JPH04209565A - Optical beam melted recrystallized semiconductor device and manufacture thereof - Google Patents
Optical beam melted recrystallized semiconductor device and manufacture thereofInfo
- Publication number
- JPH04209565A JPH04209565A JP2406244A JP40624490A JPH04209565A JP H04209565 A JPH04209565 A JP H04209565A JP 2406244 A JP2406244 A JP 2406244A JP 40624490 A JP40624490 A JP 40624490A JP H04209565 A JPH04209565 A JP H04209565A
- Authority
- JP
- Japan
- Prior art keywords
- film
- light beam
- region
- polycrystalline
- recrystallized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004065 semiconductor Substances 0.000 title claims description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 230000003287 optical effect Effects 0.000 title 1
- 239000011229 interlayer Substances 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 238000002844 melting Methods 0.000 claims abstract description 7
- 230000008018 melting Effects 0.000 claims abstract description 7
- 230000010354 integration Effects 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 12
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 238000001953 recrystallisation Methods 0.000 claims description 4
- 239000010408 film Substances 0.000 abstract description 87
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 14
- 230000002093 peripheral effect Effects 0.000 abstract description 8
- 229910052681 coesite Inorganic materials 0.000 abstract description 7
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 7
- 239000000377 silicon dioxide Substances 0.000 abstract description 7
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 7
- 229910052682 stishovite Inorganic materials 0.000 abstract description 7
- 229910052905 tridymite Inorganic materials 0.000 abstract description 7
- 238000005530 etching Methods 0.000 abstract description 4
- 239000010409 thin film Substances 0.000 abstract description 2
- 229920005591 polysilicon Polymers 0.000 abstract 5
- 229910052581 Si3N4 Inorganic materials 0.000 abstract 1
- 229910008814 WSi2 Inorganic materials 0.000 abstract 1
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910005091 Si3N Inorganic materials 0.000 description 1
- 239000005380 borophosphosilicate glass Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
[00011 [00011
【産業上の利用分野]本発明は、バルクトランジスタを
集積した領域上に、光ビーム溶融再結晶半導体膜を形成
し、この膜にトランジスタ等の素子を形成した光ビーム
溶融再結晶半導体装置およびその製造方法に関する。
[0002]
【従来の技術】従来、バルクトランジスタ集積領域上に
層間絶縁膜を介して多結晶半導体薄膜トランジスタを形
成した三次元半導体装置を、大容量、低消費電力のSR
AMのセル等に使用することが提案されている(信学技
報、SDM90−25、p、 7〜13.1990、
同SDM90−34、p、75〜80.1990参照)
、シかし、SRAMを、データ保持力を低下させないで
、さらに大容量化し、低消費電力化することが要望され
ている。
[0003]すなわち、データ保持力が高いCMOS型
SRAMにおける負荷用のMOSトランジスタを、単結
晶に形成されたドライバートランジスタの集積領域上に
絶縁膜を介して三次元的に形成することによって、メモ
リセルの面積を小さくすると同時に、データ保持力を向
上するために負荷用のMOSトランジスタのリーク電流
の低減を図ることが必須の課題となっている。
[0004]この要望に沿うと期待されるものとして、
バルクトランジスタ集積領域上に層間絶縁膜を介して堆
積した多結晶半導体膜を、光ビームにより溶融再結晶化
した半導体層に、負荷用のMOS トランジスタを形成
した三次元半導体装置が考えられる。
[0005]図2は、光ビーム溶融再結晶半導体装置の
構成説明図である。この図において、21はSt単結晶
基板、22はフィールド酸化膜、23はバルクトランジ
スタ集積領域、24は周辺回路領域、25は層間絶縁膜
、26は多結晶Si膜、27はSin:膜、28はSi
3N+膜、29はレーザー光ビームである。
[0006]この半導体装置は、5RANiメモリセル
のドライバートランジスタであるMOSFETを形成し
たバルクトランジスタ集積領域23と周辺回路を形成し
た周辺回路領域24からなるSi単結晶基板21の上に
、層間絶縁膜25を介して多結晶Si膜26を形成し、
その上にSiO2膜27、S ! 3 N+膜28を形
成し、その上からレーザー光ビーム29を走査して照射
し、多結晶Si膜26を溶融し、再結晶化することによ
って結晶化し、この結晶化したSi膜に負荷用のN丁O
81〜ランジスタを形成し、適宜電気的に接続すること
によって製造される。
[0007]図3は、溶融再結晶化に用いるレーザー光
ビームのパワーとその層に形成したpMO3のリーク電
流の関係図である。この図において1曲線Aは段差のあ
るSiO2膜上に形成した溶融再結晶半導体膜にpch
MO3FETを形成した場合のリーク電流を示し、また
、曲線Bは、平坦なSiO2膜上に形成した溶融再結晶
半導体膜にpMOsFETを形成した場合のリーク電流
を参考のため示している。なお、この図の測定に供した
装置はチャネル長が1.8μmであり、測定電圧はドレ
イン電圧が一3Vであり、縦軸はゲート幅μm当たりの
電流値を示している。
[0008]この図に示されるように、本発明の装置の
ように段差を有する5iOz膜上に溶融再結晶半導体膜
を形成する場合は、平坦なSiO2膜上に形成した溶融
再結晶半導体膜上に形成した場合よりリーク電流が大き
いが、レーザー光ビームのパワーが3.8W程度で両者
が一致しており、この曲線Aが示すpMO3のリーク電
流の傾向から知られるように、この三次元半導体装置の
電気特性は、光ビームのパワーを上げるほど向上する。
[0009][Industrial Application Field] The present invention relates to a light beam melted recrystallized semiconductor device in which a light beam melted recrystallized semiconductor film is formed on a region where bulk transistors are integrated, and elements such as transistors are formed on this film. Regarding the manufacturing method. [0002] Conventionally, a three-dimensional semiconductor device in which a polycrystalline semiconductor thin film transistor is formed on a bulk transistor integration region via an interlayer insulating film has been used as a high capacity, low power consumption SR.
It has been proposed to be used in AM cells, etc. (IEICE Technical Report, SDM90-25, p. 7-13.1990,
(See SDM90-34, p. 75-80.1990)
However, it is desired to further increase the capacity and reduce power consumption of SRAM without reducing data retention ability. [0003] That is, by three-dimensionally forming a load MOS transistor in a CMOS SRAM with high data retention on an integrated region of a driver transistor formed in a single crystal with an insulating film interposed therebetween, memory cells can be It is essential to reduce the leakage current of the load MOS transistor in order to reduce the area and at the same time improve data retention. [0004] As expected to meet this request,
A three-dimensional semiconductor device can be considered in which a load MOS transistor is formed in a semiconductor layer formed by melting and recrystallizing a polycrystalline semiconductor film deposited on a bulk transistor integration region via an interlayer insulating film using a light beam. [0005] FIG. 2 is an explanatory diagram of the configuration of a light beam melted recrystallized semiconductor device. In this figure, 21 is an St single crystal substrate, 22 is a field oxide film, 23 is a bulk transistor integration region, 24 is a peripheral circuit region, 25 is an interlayer insulating film, 26 is a polycrystalline Si film, 27 is a Sin: film, and 28 is Si
3N+ film, 29 is a laser beam. [0006] This semiconductor device has an interlayer insulating film 25 on a Si single crystal substrate 21 consisting of a bulk transistor integration region 23 in which a MOSFET, which is a driver transistor of a 5RANi memory cell, is formed and a peripheral circuit region 24 in which a peripheral circuit is formed. A polycrystalline Si film 26 is formed through the
On top of that is a SiO2 film 27, S! 3 Form an N+ film 28, scan and irradiate the laser beam 29 from above, melt the polycrystalline Si film 26, recrystallize it to crystallize it, and apply a load to this crystallized Si film. Ncho O
It is manufactured by forming transistors 81 to 81 and electrically connecting them as appropriate. [0007] FIG. 3 is a diagram showing the relationship between the power of the laser beam used for melt recrystallization and the leakage current of pMO3 formed in the layer. In this figure, 1 curve A shows pch in the molten recrystallized semiconductor film formed on the SiO2 film with steps.
For reference, curve B shows the leakage current when a MO3FET is formed, and curve B shows the leakage current when a pMOSFET is formed on a molten recrystallized semiconductor film formed on a flat SiO2 film. The device used for the measurements in this figure has a channel length of 1.8 μm, a drain voltage of 13 V for measurement, and the vertical axis indicates the current value per μm of gate width. [0008] As shown in this figure, when a molten recrystallized semiconductor film is formed on a 5iOz film having steps as in the apparatus of the present invention, the molten recrystallized semiconductor film formed on a flat SiO2 film is Although the leakage current is larger than when the three-dimensional semiconductor is formed, the two match when the laser beam power is about 3.8W. The electrical properties of the device improve as the power of the light beam increases. [0009]
【発明が解決しようとする課題】この従来の技術におい
ては、バルクトランジスタ集積領域上以外の多結晶Si
膜の下層は、バルクトランジスタのフィールド酸化膜(
厚さ〜6000 A)になっているため、バルクトラン
ジスタ集積領域上に比較して、この部分の下層への熱の
逃げは悪く、より高温になりやすい。
[00101そのため、三次元集積回路の電気特性を向
上させることを目的として、レーザー光ビームのパワー
を上げて、バルクトランジスタ集積領域上の多結晶Si
膜が適正な溶融状態を呈するように調節すると、フィー
ルド酸化膜上の多結晶Si膜は、それより高温になり、
レーザー光ビームの走査にともなって、その領域の多結
晶膜Siが極度に溶融して、その走査経路の両側に飛散
する現象(この現象を剥離現象と称している。)が生じ
、この現象が一旦始まると、そこからレーザー光ビーム
の走査につれて三次元集積回路形成領域まで波及して延
び、走査経路の両側に飛散した溶融Siが凝固して大き
な塊を作・ったり、5000 A程度の高さの敵状に凝
固する二とがあった。
[00111この現象が起きると、溶融再結晶Si膜の
表面が平坦でなくなり、その後バターニングのために加
えるエツチングの条件設定が困難になって、三次元半導
体が形成できなくなるという問題が生じていた。この現
象を防ぐためには、バルクトランジスタ集積領域上以外
の多結晶Si膜をエツチング等によって除去した後に溶
融再結晶化工程を加えることが考えられる。
[0012]Lかし、この方法によるとバルクトランジ
スタ集積領域以外に形成されている周辺回路を構成する
バルクトランジスタ(図2の24)の上には層間絶縁膜
のみ存在することになるからレーザー光ビームが直接こ
のバルクトランジスタに照射し、その特性を劣化させる
おそれが生じる。そのため、バルクトランジスタ集積領
域上以外にも多結晶Si膜を残しておくことが必要であ
る。本発明は、上記の問題点を生じることなく、高パワ
ーのレーザー光ビームを照射して高性能の溶融再結晶半
導体装置を提供することを目的とする。
[0013][Problems to be Solved by the Invention] In this conventional technique, polycrystalline silicon is
The lower layer of the film is the field oxide film of the bulk transistor (
Since the thickness is approximately 6,000 A), heat escapes to the lower layer in this part is poorer than that above the bulk transistor integration region, and the temperature tends to rise more easily. [00101 Therefore, for the purpose of improving the electrical characteristics of three-dimensional integrated circuits, the power of the laser beam is increased and polycrystalline Si on the bulk transistor integration region is
When the film is adjusted to the proper melting state, the polycrystalline Si film on the field oxide film will be at a higher temperature than that of the polycrystalline Si film.
As the laser beam scans, a phenomenon occurs in which the polycrystalline Si film in that region melts to an extreme extent and scatters to both sides of the scanning path (this phenomenon is called a peeling phenomenon). Once started, as the laser light beam scans, it spreads to the three-dimensional integrated circuit forming area, and the molten Si scattered on both sides of the scanning path solidifies into large lumps, causing a high temperature of about 5000 A. There were two people who solidified into enemies. [00111 When this phenomenon occurs, the surface of the molten recrystallized Si film becomes uneven, making it difficult to set the conditions for etching that is subsequently added for buttering, and creating a problem in which a three-dimensional semiconductor cannot be formed. . In order to prevent this phenomenon, it is conceivable to add a melt recrystallization step after removing the polycrystalline Si film other than on the bulk transistor integrated region by etching or the like. [0012] However, according to this method, only the interlayer insulating film exists on the bulk transistor (24 in FIG. 2) forming the peripheral circuit formed outside the bulk transistor integration area, so the laser beam is There is a possibility that the beam will directly irradiate this bulk transistor and deteriorate its characteristics. Therefore, it is necessary to leave the polycrystalline Si film on areas other than the bulk transistor integration area. An object of the present invention is to provide a high-performance fused-recrystallized semiconductor device by irradiating a high-power laser beam without causing the above-mentioned problems. [0013]
【課題を解決するための手段】本発明にかかる光ビーム
溶融再結晶半導体装置においては、バルクトランジスタ
集積領域を有する半導体基板と、その上に形成された層
間絶縁膜と、該層間絶縁膜の上に形成された多結晶半導
体膜に、該バルクトランジスタ集積領域のみに開口を有
する光ビーム反射膜の上から光ビームを照射することに
よって溶融再結晶化された半導体膜と、該溶融再結晶化
された半導体膜中に形成されたトランジスタ等の素子を
含む構成を採用した。
[0014]また、本発明にかかる光ビーム溶融再結晶
半導体装置の製造方法においては、バルクトランジスタ
集積領域を有する半導体基板の上に層間絶縁膜を形成す
る工程と、この層間絶縁膜の上に多結晶半導体膜を形成
する工程と、この多結晶半導体膜の上のバルクトランジ
スタ集積領域以外の部分に光ビーム反射膜を形成する工
程と、この光ビーム反射膜の上から光ビームを照射して
この多結晶半導体膜を溶融再結晶化する工程と、この溶
融再結晶化した半導体膜中にトランジスタ等の素子を形
成する工程を採用した。
[0015][Means for Solving the Problems] A light beam melted recrystallized semiconductor device according to the present invention includes a semiconductor substrate having a bulk transistor integration region, an interlayer insulating film formed on the semiconductor substrate, and an interlayer insulating film formed on the semiconductor substrate. A semiconductor film melted and recrystallized by irradiating a light beam from above a light beam reflecting film having an opening only in the bulk transistor integration region; A structure including elements such as transistors formed in a semiconductor film was adopted. [0014] Furthermore, the method for manufacturing a light beam melted recrystallized semiconductor device according to the present invention includes a step of forming an interlayer insulating film on a semiconductor substrate having a bulk transistor integration region, and a step of forming a multilayer insulating film on the interlayer insulating film. A process of forming a crystalline semiconductor film, a process of forming a light beam reflection film on the polycrystalline semiconductor film in a portion other than the bulk transistor integration area, and a process of irradiating a light beam from above the light beam reflection film to A process of melting and recrystallizing a polycrystalline semiconductor film and a process of forming elements such as transistors in the melted and recrystallized semiconductor film were adopted. [0015]
【作用】本発明の手段を用いて多結晶Si膜の溶融再結
晶化を行うと、バルクトランジスタ集積領域上以外の多
結晶Si膜に入射するレーザー光ビームのパワーは、反
射して減少するため、この部分の多結晶半導体膜の温度
は、バルクトランジスタ集積領域上の多結晶Si膜より
低くなり、前記の、いわゆる、剥離現象を抑えることが
できる。
[0016][Operation] When a polycrystalline Si film is melted and recrystallized using the means of the present invention, the power of the laser beam incident on the polycrystalline Si film other than on the bulk transistor integration area is reflected and reduced. The temperature of the polycrystalline semiconductor film in this portion is lower than that of the polycrystalline Si film on the bulk transistor integration region, and the above-mentioned so-called peeling phenomenon can be suppressed. [0016]
【実施例】以下、本発明の詳細な説明する。 図1は、
本発明の一実施例の光ビーム溶融再結晶半導体装置の概
略構成図である。この図において、1はSi単結晶基板
、2はフィールド酸化膜、3はバルクトランジスタ集積
領域、4は周辺回路領域、5は層間絶縁膜、6は多結晶
Si膜、7は5in2膜、8はSi3N+膜、9はWS
i2反射膜、10はレーザー光ビームである。
[0017]この半導体装置は、S1単結晶基板1の上
に、従来知られている製造工程を用いることにより、各
素子間を分離するフィールド酸化膜2を形成し、このフ
ィールド酸化膜2によって囲まれた領域に、この図では
3個の〜■○5FETからなる、SRAMのメモリセル
のドライバートランジスタであるバルクトランジスタ集
積領域3と周辺回路領域4を形成し、その上に、Sin
:膜/BPSG膜/5i02膜(100nm/300n
m/200nm)からなる層間絶縁膜5を堆積し、その
上に多結晶Si膜6を堆積し、その上に厚さ50nmの
SiO2膜7と厚さ1100nのS ! 3 N4膜8
を堆積し、さらにその上に厚さ1100nのWSiz反
射膜9を堆積し、このWSiz反射膜9のバルクトラン
ジスタ集積領域3上のみをエツチングして除去する。
[0018]この状態で、Arレーザーによるレーザー
光10を照射して、WSiz反射膜がない部分の多結晶
Si膜6を溶融し、再結晶化することによって結晶化し
、この結晶化したSi膜に負荷用のMOSトランジスタ
を形成し、適宜電気的に接続することによってSRAM
を製造する。
この時の条件を下に示す。
1、レーザーパワー 4W
28 レーザーの波長 488 nm3、レー
ザーの装置速度 150mm/5ec4、基板温度
500℃[0019]この基板温度は
、その上面がレーザー光が照射されて1415℃程度に
加熱されるため、基板中に生じる歪みを緩和するために
昇温されているものである。また、キャップ層、S i
Oz /S i:+ N4膜(7,8)は、溶融したS
tの形状を保ち、剥離を抑える機能と、レーザー光の吸
収効率を向上して効率よく溶融再結晶を行う機能を有し
ている。
[00201なお、上記の実施例においては、光ビーム
としてレーザー光ビームを、半導体材料としてSiを用
いたが、本発明は、この光源、材料に限定されないこと
はいうまでもない。また、SRAMに限定されることも
なく、広く光ビームを用いて溶融再結晶化する工程に適
用できる。
[00211
【発明の効果]本発明によると、多結晶Siを剥離する
ことなく、高パワーでバルクトランジスタ集積領域上の
多結晶Stの溶融再結晶化を行うことができる。EXAMPLES The present invention will be explained in detail below. Figure 1 shows
1 is a schematic configuration diagram of a light beam melted recrystallized semiconductor device according to an embodiment of the present invention. In this figure, 1 is a Si single crystal substrate, 2 is a field oxide film, 3 is a bulk transistor integration area, 4 is a peripheral circuit area, 5 is an interlayer insulating film, 6 is a polycrystalline Si film, 7 is a 5in2 film, and 8 is a Si3N+ film, 9 is WS
i2 reflective film, 10 is a laser beam. [0017] In this semiconductor device, a field oxide film 2 for isolating each element is formed on an S1 single crystal substrate 1 using a conventionally known manufacturing process, and the semiconductor device is surrounded by the field oxide film 2. In this figure, a bulk transistor integration region 3, which is a driver transistor of an SRAM memory cell, and a peripheral circuit region 4, which are composed of three ~■○5FETs in this figure, are formed.
: Film/BPSG film/5i02 film (100nm/300n
A polycrystalline Si film 6 is deposited on top of the interlayer insulating film 5, and a 50 nm thick SiO2 film 7 and a 1100 nm thick S! 3 N4 membrane 8
A WSiz reflective film 9 having a thickness of 1100 nm is further deposited thereon, and only the portion of the WSiz reflective film 9 on the bulk transistor integration region 3 is removed by etching. [0018] In this state, a laser beam 10 from an Ar laser is irradiated to melt and recrystallize the polycrystalline Si film 6 in the area where there is no WSiz reflective film, and this crystallized Si film is By forming a MOS transistor for load and electrically connecting it as appropriate, SRAM
Manufacture. The conditions at this time are shown below. 1. Laser power 4W 28 Laser wavelength 488 nm3, Laser device speed 150mm/5ec4, Substrate temperature 500°C [0019] This substrate temperature is because the upper surface of the substrate is heated to about 1415°C by irradiation with laser light. The temperature is raised to alleviate the strain that occurs in the substrate. In addition, a cap layer, Si
Oz /S i:+N4 film (7,8) is composed of molten S
It has the function of maintaining the T shape and suppressing peeling, and the function of improving laser light absorption efficiency and efficiently melting and recrystallizing. [00201 In the above embodiment, a laser beam was used as the light beam and Si was used as the semiconductor material, but it goes without saying that the present invention is not limited to these light sources and materials. Further, the present invention is not limited to SRAM, and can be widely applied to a process of melting and recrystallizing using a light beam. [Effects of the Invention] According to the present invention, polycrystalline St on a bulk transistor integrated region can be melted and recrystallized with high power without peeling off polycrystalline Si.
【図1】本発明の一実施例の光ビーム溶融再結晶半導体
装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a light beam melted recrystallized semiconductor device according to an embodiment of the present invention.
【図2】光ビーム溶融再結晶半導体装置の構成説明図で
ある。FIG. 2 is an explanatory diagram of the configuration of a light beam melted recrystallized semiconductor device.
【図3】溶融再結晶化に用いるレーザー光ビームのパワ
ーとその層に形成した9MO8のリーク電流の関係図で
ある。FIG. 3 is a diagram showing the relationship between the power of the laser beam used for melt recrystallization and the leakage current of 9MO8 formed in the layer.
I Si単結晶基板 2 フィールド酸化膜 3 バルクトランジスタ集積領域 4 周辺回路領域 5 層間絶縁膜 6 多結晶Si膜 7SiO2膜 8Si3N2膜 9WSi2反射膜 10 レーザー光ビーム I Si single crystal substrate 2 Field oxide film 3 Bulk transistor integration area 4 Peripheral circuit area 5 Interlayer insulation film 6 Polycrystalline Si film 7SiO2 film 8Si3N2 film 9WSi2 reflective film 10 Laser light beam
Claims (2)
体基板と、その上に形成された層間絶縁膜と、該層間絶
縁膜の上に形成された多結晶半導体膜に、該バルクトラ
ンジスタ集積領域のみに開口を有する光ビーム反射膜の
上から光ビームを照射することによって溶融再結晶化さ
れた半導体膜と、該溶融再結晶化された半導体膜中に形
成されたトランジスタ等の素子を含むことを特徴とする
光ビーム溶融再結晶半導体装置。1. A semiconductor substrate having a bulk transistor integration region, an interlayer insulating film formed thereon, and a polycrystalline semiconductor film formed on the interlayer insulating film, with an opening formed only in the bulk transistor integration region. A semiconductor film melted and recrystallized by irradiating a light beam from above a light beam reflecting film having a structure, and an element such as a transistor formed in the melted and recrystallized semiconductor film. A light beam melting recrystallization semiconductor device.
体基板の上に層間絶縁膜を形成する工程と、この層間絶
縁膜の上に多結晶半導体膜を形成する工程と、この多結
晶半導体膜の上のバルクトランジスタ集積領域以外の部
分に光ビーム反射膜を形成する工程と、この光ビーム反
射膜の上から光ビームを照射してこの多結晶半導体膜を
溶融し再結晶化する工程と、この再結晶化した半導体膜
中にトランジスタ等の素子を形成する工程を含むことを
特徴とする光ビーム溶融再結晶半導体装置の製造方法。2. A step of forming an interlayer insulating film on a semiconductor substrate having a bulk transistor integration region, a step of forming a polycrystalline semiconductor film on the interlayer insulating film, and a step of forming a polycrystalline semiconductor film on the polycrystalline semiconductor film. A process of forming a light beam reflection film in a portion other than the bulk transistor integration area, a process of irradiating a light beam from above the light beam reflection film to melt and recrystallize the polycrystalline semiconductor film, and a process of recrystallizing the polycrystalline semiconductor film. 1. A method for manufacturing a light beam melted recrystallized semiconductor device, comprising the step of forming elements such as transistors in a semiconductor film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2406244A JPH04209565A (en) | 1990-12-07 | 1990-12-07 | Optical beam melted recrystallized semiconductor device and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2406244A JPH04209565A (en) | 1990-12-07 | 1990-12-07 | Optical beam melted recrystallized semiconductor device and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04209565A true JPH04209565A (en) | 1992-07-30 |
Family
ID=18515858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2406244A Withdrawn JPH04209565A (en) | 1990-12-07 | 1990-12-07 | Optical beam melted recrystallized semiconductor device and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04209565A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5302538A (en) * | 1992-08-04 | 1994-04-12 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing field effect transistor |
-
1990
- 1990-12-07 JP JP2406244A patent/JPH04209565A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5302538A (en) * | 1992-08-04 | 1994-04-12 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing field effect transistor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62104117A (en) | Manufacture of semiconductor thin film | |
JPH03244136A (en) | Manufacture of thin-film transistor | |
JPH05206468A (en) | Thin film transistor and its manufacture | |
JPH02224255A (en) | Thin film semiconductor device and manufacture thereof | |
JPH0362971A (en) | Thin-film transistor | |
JPH09260676A (en) | Manufacture of thin-film transistor | |
JPH04209565A (en) | Optical beam melted recrystallized semiconductor device and manufacture thereof | |
JPH10150200A (en) | Thin film transistor and its manufacture | |
JP2709591B2 (en) | Method for manufacturing recrystallized semiconductor thin film | |
KR100304123B1 (en) | A method of fabricating thin film transistor using trench structure and capping layer | |
JP2817613B2 (en) | Method for forming crystalline silicon film | |
JPH10150202A (en) | Thin film transistor and its manufacture | |
JPS6159820A (en) | Manufacture of semiconductor device | |
JPS5928328A (en) | Preparation of semiconductor device | |
JPH10178178A (en) | Manufacture of semiconductor device | |
JPH0372617A (en) | Improvement of characteristic of polycrystalline silicon thin film | |
JPH07131029A (en) | Fabrication of thin film transistor | |
JPH06163589A (en) | Thin-film transistor and its manufacture | |
JP2005012003A (en) | Crystalline semiconductor film and method for manufacturing the same | |
JPH04139727A (en) | Thin film transistor and manufacture thereof | |
JPH03284831A (en) | Forming method for semiconductor thin-film | |
JPH0992836A (en) | Polysilicon thin film transistor | |
JPH10312962A (en) | Formation of polycrystalline silicon thin film and polycrystalline silicon thin-film transistor | |
JPS63226024A (en) | Manufacture of semiconductor device | |
JPH0521344A (en) | Thin film transistor and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980312 |