐FCC촉매로부터 사용되는 것이 바람직하다.In particular, the waste catalyst included in the composite molded body is produced in a fluid catalytic cracking (FCC) process, and since the waste FCC catalyst contains components such as Si and Al, it can be used as a zeolite raw material, which is a useful material. It is preferable to use from such spent FCC catalysts.

나아가, 상기 휘발성 유기 화합물(VOC) 제거용 복합 성형체에 포함되는 활성탄의 함량으로서는, 복합 성형체의 전체 질량비에 대해서, 25 초과 40 wt% 일수 있으며, 구체적으로는 26 초과 35 wt% 미만, 더욱 구체적으로는 27 초과 30 미만일 수 있다. 활성탄의 함량이 25 wt% 초과 범위에서 VOC 흡착성능이 우수하고, 40 wt% 미만인 경우에는 복합성형체의 발화안정성이 측면에서 우수하다.Further, the content of activated carbon included in the composite molded body for removing volatile organic compounds (VOC) may be more than 25 to 40 wt%, specifically, more than 26 to less than 35 wt%, more specifically, based on the total mass ratio of the composite molded body. May be greater than 27 and less than 30. When the content of activated carbon is in the range of more than 25 wt%, the VOC adsorption performance is excellent, and in the case of less than 40 wt%, the ignition stability of the composite molded product is excellent.

아울러, 상기 휘발성 유기 화합물(VOC) 제거용 복합 성형체에 포함되는 폐촉매의 함량으로서는, 복합 성형체의 전체 질량비에 대해서, 40 초과 60 wt% 미만일 수 있으며, 구체적으로는 42 초과 55 wt% 미만, 더욱 구체적으로는 43 초과 50 wt% 미만일 수 있다.In addition, the content of the spent catalyst included in the composite molded product for removing volatile organic compounds (VOC) may be greater than 40 and less than 60 wt%, more specifically greater than 42 and less than 55 wt%, based on the total mass ratio of the composite molded product. Specifically, it may be greater than 43 and less than 50 wt%.

폐촉매의 함량이 40 wt% 초과하는 범위에서 복합성형체의 발화안정성이 우수하며, 60 wt% 미만인 범위에서 VOC 흡착성능 측면에서 우수하다.The ignition stability of the composite molded body is excellent in the range of more than 40 wt% of the waste catalyst, and VOC adsorption performance is excellent in the range of less than 60 wt%.

또한, 상기 휘발성 유기 화합물(VOC) 제거용 복합 성형체에 포함되는 벤토나이트의 함량으로서는, 복합 성형체의 전체 질량비에 대해서, 15 초과 25 wt% 미만일 수 있으며, 구체적으로는 16 초과 23 wt% 미만, 더욱 구체적으로는 17 초과 20 wt% 미만일 수 있다.In addition, the content of bentonite included in the composite molded body for removing volatile organic compounds (VOC) may be greater than 15 and less than 25 wt%, more specifically greater than 16 and less than 23 wt%, more specifically, relative to the total mass ratio of the composite molded body. And more than 17 and less than 20 wt%.

벤토나이트의 함량이 15 wt% 초과인 경우에는 복합성형체의 강도면에서 우수하며, 25 wt% 미만인 범위에서 VOC 흡착성능 측면에서 우수하다.If the content of bentonite is more than 15 wt%, it is excellent in strength of the composite molded body, and in terms of VOC adsorption performance in the range of less than 25 wt%.

상기 휘발성 유기 화합물(VOC) 제거용 복합 성형체에 포함되는 실리카졸(SiO2) 의 함량으로서는, 0 초과 15 wt% 미만일 수 있으며, 구체적으로는 0 초과 13 wt% 미만, 더욱 구체적으로는 0 초과 10 wt% 이하일 수 있다.The content of the silica sol (SiO 2 ) included in the composite molded body for removing the volatile organic compound (VOC) may be greater than 0 and less than 15 wt%, specifically, greater than 0 and less than 13 wt%, more specifically greater than 0 10. It may be wt% or less.

실리카졸의 함량이 0 wt% 인 경우에는, 이를 포함한 성형체의 특성 중, 비표면적, 기공특성 및 강도가 모두 낮게 나타날 수가 있으며, 그 함량이 15 wt% 미만의 범위에서, 비표면적과 기공특성이 높게 유지될 수 있다.When the content of silica sol is 0 wt%, the specific surface area, porosity, and strength may all be low among the characteristics of the molded article including the same, and the specific surface area and pore characteristics may be reduced in the range of less than 15 wt%. Can be kept high.

본 발명의 일 측면에 따른, 활성탄, 폐촉매, 벤토나이트 및 실리카졸을 포함하는 휘발성 유기화합물(VOC) 제거용 복합 성형체에서, 활성탄:폐촉매:벤토나이트의 질량비(wt%)가 3:5:2 일 수 있다.In the composite compact for removing volatile organic compounds (VOC) including activated carbon, spent catalyst, bentonite and silica sol according to one aspect of the present invention, the mass ratio (wt%) of activated carbon: waste catalyst: bentonite is 3: 5: 2 Can be.

본 발명의 다른 측면으로는, 활성탄, 폐촉매, 벤토나이트 및 실리카졸을 포함하는 복합 성형체의 제조 방법으로서,In another aspect of the present invention, a method for producing a composite molded article comprising activated carbon, spent catalyst, bentonite and silica sol,

활성탄, 폐촉매, 벤토나이트 및 실리카졸을 혼합한 시료를 성형한 후 건조하는 단계;Molding and drying a sample mixed with activated carbon, spent catalyst, bentonite and silica sol;

성형된 시료를 비활성(inert) 분위기에서 열처리하는 단계; 및Heat-treating the shaped sample in an inert atmosphere; And

상기 열처리한 시료를 80 내지 100℃ 의 온도에서 10 내지 14 시간동안 수열합성하는 단계;Hydrothermally synthesizing the heat-treated sample at a temperature of 80 to 100 ° C. for 10 to 14 hours;

를 포함하는 것을 특징으로 하는 휘발성 유기화합물(VOC) 제거용 복합 성형체의 제조 방법을 제공한다.It provides a method for producing a composite molded body for removing volatile organic compounds (VOC) comprising a.

상기 건조 단계에서의 실리카졸 함량은, 복합 성형체 전체 질량 대비 0 초과 15 wt% 미만일 수있으며, 구체적으로는 0 초과 13 wt% 미만, 더욱 구체적으로는 0 초과 10 wt% 이하일 수 있다.The silica sol content in the drying step may be greater than 0 and less than 15 wt%, more specifically greater than 0 and less than 13 wt%, more specifically greater than 0 and less than 10 wt%, based on the total mass of the composite molded body.

실리카졸의 함량이 0 wt% 인 경우에는, 상기 방법에 의해 제조된 휘발성 유기화합물(VOC) 제거용 복합 성형체가, 비표면적, 기공특성 및 강도가 모두 낮은 특성을 나타날 수가 있으며, 그 함량이 15 wt% 미만의 범위에서, 비표면적과 기공특성이 높게 유지될 수 있다.When the content of silica sol is 0 wt%, the composite molded product for removing volatile organic compounds (VOC) prepared by the above method may exhibit low specific surface area, pore characteristics, and strength, and the content is 15 In the range of less than wt%, the specific surface area and pore characteristics can be kept high.

아울러, 상기 열처리 단계에서의 열처리는 650 내지 800℃ 의 온도에서 2 내지 4 시간동안 행해질 수 있다.In addition, the heat treatment in the heat treatment step may be performed for 2 to 4 hours at a temperature of 650 to 800 ℃.

또한, 상기 열처리한 시료를 80 내지 100℃ 의 온도에서 10 내지 14 시간동안 수열합성하는 단계와 관련하여, 구체적으로는, 열처리한 시료를 3M 수산화나트륨(NaOH) 용액에 넣어, 12 시간 동안 수열할 수 있다. 수열합성의 측면에서 상기 온도에서는 12 시간 동안 수열하는 것이 가장 바람직하다.Further, in connection with hydrothermal synthesis of the heat-treated sample at a temperature of 80 to 100 ° C. for 10 to 14 hours, specifically, the heat-treated sample is placed in a 3M sodium hydroxide (NaOH) solution and subjected to hydrothermal treatment for 12 hours. Can be. In view of hydrothermal synthesis, it is most preferable to heat for 12 hours at this temperature.

이후, 수열합성이 끝난 시료에 대해서는 증류수로 충분히 수세하고, 수세가 끝난 시료는 오븐 등을 통해 약 110 ℃ 정도의 온도에서 충분히 건조시킬 수 있다. 충분한 건조를 위해 실시될 수 있는 범위 내에서는, 상기 온도의 범위는 특별히 제한되지는 않는다.Thereafter, the hydrothermally synthesized sample is sufficiently washed with distilled water, and the washed water sample can be sufficiently dried at a temperature of about 110 ° C. through an oven or the like. Within the range that can be carried out for sufficient drying, the temperature range is not particularly limited.

상기에서와 같이 충분히 건조된 시료는 이후 단계에서, 비활성(inert) 분위기에서 200 내지 550℃ 의 온도에서 3 시간 이상 열처리할 수 있으며, 구체적으로는, 350 ℃ 의 온도에서 3 시간 이상 열처리할 수 있다. The sample sufficiently dried as described above may be heat-treated at a temperature of 200 to 550 ° C. for at least 3 hours in an inert atmosphere in a subsequent step, and specifically, at least 3 hours at a temperature of 350 ° C. .

본 발명의 일 측면에 따라 상기와 같이 제조된 휘발성 유기화합물(VOC) 제거용 복합 성형체 및 이의 제조 방법은 비표면적이 높고, 흡착성능이 우수하며, 강도가 우수하고, 발화안정성이 활성탄 대비 향상된다는 효과를 나타낼 수 있으며, 나아가, FCC 공정에서 나오는 폐촉매를 단순히 시멘트 원료로 사용하거나 매립하는 것이 아닌, 제올라이트의 원료로서 재활용함으로써, 친환경적이며, 비용이나 자원의 효율성 측면에서도 바람직한 효과를 나타낼 수 있다.According to an aspect of the present invention, the composite molded body for removing volatile organic compounds (VOC) prepared as described above and a method for preparing the same have a high specific surface area, excellent adsorption performance, excellent strength, and improved fire stability compared to activated carbon. In addition, by recycling the waste catalyst from the FCC process as a raw material of zeolite, rather than simply using it as a cement raw material or landfill, it is environmentally friendly and can exhibit a desirable effect in terms of cost and resource efficiency.

이하, 본 발명을 하기 제조예 및 실험예를 들어 상세히 설명한다. 그러나, 이들은 본 발명을 예시하는 것일 뿐 발명의 권리범위가 이들 실시예 및 실험예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by the following production examples and experimental examples. However, these are merely illustrative of the present invention and the scope of the invention is not limited by these examples and experimental examples.

<< 실시예Example > >

1. One. 제조예Production Example :  : VOCVOC 제거용 복합  Removal compound 성형체의Molded 제조 Produce

(1) 펠렛의 성형(1) forming of pellets

활성탄(AC), 폐촉매(폐FCC), 벤토나이트 및 실리카졸(SiO2) 을 하기 표 1 의 비율에 따라 granulator (Lodige Co.) 를 이용하여 혼합하고, 혼합된 시료를 Pelletizer (Fuji Paudal Co.) 를 이용하여 성형한다. 이후, 성형한 시료를 오븐에서 110 ℃ 로 12시간 이상 건조시킨다.Activated carbon (AC), spent catalyst (waste FCC), bentonite and silica sol (SiO 2 ) were mixed using a granulator (Lodige Co.) according to the ratio of Table 1 below, and the mixed sample was mixed with Pelletizer (Fuji Paudal Co. Molding using). Thereafter, the molded sample is dried in an oven at 110 ° C. for 12 hours or more.

SampleSample AC(AC ( wt%wt% )) 폐FCCWaste FCC (( wt%wt% )) 벤토나이트(Bentonite ( wt%wt% )) SiOSiO 22 (( wt%wt% )) AA 30.030.0 50.050.0 20.020.0 00 BB 28.528.5 47.547.5 19.019.0 5.05.0 CC 27.927.9 46.546.5 18.618.6 7.07.0 DD 25.525.5 42.542.5 1717 1515

(2) 열처리(2) heat treatment

성형된 시료를 inert 분위기에서 650 ~ 800 ℃ 의 온도로 2 시간 열처리 한다.The molded sample is heat treated at an inert atmosphere at a temperature of 650 to 800 ° C. for 2 hours.

(3) 수열합성(3) hydrothermal synthesis

i) 열처리 시료를 3M NaOH 용액에 1 : 10 의 무게비로 Nalgene bottle 에 넣고 밀봉한 후, 상온에서 120 rpm 으로 24시간동안 aging 시킨다.i) Heat-treated samples were placed in a Nalgene bottle in a weight ratio of 1: 10 in 3M NaOH solution and sealed, and aged at 120 rpm at room temperature for 24 hours.

ii) aging 후 항온조에서 90 ℃, 80 rpm 으로 12시간(최적시간) 수열합성 한다.ii) After aging, hydrothermal synthesis for 12 hours (optimum time) at 90 ℃ and 80 rpm in a thermostat.

iii) 수열합성이 끝난 시료를 증류수로 충분히 수세한 후, 수세가 끝난 시료를 오븐에서 110 ℃ 로 충분히 건조시킨다.iii) After the hydrothermally synthesized sample is sufficiently washed with distilled water, the washed sample is sufficiently dried in an oven at 110 ° C.

iv) 건조된 시료를 inert 분위기에서 350 ℃ (최적온도) 에서 3시간 이상 열처리 한다.iv) The dried sample is heat treated at 350 ° C (optimum temperature) for at least 3 hours in an inert atmosphere.

2. 2. 실험예Experimental Example

가. 특성분석end. Characterization

(1) 기공도(1) Porosity

상기 제조된 시료를 350 ℃ 에서 3 시간 이상 전처리(진공) 시킨 후, volumetric adsorption apparatus (Tristar, Micromeritics Co.)를 사용하여 기공도를 측정한다.After the prepared sample is pretreated (vacuum) at 350 ° C. for 3 hours or more, porosity is measured using a volumetric adsorption apparatus (Tristar, Micromeritics Co.).

(2) 강도(2) strength

상기 제조된 시료 하나를 압축강도측정기(lab-made)에 올려두고, 시료가 파쇄될 때까지 힘을 가한다. 이 때의 시료의 강도를 kgf/unit 단위로 측정한다.One of the prepared samples is placed on a compressive strength tester (lab-made), and a force is applied until the sample is broken. The strength of the sample at this time is measured in kgf / unit.

상기 (1) 기공도 및 (2) 강도의 특성을 하기 표 2 에서 나타낸다.The properties of (1) porosity and (2) strength are shown in Table 2 below.

열처리 온도Heat treatment temperature
(℃)(℃)
SampleSample Surface areaSurface area
(㎡/g)(㎡ / g)
Total pore volumeTotal pore volume
(㎤/g)(Cm 3 / g)
StrengthStrength
(( kgfkgf /Of eaea ))
750750 AA 605605 0.290.29 1.421.42 BB 636636 0.310.31 4.954.95 CC 665665 0.320.32 5.815.81 DD 635635 0.300.30 6.426.42 800800 BB 642642 0.310.31 5.15.1 CC 650650 0.320.32 6.316.31

상기 표 2 에 나타낸 바와 같이, SiO2 첨가시(Sample B, C, D) 기공특성과 강도가 우수해지나, SiO2 를 15 wt% 이상 첨가하게 되는 경우(Sample D)에는 기공특성이 오히려 감소하게 됨을 알 수 있습니다.As shown in Table 2, the porosity and strength is excellent when SiO 2 is added (Sample B, C, D), but when the SiO 2 is added 15 wt% or more (Sample D), the pore characteristics are rather reduced. You can see that

나. 발화안정성 측정I. Ignition stability measurement

(탑: 외경 = 1/2 inch, 내경 = 10 mm, 높이 = 2.5 cm), (Feed: Air, 500 ml/min), (시료크기 : # 16 - 40)(Top: outer diameter = 1/2 inch, inner diameter = 10 mm, height = 2.5 cm), (Feed: Air, 500 ml / min), (sample size: # 16-40)

i) 시료를 탑에 충진한 후, air 를 흘리며 10 ℃/min 속도로 탑 온도를 900 ℃ 까지 올려주며 TC(thermocouple)을 사용하여 흡착제 내부 온도를 측정한다.i) After filling the tower with sample, increase the tower temperature up to 900 ℃ at 10 ℃ / min with air and measure the temperature of adsorbent using TC (thermocouple).

ii) 공탑(흡착제 없음) 온도보다 5 % 이상 온도가 높을 때를 발화점으로 선택한다.ii) Select the ignition point when the temperature is at least 5% higher than the tower temperature (without adsorbent).

그 결과를 하기 표 3 및 도 1 에서 나타낸다.The results are shown in Table 3 below and FIG. 1.

시료sample 발화온도 (℃)Ignition Temperature (℃) 활성탄과의 차이
(℃)
Difference with activated carbon
(℃)
파쇄활성탄Crushed activated carbon 394394 00 750 열처리750 heat treatment 523523 129129 750 수열합성750 hydrothermal synthesis 512512 118118 800 열처리800 heat treatment 545545 151151

(상기 표 중에서, '750 열처리' 는 750 ℃ 에서 열처리한 시료를 의미하며, '750 수열합성' 은 750 ℃ 에서 열처리 후 수열합성을 실시한 시료를 의미하며, '800 열처리' 는 800 ℃ 에서 열처리를 실시한 시료를 의미한다.)(In the above table, '750 heat treatment' means a sample heat-treated at 750 ℃, '750 hydrothermal synthesis' means a sample subjected to hydrothermal synthesis after the heat treatment at 750 ℃, '800 heat treatment' means a heat treatment at 800 ℃ Means the sample.)

상기 표 3 및 도 1 에서 나타낸 바와 같이, 본 발명의 복합성형체는 기존의 활성탄에 대비해서 발화안정성이 크게 상승한 것을 알 수 있다.As shown in Table 3 and Figure 1, it can be seen that the composite molded article of the present invention significantly increased the ignition stability compared to the existing activated carbon.

다. All. 파과Breakthrough

(탑: 외경 = 1/2 inch, 내경 = 10 mm, 높이 = 10 cm), (Feed: 500 ppm benzene/Air, 2 L/min), (시료크기 : # 16 - 40)(Top: outer diameter = 1/2 inch, inner diameter = 10 mm, height = 10 cm), (Feed: 500 ppm benzene / Air, 2 L / min), (sample size: # 16-40)

i) 시료를 탑에 충진한 후, 350 ℃ 에서 3 시간 이상동안 탑 상단부에서 He 을 흘리고, 탑 하단부에서 진공을 걸어 전처리 한다.i) After the sample is filled in the tower, He is flown at the top of the tower at 350 ° C for at least 3 hours and vacuumed at the bottom of the tower for pretreatment.

ii) 탑을 상온까지 식힌 후 Feed 를 흘리고, GC-FID 를 이용하여, 벤젠을 흡착하여 max 성능에 다다른 흡착제의 파과된 벤젠을 검출한다. 이 때, 벤젠 농도가 Feed 의 1% 농도(5 ppm)로 배출되는 시점을 측정하여, 파과시간을 측정한다.ii) Cool the tower to room temperature, feed the feed, and use GC-FID to adsorb benzene to detect the breakthrough benzene of the adsorbent reaching the max performance. At this time, the breakthrough time is measured by measuring the time point at which the benzene concentration is discharged at 1% concentration (5 ppm) of the feed.

라. 대조군 la. Control 시료에 대한 기공도 및Porosity of the sample and 강도 특성 분석 Strength characterization

상기 '가. 특성분석' 에서와 동일한 방법으로, 기공도 및 강도를 분석하였으며, 이에 대한 결과 및 상기 '다. 파과' 에 대한 결과는 하기 표 4 에서 나타낸다.Said 'a. In the same way as in the 'characteristic analysis', the porosity and strength were analyzed, and the results and the above'. The results for breakthrough 'are shown in Table 4 below.

대조군 시료Control sample Surface areaSurface area
(㎡/g)(㎡ / g)
Total pore volumeTotal pore volume
(㎤/g)(Cm 3 / g)
StrengthStrength
(( kgfkgf /Of eaea ))
파과Breakthrough
(시간)(time)
활성탄Activated carbon 12261226 0.520.52 -- 408408 폐FCCWaste FCC 128128 0.130.13 -- 2121 폐FCC재생(합성)Waste FCC Regeneration (Synthesis) 299299 0.160.16 1.021.02 208208 활성탄+폐FCC(합성)Activated Carbon + Waste FCC (Synthetic) 846846 0.410.41 0.130.13 242242 활성탄+폐FCC+벤토나이트
(Sample A)
Activated Carbon + Waste FCC + Bentonite
(Sample A)
605605 0.290.29 1.421.42 211211

상기 표 4 에서 나타낸 바와 같이, 활성탄은 기공특성이 우수하나 발화안정성이 떨어지며, 상대적으로 가격이 비싸다는 단점도 있다. 이에 반해, 폐FCC촉매는 기공특성이 매우 낮다.As shown in Table 4, activated carbon has excellent porosity characteristics, but poor ignition stability, and also has a disadvantage of being relatively expensive. In contrast, spent FCC catalysts have very low pore characteristics.

한편, 폐FCC촉매만 재생한 시료나 활성탄 + 폐FCC촉매를 합성한 재생 시료는 강도가 낮아 실공정에 활용이 어려운 단점이 있으며, 활성탄+폐FCC촉매+벤토나이트는 타 대조군들에 비해 기공특성, 강도, 발화안전성이 전반적으로 우수하나 특정량의 SiO2 를 첨가한 본원발명에 비해 기공 특성이 다소 낮음을 알 수 있어(표 2 참조), 본 발명의 활성탄+폐촉매+벤토나이트+실리카졸을 포함한 복합성형체가 VOC 흡착제로서 활용가능성이 높음을 알 수 있다.On the other hand, a sample regenerated from only the spent FCC catalyst or a regenerated sample synthesized from activated carbon + spent FCC catalyst has low strength and thus is difficult to be used in the actual process. Although the overall strength and fire safety is excellent, it can be seen that the pore characteristics are somewhat lower than the present invention to which a certain amount of SiO 2 is added (see Table 2), and the activated carbon + waste catalyst + bentonite + silicaazole of the present invention It can be seen that the composite molded article is highly applicable as a VOC adsorbent.

마. 열처리 온도에 따른 기공도 및 강도 특성 변화hemp. Changes in Porosity and Strength Characteristics According to Annealing Temperature

Sample B 의 조성(AC : 폐FCC : 벤토나이트 : SiO2 = 47.5 : 28.5 : 19.0 : 5.0) 에 대해서 열처리 온도를 각각 650℃, 700℃, 750℃, 800℃ 로 실시하여, 기공도 및 강도를 분석하였으며, 이후 90℃ 에서의 수열합성을 실시한 결과에 따른 표면적 및 강도를 조사하여, 그 변화를 관찰하였다.The composition of Sample B (AC: waste FCC: bentonite: SiO 2 = 47.5: 28.5: 19.0: 5.0) was subjected to a heat treatment temperature of 650 ° C, 700 ° C, 750 ° C, and 800 ° C, respectively, to analyze porosity and strength. Subsequently, the surface area and strength of the hydrothermal synthesis at 90 ° C. were investigated, and the change thereof was observed.

수열합성 전의 결과는 하기 표 5 에서 나타내며, 수열합성 이후의 결과는 하기 표 6 에서 나타낸다.The results before hydrothermal synthesis are shown in Table 5 below, and the results after hydrothermal synthesis are shown in Table 6 below.

열처리 온도Heat treatment temperature
(℃)(℃)
Surface areaSurface area
(㎡/g)(㎡ / g)
Total pore volumeTotal pore volume
(㎤/g)(Cm 3 / g)
StrengthStrength
(( kgfkgf /Of eaea ))
650650 394394 0.250.25 3.73.7 700700 389389 0.240.24 3.853.85 750750 390390 0.240.24 4.414.41 800800 379379 0.240.24 4.724.72

열처리 온도Heat treatment temperature
(℃)(℃)
Surface areaSurface area
(㎡/g)(㎡ / g)
Total pore volumeTotal pore volume
(㎤/g)(Cm 3 / g)
StrengthStrength
(( kgfkgf /Of eaea ))
650650 649649 0.320.32 44 700700 656656 0.320.32 4.514.51 750750 636636 0.310.31 4.954.95 800800 642642 0.310.31 5.15.1

상기 표 5 및 표 6 에서 나타낸 바와 같이, 수열합성 후의 비표면적이 크게 증가한 것을 알 수 있으며, 열처리 온도 증가에 따라 기공특성은 유사하나 강도는 증가함을 알 수 있다.As shown in Table 5 and Table 6, it can be seen that the specific surface area after hydrothermal synthesis is greatly increased, the porosity is similar but the strength is increased with increasing the heat treatment temperature.

Claims (12)

27 초과 30 wt% 미만의 활성탄, 43 초과 50 wt% 미만의 폐촉매, 17 초과 20 wt% 미만의 벤토나이트 및 0 초과 10 wt% 미만의 실리카졸(SiO2)을 혼합하여 성형체를 만들고, 이를 수열합성하여 형성된 휘발성 유기화합물(VOC) 제거용 복합 성형체.
More than 27 and less than 30 wt% activated carbon, more than 43 and less than 50 wt% spent catalyst, more than 17 and less than 20 wt% bentonite and more than 0 and less than 10 wt% silica sol (SiO 2 ) were mixed to form a shaped body, which was hydrothermal Composite molded body for removing volatile organic compounds (VOC) formed by synthesis.
제1항에 있어서,
상기 폐촉매는 유동 접촉 분해(FCC) 공정에서 생성되는 것인 휘발성 유기화합물(VOC) 제거용 복합 성형체.
The method of claim 1,
The waste catalyst is a composite molded body for removing volatile organic compounds (VOC) is produced in the fluid catalytic cracking (FCC) process.
삭제delete 삭제delete 삭제delete 삭제delete 활성탄, 폐촉매, 벤토나이트 및 실리카졸을 포함하는 복합 성형체의 제조 방법으로서,
27 초과 30 wt% 미만의 활성탄, 43 초과 50 wt% 미만의 폐촉매, 17 초과 20 wt% 미만의 벤토나이트 및 0 초과 10 wt% 미만의 실리카졸을 혼합한 시료를 성형한 후 건조하는 단계;
성형된 시료를 비활성(inert) 분위기에서 열처리하는 단계; 및
상기 열처리한 시료를 80 내지 100℃ 의 온도에서 10 내지 14 시간동안 수열합성하는 단계;
를 포함하는 것을 특징으로 하는 휘발성 유기화합물(VOC) 제거용 복합 성형체의 제조 방법.
As a method for producing a composite molded body comprising activated carbon, spent catalyst, bentonite and silica sol,
Molding and drying a sample mixed with greater than 27 and less than 30 wt% activated carbon, more than 43 and less than 50 wt% spent catalyst, more than 17 and less than 20 wt% bentonite and greater than 0 and less than 10 wt% silica sol;
Heat-treating the shaped sample in an inert atmosphere; And
Hydrothermally synthesizing the heat-treated sample at a temperature of 80 to 100 ° C. for 10 to 14 hours;
Method for producing a composite molded body for removing volatile organic compounds (VOC) comprising a.
삭제delete 제7항에 있어서,
상기 열처리 단계의 열처리가 650 내지 800℃ 의 온도에서 2 내지 4 시간동안 행해지는 것인 휘발성 유기화합물(VOC) 제거용 복합 성형체의 제조 방법.
The method of claim 7, wherein
Method for producing a composite molded body for removing volatile organic compounds (VOC) that the heat treatment of the heat treatment step is performed for 2 to 4 hours at a temperature of 650 to 800 ℃.
제7항에 있어서,
상기 수열합성 단계는, 열처리한 시료를 3M 수산화나트륨(NaOH) 용액에 넣어, 12 시간 동안 수열합성하는 것인 휘발성 유기화합물(VOC) 제거용 복합 성형체의 제조 방법.
The method of claim 7, wherein
In the hydrothermal synthesis step, the heat-treated sample is put in 3M sodium hydroxide (NaOH) solution, and hydrothermally synthesized for 12 hours.
제7항에 있어서,
상기 수열합성 단계 이후에, 증류수로 수세한 후 건조하는 단계를 포함하는 것인 휘발성 유기화합물(VOC) 제거용 복합 성형체의 제조 방법.
The method of claim 7, wherein
After the hydrothermal synthesis step, washing with distilled water and drying step of producing a composite molded body for removing volatile organic compounds (VOC).
제11항에 있어서,
상기 증류수로 수세한 후 건조하는 단계 이후에, 건조된 시료를 비활성(inert) 분위기에서 200 내지 550℃ 의 온도에서 3 시간 이상 열처리 하는 것을 포함하는 것인 휘발성 유기화합물(VOC) 제거용 복합 성형체의 제조 방법.
The method of claim 11,
After washing with distilled water and drying, the composite sample for volatile organic compound (VOC) removal comprising the heat treatment of the dried sample for 3 hours at a temperature of 200 to 550 ℃ in an inert atmosphere (inert) Manufacturing method.
KR1020170173585A 2017-12-15 2017-12-15 Composite for the removal of VOC and the preparing method thereof KR102051033B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170173585A KR102051033B1 (en) 2017-12-15 2017-12-15 Composite for the removal of VOC and the preparing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170173585A KR102051033B1 (en) 2017-12-15 2017-12-15 Composite for the removal of VOC and the preparing method thereof

Publications (2)

Publication Number Publication Date
KR20190072322A KR20190072322A (en) 2019-06-25
KR102051033B1 true KR102051033B1 (en) 2019-12-02

Family

ID=67065508

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170173585A KR102051033B1 (en) 2017-12-15 2017-12-15 Composite for the removal of VOC and the preparing method thereof

Country Status (1)

Country Link
KR (1) KR102051033B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111040768A (en) * 2020-01-02 2020-04-21 江苏省农业科学院 Preparation of bentonite modified hydrothermal carbon material and application of bentonite modified hydrothermal carbon material in non-point source pollution emission reduction
KR20230149352A (en) 2022-04-18 2023-10-27 호서대학교 산학협력단 Adsorbent composition for removing volatile organic compounds and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102121551B1 (en) * 2018-12-19 2020-06-10 우석대학교 산학협력단 Complex Metal Oxides Catalyst for Removal of Volatile Organic Compounds
CN112058226B (en) * 2020-08-28 2022-05-10 华南理工大学 Organic silicon-activated carbon modified composite material and preparation method thereof
CN112892482B (en) * 2021-01-26 2023-03-17 中国热带农业科学院海口实验站 Preparation method of halloysite-biochar composite material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392701B1 (en) * 2000-08-02 2003-07-28 한국에너지기술연구원 A mesoporus zeolite honeycomb and a method for producing thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0131709B1 (en) * 1994-10-19 1998-04-08 박명규 Combined adsorbents and method for the preparation thereof
KR101216659B1 (en) * 2011-02-10 2012-12-28 부산가톨릭대학교 산학협력단 Synthetic Zeolite Prepared from Waste
KR20140110145A (en) * 2013-03-04 2014-09-17 코아텍주식회사 Complex adsorbent and manufacuring method of complex adsorbent
KR20170049894A (en) * 2015-10-29 2017-05-11 주식회사 엔바이온 Deodorizer Using Powder Type Adsorber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392701B1 (en) * 2000-08-02 2003-07-28 한국에너지기술연구원 A mesoporus zeolite honeycomb and a method for producing thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
한국공업화학회 연구논문 초록집, 2015, pp.217-217*

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111040768A (en) * 2020-01-02 2020-04-21 江苏省农业科学院 Preparation of bentonite modified hydrothermal carbon material and application of bentonite modified hydrothermal carbon material in non-point source pollution emission reduction
KR20230149352A (en) 2022-04-18 2023-10-27 호서대학교 산학협력단 Adsorbent composition for removing volatile organic compounds and manufacturing method thereof

Also Published As

Publication number Publication date
KR20190072322A (en) 2019-06-25

Similar Documents

Publication Publication Date Title
KR102051033B1 (en) Composite for the removal of VOC and the preparing method thereof
Prasad et al. Rice husk ash as a renewable source for the production of value added silica gel and its application: an overview
AU2002361196B2 (en) Adsorbing material comprised of porous functional solid incorporated in a polymer matrix
Chen et al. CO2 capture using zeolite 13X prepared from bentonite
Liu et al. Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds
KR101122370B1 (en) Hydrothermally stable alumina
Wang et al. Preparation of surface-functionalized porous clay heterostructures via carbonization of soft-template and their adsorption performance for toluene
US9566563B2 (en) Method for preparing carbon dioxide absorbent based on natural biomass and carbon dioxide absorbent based on natural biomass prepared by the same
CN102125821B (en) Active carbon-silicon aerogel complex for removing volatile organic pollutants
CN103691399B (en) For separating of the preparation method of the high-performance carbon molecular sieve of carbon dioxide/methane
EA035737B1 (en) Zeolite adsorbents having a high external surface area and uses thereof
Izquierdo et al. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology
Chen et al. Fabricating efficient porous sorbents to capture organophosphorus pesticide in solution
Anadão et al. Preparation and characterization of carbon/montmorillonite composites and nanocomposites from waste bleaching sodium montmorillonite clay
KR102149320B1 (en) Post-treatment of deboronated zeolite beta
CN102040394B (en) Silicon oxygen carbon (SiOC) micro-mesoporous ceramic and preparation method thereof
Mishra et al. Transition-metal oxide pillared clays
RU2393111C1 (en) Method of producing microporous carbon material from lignocellulose material
EP1262458B1 (en) Method for producing an activated alumina formed body
Hosseini et al. Fabrication and characterization porous carbon rod-shaped from almond natural fibers for environmental applications
RU2622035C1 (en) Catalyst of dehydration of paraffin hydrocarbons, method of its production and method for dehydrated hydrocarbons using this catalyst
Nasri et al. Synthesis and characterization of low-cost porous carbon from palm oil shell via K2CO3 chemical activation process
Liu et al. Preparation of stable tetraethylenepentamine-modified ordered mesoporous silica sorbents by recycling natural Equisetum ramosissimum
Borhan et al. Characterization of activated carbon from wood sawdust prepared via chemical activation using potassium hydroxide
KR20160037893A (en) Molecular sieve adsorbent blends and uses thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant