JP3111519B2 - Adsorbent for purifying exhaust gas containing high-boiling components and purification method - Google Patents

Adsorbent for purifying exhaust gas containing high-boiling components and purification method

Info

Publication number
JP3111519B2
JP3111519B2 JP03207278A JP20727891A JP3111519B2 JP 3111519 B2 JP3111519 B2 JP 3111519B2 JP 03207278 A JP03207278 A JP 03207278A JP 20727891 A JP20727891 A JP 20727891A JP 3111519 B2 JP3111519 B2 JP 3111519B2
Authority
JP
Japan
Prior art keywords
adsorbent
exhaust gas
zeolite
adsorption
gas containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03207278A
Other languages
Japanese (ja)
Other versions
JPH0523586A (en
Inventor
雍 竹内
雅志 原田
精一 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP03207278A priority Critical patent/JP3111519B2/en
Publication of JPH0523586A publication Critical patent/JPH0523586A/en
Application granted granted Critical
Publication of JP3111519B2 publication Critical patent/JP3111519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、大気圧下の沸点120
℃以上のような高沸点の有機成分を含む排ガス用吸着剤
およびそれによる上記排ガスの浄化方法に関するもので
ある。
BACKGROUND OF THE INVENTION The present invention relates to a process for producing a material having a boiling point of 120 at atmospheric pressure.
The present invention relates to an adsorbent for exhaust gas containing an organic component having a high boiling point of not less than ° C. and a method for purifying the exhaust gas by using the adsorbent.

【0002】[0002]

【従来の技術】従来、溶剤などの有機成分を含む排ガス
の浄化には、吸着剤として活性炭が広範に使用されてき
た。しかし、有機成分の沸点が120℃以上、さらに1
50℃以上のように高い場合、活性炭層から容易に脱離
せず、これが活性炭上に蓄積し吸着障害の原因となって
いた。このようにして活性炭上に蓄積された高沸点有機
成分の反応性が高い場合、活性炭の触媒作用により酸化
反応を引き起こし、酸素が供給されると発生した反応熱
によって酸化反応が連鎖的に進み、ついには活性炭層自
体が発火することもある。新鮮な活性炭の着火温度は、
400〜500℃程度であるが、高沸点有機成分が多量
に蓄積した場合には200℃以下になることもある。ま
た、高沸点成分を含む排ガスを活性炭で処理しても、上
記のとおり再生が困難であるので、使用済みの活性炭は
廃棄するか、その再生を専門業者に依託するほかなかっ
た。このように活性炭による高沸点有機成分を含む排ガ
スの浄化は、経済的にあるいは安全上不利な場合が多
い。
2. Description of the Related Art Conventionally, activated carbon has been widely used as an adsorbent for purifying exhaust gas containing organic components such as solvents. However, the boiling point of the organic component is 120 ° C. or more,
When the temperature was as high as 50 ° C. or higher, the carbon was not easily desorbed from the activated carbon layer, and accumulated on the activated carbon, causing an adsorption failure. When the reactivity of the high-boiling organic components accumulated on the activated carbon in this manner is high, an oxidation reaction is caused by the catalytic action of the activated carbon, and the oxidation reaction proceeds in a chain by the reaction heat generated when oxygen is supplied, Eventually, the activated carbon layer itself may ignite. The ignition temperature of fresh activated carbon is
The temperature is about 400 to 500 ° C., but may be 200 ° C. or less when a large amount of high-boiling organic components are accumulated. Further, even if the exhaust gas containing a high boiling point component is treated with activated carbon, it is difficult to regenerate as described above. Therefore, the used activated carbon must be discarded or regenerated by a specialist. As described above, purification of exhaust gas containing high-boiling organic components using activated carbon is often economically or safety disadvantageous.

【0003】近年、活性炭にかわる有機化合物の吸着剤
として、疎水性を高めたゼオライトが使用され始めてい
る(特公表60−501495号公報および特開昭64
−85113号公報)。
In recent years, zeolite with enhanced hydrophobicity has been used as an adsorbent for organic compounds instead of activated carbon (Japanese Patent Publication No. 60-501495 and Japanese Unexamined Patent Publication No. Sho 64-64).
-85113).

【0004】[0004]

【発明が解決しようとする課題】しかし、高沸点の有機
化合物を含む排ガスの浄化に疎水性ゼオライトを吸着剤
として用いた場合の再生方法や吸着剤上で高沸点成分の
挙動、特にその触媒作用によるコーキングや分解につい
ては全く検討されていなかった。発明者らは、沸点12
0℃以上の高沸点有機成分を含む排ガスの浄化に際し
て、特に吸着剤の再生方法および吸着剤の触媒性に注目
し、特別な操作を行うことなく安全に高沸点成分を含む
排ガスの浄化を可能とする方法を開発すべく鋭意検討を
重ねた。
However, in the case of using hydrophobic zeolite as an adsorbent for purifying exhaust gas containing organic compounds having a high boiling point, the regeneration method and the behavior of the high boiling point component on the adsorbent, particularly its catalytic action No consideration has been given to caulking or decomposition by the method. We have a boiling point of 12
When purifying exhaust gas containing high-boiling organic components of 0 ° C or higher, it is possible to purify exhaust gas containing high-boiling components safely without special operation, paying particular attention to the method of regenerating the adsorbent and the catalytic properties of the adsorbent. We have been diligently studying how to develop a method.

【0005】ゼオライト結晶の基本構造は、SiO
その置換体のAlOのそれぞれの四面体でそれらが互
いに頂点の酸素原子を共有し、3次元方向に発達した結
晶構造を形成している。その結果、ゼオライト結晶は他
の鉱物にみられないような非常に大きな空洞や孔路を有
している。これらの細孔の入口径は、ゼオライトによっ
てことなるが、通常3〜9オングストロームであり種々
の分子を細孔内部に捕捉することができる。また、結晶
内部にはAlOの負電荷を補うために陽イオンが存在
している。この陽イオンによって形成された静電場の影
響により極性分子を選択的に吸着する。汎用の吸着剤と
して一般的に使用されているA型ゼオライト、X型ゼオ
ライト、Y型ゼオライト等のSiO/Alモル
比は2〜5と低く、これらのゼオライトは有機化合物よ
りも水を選択的に吸着する。したがって、有機溶剤を含
む排ガスの浄化用吸着剤としては適当ではない。
The basic structure of a zeolite crystal is a tetrahedral structure of SiO 4 and its substituted AlO 4 , which share the oxygen atom at the apex of each other to form a crystal structure developed in a three-dimensional direction. As a result, zeolite crystals have very large cavities and pores that are not found in other minerals. The entrance diameter of these pores depends on the zeolite, but is usually 3 to 9 Å, and various molecules can be trapped inside the pores. In addition, a cation exists inside the crystal to supplement the negative charge of AlO 4 . Polar molecules are selectively adsorbed under the influence of the electrostatic field formed by the cations. The SiO 2 / Al 2 O 3 molar ratio of A-type zeolite, X-type zeolite, Y-type zeolite and the like generally used as general-purpose adsorbents is as low as 2 to 5, and these zeolites are more water-soluble than organic compounds. Is selectively adsorbed. Therefore, it is not suitable as an adsorbent for purifying exhaust gas containing an organic solvent.

【0006】ゼオライトはSiO/Alモル比
20以上で親水性失い、次第に疎水性を示すようにな
る。このように疎水性を示すゼオライトは、有機溶剤を
含む排ガスの浄化に対して、活性炭と同様に疎水性吸着
剤として有用である。しかし、疎水性ゼオライトは同時
に触媒作用も備えている。従って、吸着された高沸点有
機成分は、加熱再生の過程でその一部が炭化してしま
う。また排ガス中に反応性の高い有機化合物含まれてい
る場合には、加熱再生の過程で疎水性ゼオライトの触媒
作用により酸化される。この様な疎水性ゼオライトの触
媒性は、吸着剤の寿命または装置の安全性に対してマイ
ナスの要因である。
Zeolite loses hydrophilicity at a SiO 2 / Al 2 O 3 molar ratio of 20 or more and gradually becomes hydrophobic. The zeolite exhibiting such hydrophobicity is useful as a hydrophobic adsorbent, similarly to activated carbon, for purifying exhaust gas containing an organic solvent. However, hydrophobic zeolites also have a catalytic effect. Therefore, a part of the adsorbed high-boiling organic component is carbonized during the heating and regeneration process. If the exhaust gas contains a highly reactive organic compound, it is oxidized by the catalytic action of the hydrophobic zeolite during the heating and regeneration process. The catalytic nature of such hydrophobic zeolites is a negative factor for the life of the adsorbent or the safety of the device.

【0007】疎水性ゼオライトの触媒性は、結晶中の酸
点が主な原因と考えられる。したがって、SiO/A
モル比が無限大のゼオライトは酸点または塩基
点がなく触媒作用がないと考えられる。しかしながら、
実際に入手または調整可能なゼオライトのSiO/A
モル比は500程度が限界である。これはゼオ
ライトの調製原料に使われる珪素原中に微量ではあるが
アルミニウム酸化物が含まれているためである。例え
ば、直接合成法の場合には、珪素源中の微量のアルミニ
ウ酸化物が結晶化の過程で選択的にゼオライト結晶骨格
に取り込まれる。また、鉱酸等による酸抽出法の場合で
もゼオライト中の微量のアルミニウム酸化物を完全に除
去することは実際上不可能である。
[0007] It is considered that the catalytic cause of the hydrophobic zeolite is mainly due to the acid sites in the crystals. Therefore, SiO 2 / A
A zeolite having an infinity of 1 2 O 3 molar ratio is considered to have no acid point or base point and has no catalytic action. However,
Zeolite SiO 2 / A which is actually available or tunable
The limit of the l 2 O 3 molar ratio is about 500. This is because the silicon source used as a raw material for preparing zeolite contains a small amount of aluminum oxide. For example, in the case of the direct synthesis method, a trace amount of aluminum oxide in the silicon source is selectively incorporated into the zeolite crystal skeleton during the crystallization process. Further, even in the case of an acid extraction method using a mineral acid or the like, it is practically impossible to completely remove a trace amount of aluminum oxide in zeolite.

【0008】この様な理由から、疎水性ゼオライトは吸
着した有機溶剤に対して炭化や酸化を引き起こす触媒性
を示す。特に高沸点の有機成分を含む排ガスに対して吸
着剤としての使用が困難であった。しかしながら、ゼオ
ライトの結晶骨格はSiOやAlO等の無機酸化物
で形成されており、不燃性である。このため、高沸点成
分を含む排ガスの浄化に対しては吸着剤自体が着火する
事がなく、180℃以上での高温再生が可能であり極め
て魅力的である。
For these reasons, hydrophobic zeolites exhibit catalytic properties that cause carbonization and oxidation of the adsorbed organic solvent. In particular, it has been difficult to use exhaust gas containing an organic component having a high boiling point as an adsorbent. However, the crystal skeleton of zeolite is formed of an inorganic oxide such as SiO 4 or AlO 4 and is nonflammable. For this reason, the adsorbent itself does not ignite for purification of exhaust gas containing high boiling components, and high-temperature regeneration at 180 ° C. or higher is possible, which is extremely attractive.

【0009】本発明者らは、各種ゼオライトを直接合成
法または合成ゼオライトに修飾処理を施す方法によって
調製し、高沸点成分を含む排ガスに対して、再生過程で
触媒性を示さないゼオライト系吸着剤を得るべく鋭意検
討を重ねた。
The present inventors have prepared various zeolites by a direct synthesis method or a method of modifying the synthetic zeolites, and prepared a zeolite-based adsorbent that does not exhibit catalytic properties in the regeneration process for exhaust gas containing high boiling components. We worked diligently to obtain.

【0010】[0010]

【課題を解決するための手段】その結果、疎水性ゼオラ
イトのSiO/Alモル比が50以上であり、
かつ昇温脱離法によるピリジンの固体酸量(以下、とく
にことわらないかぎり「固体酸量」は、この方法によっ
て測定されるものを意味する)が0.1mmol/g以
下である疎水性ゼオライトは吸着した大気圧下の沸点
(以下、沸点という)120℃以上の高沸点有機成分に
対して、触媒性を示さず炭化による吸着性能の低下や発
火等の危険性のない優れた吸着剤であることを見いだし
た。
As a result, the hydrophobic zeolite has a SiO 2 / Al 2 O 3 molar ratio of 50 or more,
And a hydrophobic zeolite having a solid acid amount of pyridine by a temperature-programmed desorption method (hereinafter, "solid acid amount" means a value measured by this method unless otherwise specified) is 0.1 mmol / g or less. Is an excellent adsorbent that does not exhibit catalytic properties and has no danger of reduced adsorption performance or ignition due to carbonization for high-boiling organic components having a boiling point under atmospheric pressure (hereinafter referred to as boiling point) of 120 ° C or higher. I found something.

【0011】疎水性ゼオライトの固体酸量を0.1mm
ol/g以下とする方法としては水熱焼成処理が有効で
ある。しかし、本発明の疎水性ゼオライトは、SiO
/Alモル比50以上のものでなければならな
い。疎水性ゼオライトのSiO/Alモル比5
0未満の場合は、水熱焼成処理を行っても固体酸量を
0.1mmol/g以下とすることが困難だからであ
る。従って、水熱焼成処理の条件は、疎水性ゼオライト
の構造またはSiO/Alモル比によってこと
なるが、水熱焼成処理の条件を工夫することで吸着した
高沸点成分にたいして触媒性のない吸着剤を得ることが
可能である。
The hydrophobic zeolite has a solid acid content of 0.1 mm
Hydrothermal treatment is effective as a method for controlling the amount to ol / g or less. However, the hydrophobic zeolites of the present invention are based on SiO 2
/ Al 2 O 3 molar ratio must be 50 or more. SiO 2 / Al 2 O 3 molar ratio of hydrophobic zeolite 5
If it is less than 0, it is difficult to reduce the amount of solid acid to 0.1 mmol / g or less even when the hydrothermal calcination treatment is performed. Therefore, the conditions of the hydrothermal calcination treatment vary depending on the structure of the hydrophobic zeolite or the molar ratio of SiO 2 / Al 2 O 3 . It is possible to obtain no adsorbent.

【0012】疎水性ゼオライトの調製方法としては、天
然ゼオライト或は合成ゼオライトを出発原料として鉱酸
などを用いた脱アルミニウム処理等によって調製する方
法、或はシリカ源、アルミナ源、アルカリ源及び有機鉱
化剤を混合し結晶化する直接合成法がある。
As a method for preparing a hydrophobic zeolite, a natural zeolite or a synthetic zeolite is used as a starting material to prepare by a dealumination treatment using a mineral acid or the like, or a silica source, an alumina source, an alkali source, and an organic mineral. There is a direct synthesis method in which an agent is mixed and crystallized.

【0013】脱アルミニウム処理等によって調製された
疎水性ゼオライトとしては、脱アルミニウムモルデナイ
ト(N.Y.Chen,J.Phy.Chem.,8
0,(1),60〜64(1976)),超疎水性Y型
ゼオライト(特開昭54−122700号広報,Stu
dies in Surface Sciencean
d Cataysis,Volume 5,203−2
10(1980)),疎水性L型ゼオライト(特開昭6
3−50312号広報)等が知られている。
As the hydrophobic zeolite prepared by dealumination, etc., dealuminated mordenite (NY Chen, J. Phy. Chem., 8
0, (1), 60-64 (1976)), superhydrophobic Y-type zeolite (Japanese Patent Application Laid-Open No. 54-122700, Stu)
dies in Surface Sciencean
d Catalysis, Volume 5, 203-2
10 (1980)), hydrophobic L-type zeolite (JP-A-6
No. 3-50312).

【0014】直接合成法によって調製された疎水性ゼオ
ライトとしては、ZSM−5(特公昭46−10064
号広報),ZSM−11(特公昭53−23280号広
報),ZSM−12(特公昭52−16079号広
報),ZSM−22(特開昭59−111912号広
報),ZSM−23(特開昭51−149900号広
報),ZSM−48(特開昭56−22622号広
報),シリカライト(特開昭54−72795号広報)
等が知られている。
The hydrophobic zeolite prepared by the direct synthesis method includes ZSM-5 (JP-B-46-10064).
ZSM-11 (JP-B No. 53-23280), ZSM-12 (JP-B No. 52-16079), ZSM-22 (JP-A-59-111912), ZSM-23 (JP-A-59-112912). JP-A-51-149900), ZSM-48 (JP-A-56-22622), silicalite (JP-A-54-72795).
Etc. are known.

【0015】これらいずれも本発明の吸着剤の製造に好
適に使用することができる。
Any of these can be suitably used for producing the adsorbent of the present invention.

【0016】また、ゼオライトは分子ふるい効果を示す
ため、吸着可能な分子の種類はゼオライト種類によって
決まる。有機溶剤を排ガス中から回収する場合は、ゼオ
ライトの細孔入口径が吸着される分子径よりも大きけれ
ばよい。通常は、細孔入口が酸素8、10、12員環の
ゼオライトであればよく、チャバサイト、オフレタイ
ト、モルデナイト、フォージャサイト、L、Ω、ZSM
−5、ZSM−11型などの結晶構造のものが適してい
る。
Since zeolite exhibits a molecular sieving effect, the types of molecules that can be adsorbed are determined by the type of zeolite. When recovering the organic solvent from the exhaust gas, it is sufficient that the pore entrance diameter of the zeolite is larger than the adsorbed molecular diameter. Normally, it is sufficient that the pore inlet is a zeolite having an oxygen-containing 8, 10 or 12-membered ring. Chabazite, offretite, mordenite, faujasite, L, Ω, ZSM
Crystal structures such as -5 and ZSM-11 are suitable.

【0017】疎水性ゼオライトに対する水熱焼成処理の
水蒸気濃度は少なくとも2vol%以上が必要であり、
望ましくは5vol%以上の水蒸気濃度が実用的な実施
条件である。水蒸気濃度が高い場合は焼成温度が比較的
穏やかな条件下でも本発明の吸着剤を得ることが可能で
ある。しかし、500℃以下の温度で水熱焼成を実施し
ても、吸着剤の固体酸量を0.1mmol/g以下とす
ることは困難である。また1200℃以上の温度で焼成
した場合には疎水性ゼオライトの結晶構造自体が崩壊
し、本発明の吸着剤を得ることができない。したがっ
て、水熱焼成を実施するのに好適な温度範囲は500℃
〜1200℃であり、望ましくは600℃〜1000℃
である。水熱焼成処理の時間は水蒸気濃度及び焼成温度
によってことなるが、上記温度範囲において少なくとも
30分以上行う必要がある。
The water vapor concentration of the hydrothermal calcination treatment on the hydrophobic zeolite needs to be at least 2 vol% or more,
Desirably, a water vapor concentration of 5 vol% or more is a practical implementation condition. When the water vapor concentration is high, the adsorbent of the present invention can be obtained even under the condition that the calcination temperature is relatively mild. However, even if hydrothermal calcination is performed at a temperature of 500 ° C. or less, it is difficult to reduce the solid acid amount of the adsorbent to 0.1 mmol / g or less. Further, when calcined at a temperature of 1200 ° C. or more, the crystal structure of the hydrophobic zeolite itself collapses, and the adsorbent of the present invention cannot be obtained. Therefore, the preferred temperature range for performing hydrothermal firing is 500 ° C.
~ 1200 ° C, preferably 600 ° C ~ 1000 ° C
It is. The time of the hydrothermal calcination depends on the steam concentration and the calcination temperature, but it is necessary to perform the hydrothermal calcination at least 30 minutes in the above temperature range.

【0018】ゼオライトの酸性質の測定法として比較的
簡単な昇温脱離法(TPD法)がある。TPD法とは塩
基性物質(通常、熱的に安定なアンモニアやピリジン等
が用いられる)を試料に吸着させ、次に一定の速度で昇
温させながら脱離させる。このとき塩基性物質の酸点へ
の吸着は、酸−塩基作用により1対1とみられるので、
脱離した塩基性物質の量を酸点の量とみなすことができ
る。また、より強い酸点に吸着した塩基性物質はより高
温まで脱離しないと考えられるから脱離した温度により
酸点の強弱を知ることができる。このようにTPD法で
は、酸量と酸強度を同時に知ることができる。ピリジン
によるTPD法(Py−TPD法)は、流通型のTPD
装置を用い、次のような操作手順に沿って行えばよい。
すなわち、下記の条件によって、試料を吸着管に充填
し、前処理として真空排気を行う。試料にピリジンを吸
着させ、つづいて気相および物理吸着したピリジンを脱
気するキャリヤーガスとしてHeを流しながら一定の速
度で昇温し、脱離スペクトルを観測する。
As a method for measuring the acid property of zeolite, there is a relatively simple thermal desorption method (TPD method). In the TPD method, a basic substance (usually, thermally stable ammonia or pyridine is used) is adsorbed on a sample, and then desorbed while increasing the temperature at a constant rate. At this time, the adsorption of the basic substance to the acid site is considered to be one-to-one by the acid-base action,
The amount of the eliminated basic substance can be regarded as the amount of acid sites. Further, it is considered that the basic substance adsorbed at the stronger acid point does not desorb to a higher temperature, so that the strength of the acid point can be known from the desorbed temperature. As described above, in the TPD method, the amount of acid and the acid strength can be simultaneously determined. The TPD method using pyridine (Py-TPD method) is a flow-type TPD method.
The following operation procedure may be performed using the device.
That is, the sample is filled into the adsorption tube under the following conditions, and the sample is evacuated as a pretreatment. Pyridine is adsorbed to the sample, and then the temperature is raised at a constant rate while flowing He as a carrier gas for degassing the gas phase and the physically adsorbed pyridine, and the desorption spectrum is observed.

【0019】 試 料 0.4g 前処理 500℃、1時間真空排気 吸 着 室温、15分間、50〜60Torr 脱 気 100℃、5分間真空排気 脱 離 He流通 60cc/min 昇温速度 10℃/min ゼオライト吸着剤において、このPy−TPD法の固体
酸量が0.1mmol/gより高い場合は、主活性点で
ある酸点が多いので脱離させる際高沸点の有機成分が炭
化し、吸着剤の有効吸着量が次第に低下する。また、吸
着剤に蓄積された高沸点成分や炭化物は吸着時に供給さ
れる酸素によって酸化され、ホットスポット等を形成す
ることがあり装置の保守管理上好ましくない。固体酸量
が0.1mmol/g以下であれば活性点である酸点が
少なくなり、脱離時に炭化が起こりにくくなる。従っ
て、有効吸着量は低下することがなく、高沸点成分や炭
化物が蓄積されることもないので、装置の保守管理上も
有利である。
Sample 0.4 g Pretreatment 500 ° C., 1 hour vacuum evacuation Adsorption Room temperature, 15 minutes, 50-60 Torr Deaeration 100 ° C., 5 minute evacuation Desorption He flow 60 cc / min Heating rate 10 ° C./min When the amount of solid acid in the Py-TPD method is higher than 0.1 mmol / g in the zeolite adsorbent, the organic components having a high boiling point are carbonized when desorbed because the acid sites, which are the main active sites, are large. Gradually decreases the effective adsorption amount. In addition, the high-boiling components and carbides accumulated in the adsorbent are oxidized by oxygen supplied at the time of adsorption, and may form hot spots, which is not preferable in terms of maintenance management of the apparatus. When the amount of the solid acid is 0.1 mmol / g or less, the number of active sites, which are active sites, decreases, and carbonization hardly occurs during desorption. Therefore, the effective adsorption amount does not decrease and the high-boiling components and carbides do not accumulate, which is advantageous in terms of the maintenance of the apparatus.

【0020】疎水性ゼオライト粉末を吸着剤として使用
する場合、円柱状または球状またはハニカム状とする必
要がある。その際、疎水性ゼオライト結晶自体に結合性
がないので、担体とゼオライト結晶もしくはゼオライト
結晶相互の結合性を高めるためにシリカゾル、シリカゲ
ルや粘土鉱物等の無機系バインダー成分を添加し、成形
やハニカム化等の2次加工を行う。バインダー成分とし
ては不活性なものが望ましく、アルミナゾルやアルミナ
ゲルのように有機溶剤に対して反応活性を示すものは不
適当である。また、成形やハニカム化の後、これら2次
加工品の形状を維持させるために焼成処理が必要であ
る。このとき、水熱条件下で焼成操作をおこなえば、疎
水性ゼオライト粉末をあらかじめ水熱焼成しておく必要
はない。すなわち固体酸量が0.1mmol/g以下の
吸着剤を製造する合理的な実施方法として、まず疎水性
ゼオライト粉末の2次加工を行い、引続き水熱焼成を行
う方法が可能である。もちろん、水熱焼成を行った疎水
性ゼオライト粉末を2次加工し、穏やかな条件下で焼成
しても本発明の吸着剤を得ることができる。
When a hydrophobic zeolite powder is used as an adsorbent, it must be in a columnar or spherical or honeycomb shape. At that time, since the hydrophobic zeolite crystal itself has no binding property, an inorganic binder component such as silica sol, silica gel or clay mineral is added in order to enhance the binding property between the carrier and the zeolite crystal or the zeolite crystal, and molding and honeycomb formation are performed. And the like. As the binder component, an inactive one is desirable, and one that shows a reaction activity with respect to an organic solvent such as alumina sol or alumina gel is inappropriate. Further, after forming or honeycomb formation, a baking treatment is required to maintain the shape of these secondary processed products. At this time, if the firing operation is performed under hydrothermal conditions, it is not necessary to hydrothermally fire the hydrophobic zeolite powder in advance. That is, as a rational method for producing an adsorbent having a solid acid content of 0.1 mmol / g or less, a method of first performing a secondary processing of a hydrophobic zeolite powder and subsequently performing a hydrothermal firing is possible. Needless to say, the adsorbent of the present invention can be obtained by subjecting the hydrophobic zeolite powder subjected to hydrothermal firing to secondary processing and firing under mild conditions.

【0021】ところで、バインダーを使用しないで製造
されたゼオライト成形体が特開昭62−70225や特
開昭62−138320等に示されている。この様な、
バインダー成分を含まないゼオライト成形体を脱アルミ
ニウム処理し、疎水性ゼオライトとしたものを水熱焼成
したものは吸着量が大きく本発明の吸着剤としてさらに
好適である。
Incidentally, zeolite molded bodies produced without using a binder are disclosed in JP-A-62-70225 and JP-A-62-138320. Like this,
A zeolite molded body containing no binder component is subjected to a dealumination treatment to obtain a hydrophobic zeolite, which is calcined hydrothermally, and has a large adsorption amount, which is more suitable as the adsorbent of the present invention.

【0022】本発明の吸着剤は、排ガス中に大気圧下に
おける沸点が120℃以上の有機溶剤を含む場合に有効
である。特に、セロソルブ系またはカルビトール系など
の添加剤を含む塗料を使用する工程からの排ガス、プラ
スチックまたは樹脂フィルムの加工工程からの排ガスま
たはメチルピロリドンを反応溶媒または洗浄剤とする工
程からの排ガス浄化用吸着剤として特に有用であり、固
定層吸着装置、流動層吸着装置、移動層吸着装置、ハニ
カムローター濃縮装置などいずれの装置においても好適
に使用できる。
The adsorbent of the present invention is effective when the exhaust gas contains an organic solvent having a boiling point of 120 ° C. or more at atmospheric pressure. In particular, for purifying exhaust gas from processes using paints containing additives such as cellosolves or carbitols, exhaust gas from plastic or resin film processing processes or exhaust gas from processes using methylpyrrolidone as a reaction solvent or cleaning agent It is particularly useful as an adsorbent and can be suitably used in any apparatus such as a fixed bed adsorption apparatus, a fluidized bed adsorption apparatus, a moving bed adsorption apparatus, and a honeycomb rotor concentrator.

【0023】[0023]

【発明の効果】以上述べたように、本発明によれば、沸
点120℃以上、さらには150℃以上といった高沸点
有機成分を含む排ガスの浄化に使用しても、吸着剤が触
媒性をまったく示さないため、酸化、炭化などをさせる
ことなく被吸着成分を脱離させることができ、したがっ
て発火や吸着容量の低下を起こすことがない。これによ
り、従来困難であった高沸点成分を含む有機溶剤排ガス
の濃縮や溶剤回収などの吸着操作が、吸着装置に特別な
工夫を施すことなく可能となる。
As described above, according to the present invention, even when used for purification of exhaust gas containing a high-boiling organic component having a boiling point of 120 ° C. or more, or even 150 ° C. or more, the adsorbent has no catalytic property. Since it is not shown, the component to be adsorbed can be desorbed without oxidation, carbonization, etc., and therefore, there is no ignition or a decrease in adsorption capacity. This makes it possible to perform an adsorption operation, such as concentration of an organic solvent exhaust gas containing a high-boiling component and recovery of the solvent, which has been difficult in the past, without any special measures for the adsorption device.

【0024】[0024]

【実施例】以下に、本発明の実施例を説明する。 実施例1 SiO/Alモル比14、格子定数24.33
オングストロームのY型ゼオライトを50℃の1.5N
の塩酸水溶液により脱アルミニウム処理し、SiO
Alモル比500の疎水性Y型ゼオライトを得
た。この疎水性ゼオライト100重量部に対してバイン
ダーとして25重量部の粘土を加え、直径3mmの円柱
状成形体を得た。この成形体を水蒸気濃度20vol%
の空気流通下、800℃で2時間焼成し吸着剤を得た。
この吸着剤のPy−TPD法による固体酸量を後記の
「Py−TPD法による固体酸量の測定法」ならびに被
吸着成分をp−キシレン(沸点:138.4℃)および
n−ブチルセロソルブ(沸点:170.2℃)とする有
効吸着容量および劣化度を「吸脱着試験方法」によって
測定した。結果を表1および表2に示す。8回の吸脱着
サイクルを終えた吸着剤は、新吸着剤(測定に使用する
前のもの)とほぼ同等の色調であった。
Embodiments of the present invention will be described below. Example 1 SiO 2 / Al 2 O 3 molar ratio: 14, lattice constant: 24.33
Angstrom Y-type zeolite with 1.5N at 50 ° C
Dealumination with a hydrochloric acid aqueous solution of SiO 2 /
A hydrophobic Y-type zeolite having an Al 2 O 3 molar ratio of 500 was obtained. 25 parts by weight of clay was added as a binder to 100 parts by weight of this hydrophobic zeolite to obtain a columnar molded body having a diameter of 3 mm. This molded body is subjected to a water vapor concentration of 20 vol%.
The mixture was calcined at 800 ° C. for 2 hours under an air flow of to obtain an adsorbent.
The amount of the solid acid of this adsorbent by the Py-TPD method was described later in “Method for measuring the amount of solid acid by the Py-TPD method”, and the adsorbed components were p-xylene (boiling point: 138.4 ° C.) and n-butyl cellosolve (boiling point). : 170.2 ° C.) and the degree of deterioration and the degree of deterioration were measured by the “adsorption / desorption test method”. The results are shown in Tables 1 and 2. The adsorbent after eight adsorption / desorption cycles had a color tone almost equal to that of the new adsorbent (before use in measurement).

【0025】比較例1 実施例1で使用したY型ゼオライトを脱アルミニウム処
理することなく、実施例1と同一条件で成形し、焼成し
て吸着剤をえた。また、実施例1と同様に、この吸着剤
のPy−TPD法による固体酸量ならびに有効吸着容量
および劣化度を測定した。結果を表1および表2に示
す。8回の吸脱着サイクルを終えた吸着剤は、炭化を示
す茶褐色になっていた。 <Py−TPD法による固体酸量の測定法>吸着剤を測
定管に充填し、真空中500℃で1時間処理し水分を除
去した後、窒素を導入し500℃で1時間保持し300
℃まで冷却した。さらに、窒素により蒸発させたピリジ
ンガスを300℃で20分間試料に吸着させた。次に試
料を昇温速度10℃/minで300℃から950℃ま
で昇温し、脱離してくるピリジン量をガスクロマトグラ
フィー(検出計:FID)により測定した。試料の固体
酸量は、脱離したピリジン量を300℃〜950℃の範
囲で図積分し、求めた。
Comparative Example 1 The Y-type zeolite used in Example 1 was molded under the same conditions as in Example 1 without being subjected to a dealumination treatment, and calcined to obtain an adsorbent. Further, in the same manner as in Example 1, the amount of solid acid, the effective adsorption capacity, and the degree of deterioration of this adsorbent by the Py-TPD method were measured. The results are shown in Tables 1 and 2. The adsorbent after eight adsorption / desorption cycles had a brown color indicating carbonization. <Measurement Method of Solid Acid Content by Py-TPD Method> An adsorbent was filled in a measuring tube, treated at 500 ° C. for 1 hour in a vacuum to remove water, nitrogen was introduced, and the temperature was maintained at 500 ° C. for 1 hour.
Cooled to ° C. Further, the pyridine gas evaporated by nitrogen was adsorbed on the sample at 300 ° C. for 20 minutes. Next, the sample was heated from 300 ° C. to 950 ° C. at a rate of 10 ° C./min, and the amount of pyridine released was measured by gas chromatography (detector: FID). The amount of the solid acid in the sample was determined by integrating the amount of the removed pyridine in the range of 300 ° C to 950 ° C.

【0026】<吸脱着試験方法>吸着剤は710〜91
0μに粉砕し試料とした。吸着−脱着(熱風脱着)を1
サイクルとし、被吸着成分としてp−キシレン(沸点:
138.4℃)およびn−ブチルセロソルブ(沸点:1
70.2℃)を使用した。以下に吸着操作、脱着操作お
よび吸着能の評価方法を示す。
<Adsorption / desorption test method>
It was pulverized to 0μ to obtain a sample. 1 for adsorption-desorption (hot air desorption)
Cycle, and p-xylene (boiling point:
138.4 ° C.) and n-butyl cellosolve (boiling point: 1
70.2 ° C.). Hereinafter, the adsorption operation, the desorption operation, and the method for evaluating the adsorption ability will be described.

【0027】a 吸着操作 コンプレッサーからの空気はシリカゲルカラムで脱湿
し、乾燥空気の一部をp−キシレンまたはn−ブチルセ
ロソルブの蒸気発生管に通し、残りの乾燥空気と混合
し、発生蒸気の濃度を、p−キシレンは350ppm、
n−ブチルセロソルブは150ppmとした。吸着カラ
ムは内径1.55×10−2m、層高0.07mのもの
を使用し、恒温槽に入れ25℃に保った。ガス流速は
0.2m/secとし、40分間吸着させた。図1に使
用した吸着装置の概略図を示す。
A Adsorption operation The air from the compressor is dehumidified by a silica gel column, a part of the dry air is passed through a steam generating tube of p-xylene or n-butyl cellosolve, mixed with the remaining dry air, and the concentration of the generated steam is adjusted. , 350 ppm of p-xylene,
n-Butyl cellosolve was 150 ppm. The adsorption column used had an inner diameter of 1.55 × 10 −2 m and a layer height of 0.07 m, and was placed in a thermostat and kept at 25 ° C. The gas flow rate was 0.2 m / sec, and adsorption was performed for 40 minutes. FIG. 1 shows a schematic diagram of the adsorption device used.

【0028】b 脱着操作 吸着操作を終えた吸着剤はカラムごと取り外し、脱着操
作を行った。コンプレッサーからの空気はシリカゲルカ
ラムで脱湿し、ヒーターで加熱し脱着用の熱風とした。
脱着時の層内温度は、200℃とし、40分間脱着させ
た。図2に使用した吸着装置の概略図を示す。
B Desorption operation The adsorbent after the adsorption operation was removed together with the column, and the desorption operation was performed. Air from the compressor was dehumidified by a silica gel column and heated by a heater to obtain hot air for desorption.
The temperature in the layer at the time of desorption was 200 ° C., and desorption was performed for 40 minutes. FIG. 2 shows a schematic diagram of the adsorption device used.

【0029】c 吸着能の評価 所定の吸脱着サイクルを終えた吸着剤について、p−キ
シレンの吸着量を測定し、未使用品との性能比較を行っ
た。有効吸着量は400ppmのp−キシレン蒸気をカ
ラムに流通させ、破過曲線を測定し求めた。
(C) Evaluation of Adsorption Amount of p-xylene adsorbed on the adsorbent after a predetermined adsorption / desorption cycle was measured, and the performance was compared with that of an unused adsorbent. The effective adsorption amount was determined by flowing 400 ppm of p-xylene vapor through the column and measuring the breakthrough curve.

【0030】有効吸着量(kg/kg)および劣化度
(%)は下記の計算式により求めた。
The effective adsorption amount (kg / kg) and the degree of deterioration (%) were determined by the following formulas.

【0031】有効吸着量(kg/kg)=数サイクル後
のp−キシレン吸着量/新吸着剤重量 劣化度(%)={(新吸着剤有効吸着量−有効吸着量)
/新吸着剤有効吸着量}×100
Effective adsorption amount (kg / kg) = p-xylene adsorption amount after several cycles / new adsorbent weight Deterioration degree (%) = {(new adsorbent effective adsorption amount-effective adsorption amount)
/ New adsorbent effective adsorption amount x 100

【0032】 表 2 有効吸着量および劣化度 実施例1 比較例1 サイクル数 有効吸着量 劣化度 有効吸着量 劣化度 (回) (kg/kg) (%) (kg/kg) (%) 0 0.1450 − 0.1298 − 2 0.1448 0.14 0.1295 0.23 4 0.1435 1.03 0.1249 3.78 8 0.1438 0.83 0.1197 7.78[0032] Table 2 Effective adsorption amount and degree of deteriorationExample 1 Comparative Example 1  Number of cycles Effective adsorption amount Deterioration degree Effective adsorption amount Deterioration degree(Times) (Kg / kg) (%) (Kg / kg) (%)  0 0.1450-0.1298 -2 0.1448 0.14 0.1295 0.23 4 0.1435 1.03 0.1249 3.78 8 0.1438 0.83 0.1197 7.78

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例における吸着装置の概略を示す図であ
る。
FIG. 1 is a view schematically showing an adsorption device in an embodiment.

【図2】実施例における脱着装置の概略を示す図であ
る。
FIG. 2 is a view schematically showing a desorption device in an embodiment.

【符号の説明】[Explanation of symbols]

1 コンプレッサー 11 コンプレッサ
ー 2 シリカゲルカラム 12 シリカゲルカ
ラム 3 フローコントローラー 13 フローコント
ローラー 4 フローメーター 14 プレヒーター 5 恒温槽 15 電気炉 6 被吸着成分蒸気発生管 16 サンプリング
バッグ 7 吸着カラム 8 ガスクロマトグラフィー
DESCRIPTION OF SYMBOLS 1 Compressor 11 Compressor 2 Silica gel column 12 Silica gel column 3 Flow controller 13 Flow controller 4 Flow meter 14 Preheater 5 Constant temperature bath 15 Electric furnace 6 Adsorbed component vapor generation tube 16 Sampling bag 7 Adsorption column 8 Gas chromatography

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01J 20/18 B01D 53/04 B01D 53/44 B01D 53/81 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) B01J 20/18 B01D 53/04 B01D 53/44 B01D 53/81

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ピリジン昇温脱離法によって測定した固体
酸量0.1mmol/g以下、かつSiO2/Al23
モル比50以上のゼオライトからなることを特徴とす
る、大気圧下の沸点120℃以上、且つ、ケトン系有機
溶剤を除く有機成分を含む排ガス浄化用吸着剤。
1. The method according to claim 1, wherein the amount of the solid acid is 0.1 mmol / g or less as measured by a pyridine thermal desorption method, and SiO 2 / Al 2 O 3
A ketone-based organic material, comprising a zeolite having a molar ratio of 50 or more and a boiling point of 120 ° C. or more under atmospheric pressure.
Exhaust gas purifying adsorbent containing organic components excluding solvents .
【請求項2】大気圧下の沸点120℃以上、且つ、ケト
ン系有機溶剤を除く有機成分を含む排ガスを請求項1記
載の吸着剤と接触させ、ついで、該吸着剤を180℃以
上で再生することを特徴とする、高沸点成分を含む排ガ
スの浄化方法。
Wherein the atmospheric pressure boiling point of 120 ° C. or higher, and, keto
A method for purifying exhaust gas containing high-boiling components, comprising contacting an exhaust gas containing an organic component other than an organic solvent with the adsorbent according to claim 1, and regenerating the adsorbent at 180 ° C or higher. .
【請求項3】排ガスが大気圧下の沸点150℃以上、且
つ、ケトン系有機溶剤を除くの有機成分を含むものであ
る、請求項2記載の方法。
3. The exhaust gas has a boiling point of 150 ° C. or more under atmospheric pressure , and
3. The method according to claim 2, further comprising an organic component excluding a ketone-based organic solvent .
JP03207278A 1991-07-25 1991-07-25 Adsorbent for purifying exhaust gas containing high-boiling components and purification method Expired - Fee Related JP3111519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03207278A JP3111519B2 (en) 1991-07-25 1991-07-25 Adsorbent for purifying exhaust gas containing high-boiling components and purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03207278A JP3111519B2 (en) 1991-07-25 1991-07-25 Adsorbent for purifying exhaust gas containing high-boiling components and purification method

Publications (2)

Publication Number Publication Date
JPH0523586A JPH0523586A (en) 1993-02-02
JP3111519B2 true JP3111519B2 (en) 2000-11-27

Family

ID=16537151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03207278A Expired - Fee Related JP3111519B2 (en) 1991-07-25 1991-07-25 Adsorbent for purifying exhaust gas containing high-boiling components and purification method

Country Status (1)

Country Link
JP (1) JP3111519B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021080132A (en) * 2019-11-19 2021-05-27 東ソー株式会社 Hydrophobic zeolite and method for producing the same
CN113045419B (en) * 2021-03-24 2022-03-08 西南化工研究设计院有限公司 Preparation method and application of catalyst for removing pyridine from crude methyl acetate

Also Published As

Publication number Publication date
JPH0523586A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
JP4134031B2 (en) Method for the synthesis of mesoporous zeolite
BRPI0713297A2 (en) processes for the separation of gases, of the psa type, for the separation of carbon dioxide and, if present, h2s, from a gas mixture, and for the preparation of ers-7 type zeolites, and
EP0109063A2 (en) An improved polyvalent ion exchanged adsorbent for air separation
JP2016506293A (en) Gas separation method using DDR type zeolite having stabilized adsorption activity
JP2010172804A (en) Moisture removal using absorbent, voc concentration by temperature swinging method of performing recovery of cold, and voc recovering method by low-temperature liquefaction
EP0003486A1 (en) Novel combustion catalyst and process for preparing same
JP3839565B2 (en) Synthesis method of high silica silicate molecular sieve
CN109012021B (en) Application of CHA-type structure molecular sieve in formaldehyde adsorption
JP5181869B2 (en) PFC adsorbent and PFC abatement method using the same
JP3111519B2 (en) Adsorbent for purifying exhaust gas containing high-boiling components and purification method
MXPA06004512A (en) Light hydrocarbon separation using 8-member ring zeolites.
JP5124927B2 (en) Hydrocarbon adsorption / removal agent comprising β-type zeolite and hydrocarbon adsorption / removal method using the same
JP2004298662A (en) Method for preparing molecular sieve adsorbent for size/shape selective separation of air
JP2708212B2 (en) Method for modifying molecular sieve
Parlitz et al. Hydrolysis of P O Al bonds in AlPO4 and SAPO molecular sieves
JP3096989B2 (en) Adsorbent and gas purification method containing ketone organic solvent
EP0490037B1 (en) Adsorbent and cleaning method of waste gas containing ketonic organic solvents
JP3526892B2 (en) Method for purifying formaldehyde-containing gas
WO2021015129A1 (en) Hydrophobic zeolite, method for producing same and use of same
JP3149443B2 (en) Adsorbent and gas purification method containing ketone organic solvent
JP2002191973A (en) Method for preparing adsorbent particle
Chandwadkar et al. Thermal behaviour of modified faujasites
WO2010113169A1 (en) A process for the preparation and use of pentasil type zeolite for the selective adsorption of carbon dioxide from flue gas
US5256385A (en) Adsorbent and cleaning method of waste gas containing ketonic organic solvents
JPH09173827A (en) Manufacture of hydrocarbon adsorption element having improved adsorption characteristics

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070922

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees