JPH04207033A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04207033A
JPH04207033A JP34013790A JP34013790A JPH04207033A JP H04207033 A JPH04207033 A JP H04207033A JP 34013790 A JP34013790 A JP 34013790A JP 34013790 A JP34013790 A JP 34013790A JP H04207033 A JPH04207033 A JP H04207033A
Authority
JP
Japan
Prior art keywords
conductive film
deposited
via hole
sputtering method
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34013790A
Other languages
Japanese (ja)
Inventor
Ryoichi Mukai
良一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP34013790A priority Critical patent/JPH04207033A/en
Publication of JPH04207033A publication Critical patent/JPH04207033A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To fill a via hole well, to flatten an interconnection layer and to form a plug by a method wherein a first conductive film is deposited by one out of a high-temperature and high-bias sputtering method, a high-temperature sputtering method and a selective metal CVD method and, after that, a second conductive film is deposited by an ordinary sputtering method or a vapor deposition method. CONSTITUTION:A first insulating layer 2a and an interconnection layer 5 are formed on a substrate 1; after that, a second insulating film 2b in which a via hole 4 has been made is formed; a first conductive film 3a composed of Al is first deposited in the via hole 4 by a high-temperature and high-bias sputtering method. The first conductive film 3a is not deposited on a sidewall means of the deposition method, but it can be deposited on the bottom part with good efficiency. The first conductive film 3a formed on the surface of the second insulating film 2b is deposited so as to be a taper shape. In addition, a second conductive film 3b composed of Al is deposited by an ordinary sputtering method. The second conductive film 3b cannot be deposited on the bottom part efficiently, but, when the via hole is shallow, it can be deposited on its sidewall.

Description

【発明の詳細な説明】 〔概要〕 ビアホールの埋め込みを行う技術およびビアホールにプ
ラグを形成する技術に関し、 ビアホール内壁に連続した導電膜を堆積することを目的
とし、 基板上に形成された絶縁層に設けられたビアホール内に
、第1の導電膜を堆積する工程と、該ビアホール内壁を
含む少なくとも該ビアホールの周辺部に、第2の導電膜
を堆積する工程と、該第2の導電膜にエネルギービーム
を照射することにより該第2の導電膜を溶融し、該ビア
ホールを該溶融した第2の導電膜にて埋め込む工程とを
含むように製造する。
[Detailed Description of the Invention] [Summary] Regarding technology for filling via holes and technology for forming plugs in via holes, the purpose of this invention is to deposit a continuous conductive film on the inner wall of the via hole, and to deposit a continuous conductive film on the inner wall of the via hole. a step of depositing a first conductive film in the provided via hole; a step of depositing a second conductive film at least on the periphery of the via hole including the inner wall of the via hole; and applying energy to the second conductive film. The second conductive film is melted by irradiation with a beam, and the via hole is filled with the melted second conductive film.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体デバイス中に形成される配線層の平坦
化と各配線層間を接続させるために形成したビアホール
の埋め込みを行う技術およびビアホールにプラグを形成
する技術に関する。
The present invention relates to a technique for flattening wiring layers formed in a semiconductor device and burying via holes formed to connect wiring layers, and a technique for forming plugs in the via holes.

特にこの平坦化及びプラグ形成にレーザ溶融技術を用い
た場合に利用される。この技術では、導電膜またはスル
ーホールを覆う様にパターニングした導電膜パターン(
金属キャップ)に、パルスレーザ光照射を行って溶融し
物質移動させて導電膜の平坦化とビアホールの埋め込み
の同時形成(レーザ平坦化法)、またはプラグの形成(
レーザプラグ形成法)を行う。第4図及び第5図面の簡
単な説明図をそれぞれ示す。
This is particularly useful when laser melting technology is used for flattening and plug formation. With this technology, a conductive film pattern (
The metal cap) is irradiated with pulsed laser light to melt and transfer materials to simultaneously form a conductive film and fill a via hole (laser flattening method), or to form a plug (
Laser plug formation method). A simple explanatory diagram of FIGS. 4 and 5 is shown, respectively.

集積回路で用いられる配線において、通常の方法(蒸着
、スパッタ)で堆積した導電膜のステップカバレジは悪
く、これはビアホールを微細化するに従いさらに悪化す
る。この問題は、シャドー効果でビアホールの側壁に付
着する導電膜の量が減少するために生じたものである。
In interconnects used in integrated circuits, step coverage of conductive films deposited by conventional methods (evaporation, sputtering) is poor, and this worsens as via holes become smaller. This problem arises because the amount of conductive film attached to the sidewall of the via hole is reduced due to the shadow effect.

もし、このビアホールを導電材料で埋め込むこと(プラ
グ形成)ができれば、この問題は解決する。また、配線
層の平坦化は多層配線を形成する際に有利である。
If this via hole could be filled with a conductive material (plug formation), this problem would be solved. Furthermore, flattening the wiring layer is advantageous when forming multilayer wiring.

なぜなら、露光時の被写体深度の問題、上層に接続させ
るビアホール配置の制限などが回避できるからである。
This is because problems such as depth of field problems during exposure and restrictions on the arrangement of via holes connected to upper layers can be avoided.

〔従来の技術〕[Conventional technology]

従来より行われていたレーザ平坦化技術及びレーザプラ
グ形成技術では、第4図及び第5図に示す如く、S電膜
を通常スパッタ法または蒸着法のいずれか一方のみで堆
積して、レーザ溶融を行っていた。
In the conventional laser flattening technology and laser plug forming technology, as shown in FIGS. 4 and 5, the S electrical film is usually deposited by either sputtering or vapor deposition, and then laser melted. was going on.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した方法では、ビアサイズが狭まるかビアホール深
さが増すようないずれかの状態が単独にまたは両者が同
時に起こるに従い、この部分に位置したビアホールでボ
イドが発生し配線不良を引き起こす。
In the method described above, as either the via size narrows or the via hole depth increases, either singly or simultaneously, voids occur in the via holes located in these areas, causing wiring defects.

〔課題を解決するための手段] 高温・高バイアススパッタ法、高温スパッタ法、選択メ
タルCVD法のいずれかの方法で第Iの導電膜の堆積を
行った後に、通常スパッタ法または蒸着法にて第2の導
電膜を堆積する。
[Means for solving the problem] After depositing the first conductive film by one of the high temperature/high bias sputtering method, the high temperature sputtering method, and the selective metal CVD method, the first conductive film is deposited by the normal sputtering method or the vapor deposition method. Depositing a second conductive film.

〔作用〕[Effect]

レーザプラグ形成技術では、第6図に示すように、導電
膜がビアホール側壁に連続して付着している状態が必要
である。なぜなら、第7図に示すように、これが不連続
状態であった場合には、側壁にあった導電膜の一部ある
いはすべてが溶融状態にある時にビアホールの上方また
は底部に物質移動してしまいボイドが発注してしまうか
らである。
The laser plug forming technique requires a state in which the conductive film is continuously attached to the side wall of the via hole, as shown in FIG. This is because, as shown in Figure 7, if this is in a discontinuous state, part or all of the conductive film on the side wall will move to the top or bottom of the via hole when it is in a molten state, resulting in voids. This is because they place orders.

一方、通常スパッタ及び蒸着法で導電膜を堆積した際に
、ビアサイズの縮小、ビアホール深さの増加に伴ってビ
アホール側壁で不連続状態が発生し易くなるのは、この
部分への付着率が減少するためである。
On the other hand, when a conductive film is deposited using normal sputtering or vapor deposition methods, discontinuities tend to occur on the sidewalls of the via hole as the via size decreases and the via hole depth increases because the adhesion rate to this area decreases. This is to do so.

本発明では、第1図に示すように、通常スパンタ法では
不連続膜を形成してしまうビアホール底部に高温・高バ
イアスまたは高温スパッタ法、選択メタルCVD法によ
りビアホール底部への第1の導電膜の堆積を行い、その
後に通常スパッタ及び蒸着法で第2の導電膜を堆積する
ことで、第2ノ導電膜がビアホール側壁に連続して付着
している状態を実現した。
In the present invention, as shown in FIG. 1, a first conductive film is formed at the bottom of the via hole by high temperature/high bias or high temperature sputtering method or selective metal CVD method on the bottom of the via hole where a discontinuous film is formed by the normal spunter method. was deposited, and then a second conductive film was deposited by ordinary sputtering and evaporation methods, thereby realizing a state in which the second conductive film was continuously attached to the side wall of the via hole.

〔実施例〕〔Example〕

今回のすべての実施例でレーザ照射は、XeClエキシ
マレーザ光を集光して0.6 J/cm”のパルスエネ
ルギー密度にして行った。
In all of the Examples, laser irradiation was performed by focusing XeCl excimer laser light at a pulse energy density of 0.6 J/cm''.

第一の実施例 ここでは、導電膜としてAI (アルミニウム)をまず
高温・窩バイアススパッタ法によってとアホ−ル深さよ
り薄く堆積し、さらにAlを通常スパッタ法によって重
ねて堆積した例を示す。
First Embodiment Here, an example is shown in which AI (aluminum) is first deposited as a conductive film thinner than the hole depth by high temperature/hole bias sputtering, and then Al is deposited overlyingly by normal sputtering.

第2図には、第1と第2の各AI配線層間を接続するス
ルーホール(ビアホール)の埋め込みで実施した例を示
す。
FIG. 2 shows an example in which through holes (via holes) connecting the first and second AI wiring layers are filled.

第2図(a)参照 本図には、基板1上に第1の絶縁層2a、配線層5を形
成した後に、ビアホール4が設けられた第2の絶縁層2
bが形成された状態を示す。
Refer to FIG. 2(a) In this figure, after forming a first insulating layer 2a and a wiring layer 5 on a substrate 1, a second insulating layer 2 with via holes 4 is formed.
b shows the state in which it is formed.

第2図働)参照 本図にはこのビアホール4に、まず、高温・高バイアス
スパッタ法で例えばAlからなる第1の導電膜3aを堆
積した状態を示す。
(See Figure 2) This figure shows a state in which a first conductive film 3a made of, for example, Al is deposited in the via hole 4 by a high temperature, high bias sputtering method.

この堆積方法では、図示したように、第1の導電膜3a
が側壁には堆積しないが底部には効率良く堆積できれる
。尚、第2の絶縁層2b表面に形成される第1の導電膜
3aは、テーパ状に堆積する。
In this deposition method, as shown in the figure, the first conductive film 3a
is not deposited on the side walls, but can be deposited efficiently on the bottom. Note that the first conductive film 3a formed on the surface of the second insulating layer 2b is deposited in a tapered shape.

第2図(C)参照 本図には、さらに、通常スパッタ法によって例えばAI
からなる第2の導電膜3bを堆積した状態を示す。
Refer to FIG. 2(C) This figure further shows that, for example, AI is formed by the normal sputtering method.
This shows the state in which a second conductive film 3b consisting of is deposited.

この堆積は、底部への堆積を効率的にできないが、ビア
ホールが浅い場合に側壁に第2の導電膜3bを堆積でき
る。したがって、2つの堆積方法の特徴を組み合わせて
上述のように使用する゛ことにより、本図に示すような
、ビアホールの上部から側壁、底部まで第2の導電膜3
bが連続して堆積した状態を実現できる。
Although this deposition cannot efficiently deposit on the bottom, the second conductive film 3b can be deposited on the sidewall when the via hole is shallow. Therefore, by combining the features of the two deposition methods and using them as described above, the second conductive film 3 can be formed from the top of the via hole to the sidewalls and the bottom, as shown in this figure.
A state in which b is continuously deposited can be realized.

第2図(d)参照 このような状態が形成できたことにより、本図に示すよ
うに、良好な埋め込みと配線層の平坦化がレーザ照射に
よって実行できた。
See FIG. 2(d) By forming such a state, as shown in this figure, good embedding and planarization of the wiring layer could be performed by laser irradiation.

第二の実施例 ここでは、導電膜としてW(タングステン)をまず選択
CVD法によってビアホール深さよりも薄く堆積し、そ
の後にA1を通常スパッタ法によって重ねて堆積した例
を示す。
Second Embodiment Here, an example will be shown in which W (tungsten) is first deposited as a conductive film thinner than the depth of the via hole by selective CVD, and then A1 is overlaid by normal sputtering.

第3図には第1と第2の各AI配線層間を接続するビア
ホールの埋め込みで実施した例を示す。
FIG. 3 shows an example in which via holes connecting the first and second AI wiring layers are filled.

第3図(a)参照 本図には、基板1上に第1の絶縁層2a、配線層5を形
成した後に、ビアホール4が設けられた第2の絶縁層2
bが形成された状態を示す。
Refer to FIG. 3(a). In this figure, after forming a first insulating layer 2a and a wiring layer 5 on a substrate 1, a second insulating layer 2 with via holes 4 is formed.
b shows the state in which it is formed.

第3図(b)参照 本図には、このビアホール4の底部にまず選択CVD法
により例えばWよりなる第1の導電膜3aを堆積した状
態を示す。
Refer to FIG. 3(b). This figure shows a state in which a first conductive film 3a made of, for example, W is deposited on the bottom of the via hole 4 by selective CVD.

第3図(C)参照 本図には、さらに、通常スパッタ法によって例えばAI
からなる第2の導電膜3bを堆積した状態を示す。
Refer to FIG. 3(C) This figure further shows that, for example, AI is
This shows the state in which a second conductive film 3b consisting of is deposited.

この状態では、Wの選択成長でビアホール4の深さが実
質的に浅(なったために、ビアホール4の上部から側壁
、底部まで第2の導電膜3bが連続して堆積した状態を
実現できる。
In this state, the depth of the via hole 4 becomes substantially shallow due to the selective growth of W, so that a state in which the second conductive film 3b is continuously deposited from the top to the sidewalls and bottom of the via hole 4 can be realized.

第3図(d)参照 このような状態が形成できたことにより、本図に示すよ
うに、良好な埋め込みと導電膜3bの平坦化がレーザ照
射によって実行できた。なお、本方法の利点は、選択C
VD法のみでビアホールの埋め込みを行う方法に比べて
スループットが向上することである。
See FIG. 3(d) By forming such a state, as shown in this figure, good embedding and planarization of the conductive film 3b could be performed by laser irradiation. Note that the advantage of this method is that selection C
The throughput is improved compared to a method in which via holes are filled only by the VD method.

第三の実施例 この実施例では、先に示した第一、第二の実施例で示し
た高温・高バイアススパッタまたは選択CVDによる第
1の導電膜3aの堆積の前に、Ti(チタン)膜の堆積
を行うことにより良好なコンタクト特性が得られる例を
示す。
Third Embodiment In this embodiment, Ti (titanium) is deposited before depositing the first conductive film 3a by high temperature/high bias sputtering or selective CVD as shown in the first and second embodiments. An example will be shown in which good contact characteristics can be obtained by depositing a film.

このTiの堆積により金属−金属間の接続が良好に行え
る。
This Ti deposition provides good metal-to-metal connection.

第四の実施例 上記した3つの実施例で、レーザ照射前に第2の導電膜
3bのパターニングを行って、ビアボール4とその周辺
のみに第2の導電膜3bを残すことにより、レーザプラ
グの形成ができる。
Fourth Embodiment In the three embodiments described above, the second conductive film 3b is patterned before laser irradiation, and the second conductive film 3b is left only on the via ball 4 and its surroundings. Can be formed.

〔発明の効果] 以上説明した様に、本発明により、良好なビアホールの
埋め込みと配線層の平坦化および、プラグ形成が実行で
きる。
[Effects of the Invention] As described above, according to the present invention, it is possible to perform excellent filling of via holes, planarization of wiring layers, and formation of plugs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の基本原理図、 第2図は、本発明の第一の実施例を製造工程順に示す説
明図、 第3図は、本発明の第二の実施例を製造工程順に示す説
明図、 第4図は、従来のレーザ平坦化法を工程順に示す説明図
、 第5図は、従来のレーザプラグ形成法を工程順に示す説
明図、 第6図は、導電膜が連続形成された状態を示す説明図、 第7図は、導電膜が不連続形成された状態を示す説明図
である。 図中、1. 、 、 、基板、 2、、、、絶縁層、 2a00.第1の絶縁層、 2b0.、第2の絶縁層、 3、、、、導電膜、 3a0.、第1の導電膜、 3b、、、第2の導電膜、 4、、、、  ビアホール、 5、、、、配線層。 本発明の基ホρIT図 第 1 図 (α) (b) 本発明の第一〇¥化例と製鏡江汀)鋳に示I朕明図第 
Z 図(hつj) (C) 本発明の躬−の実売4?Jと製壺工f¥ノ憶1ご示f説
りHm第 2図(iの2) (αう (b) ホ灼月0第二の定庸ブタ“jと裂碧丁Hし盾1こ示J説
明m躬 3図(乞の1) (C) (CI) 、本、弁」月の第二の実ソ七タリとホd君工千Y)“P
lご示万彊りS7i  3 12] (tの2) (θ) (b) 商のレー゛ワ′乎↓旦イ乙ジ去ど工rヱ1゛戻に足、T
説8月図第4図 (α〕 (レジ 従来のレーザ7フグ形成5ムどエナヱ1゛脂2示万祝明
図弔 5Ml 専仏月1\゛舅沫介形、成ざPCで1人、忙とホ”fW
兇明m丙乙図 力1云月更力1゛令U!牽形り見2沢R(人態乙丁−V
j兄ヅH刀第7図
Figure 1 is an illustration of the basic principle of the present invention. Figure 2 is an explanatory diagram showing the first embodiment of the present invention in the order of manufacturing steps. Figure 3 is an illustration of the second embodiment of the present invention in the order of the manufacturing steps. 4 is an explanatory diagram showing the conventional laser flattening method in the order of steps. FIG. 5 is an explanatory diagram showing the conventional laser plug forming method in the order of steps. FIG. 7 is an explanatory diagram showing a state in which the conductive film is discontinuously formed. In the figure, 1. , , ,Substrate, 2, ,Insulating layer, 2a00. first insulating layer, 2b0. , second insulating layer, 3, , conductive film, 3a0. , first conductive film, 3b, second conductive film, 4, via hole, 5, wiring layer. Figure 1 (α) (b) Basic diagram of the present invention Figure 1 (α) (b) Figure 1
Z Diagram (htsuj) (C) Actual sales of the present invention 4? J and the pot makerf ¥ no memory 1 explanation f explanation Hm 2nd figure (i no 2) (α u (b) ho scorching moon 0 second regular pig ``j and splitting H and shield 1 3 illustrations (1) (C) (CI), book, dialect "The second fruit of the moon"
12] (2 of t) (θ) (b) The value of the quotient is ↓, the foot returns to the left, and the foot returns to T.
Figure 4 (α) (Register Conventional Laser 7 Pufferfish Formation 5 Modes Energy 1゛Fast 2 Dimensions Congratulations Figure 5Ml Senbutsu month 1\゛Sosuke form, 1 person on Natsu PC) , busy and ho”fW
兇明m 丙゛ツ力 1 亿月郎力 1゛ReiU! Cakegatarimi 2 Sawa R (Human form Otcho-V
j brotherzuh sword figure 7

Claims (1)

【特許請求の範囲】 1、基板(1)上に形成された絶縁層(2)に設けられ
たビアホール(4)内に、第1の導電膜(3a)を堆積
する工程と、 該ビアホール(4)内壁を含む少なくとも該ビアホール
(4)の周辺部に、第2の導電膜(3b)を堆積する工
程と、 該第2の導電膜(3b)にエネルギービームを照射する
ことにより該第2の導電膜(3b)を溶融し、該ビアホ
ール(4)を該溶融した第2の導電膜(3b)にて埋め
込む工程とを含むことを特徴とする半導体装置の製造方
法。 2、前記第1の導電膜は、高温・高バイアスまたは高温
スパッタ法にて堆積することを特徴とする請求項1記載
の半導体装置の製造方法。 3、前記第1の導電膜は、選択メタルCVD法にて堆積
することを特徴とする請求項1記載の半導体装置の製造
方法。 4、前記絶縁層(2)は配線層(5)上に形成されると
共に、前記ビアホール(4)は該配線層(5)に接続し
、 該配線層(5)と前記第1の導電膜(3a)との間には
、金属層が設けられることを特徴とする請求項1乃至3
の半導体装置の製造方法。
[Claims] 1. Depositing a first conductive film (3a) in a via hole (4) provided in an insulating layer (2) formed on a substrate (1); 4) Depositing a second conductive film (3b) at least on the peripheral portion of the via hole (4) including the inner wall, and depositing the second conductive film (3b) on the second conductive film (3b) by A method for manufacturing a semiconductor device, comprising the steps of: melting a second conductive film (3b) and filling the via hole (4) with the melted second conductive film (3b). 2. The method of manufacturing a semiconductor device according to claim 1, wherein the first conductive film is deposited by high temperature/high bias or high temperature sputtering. 3. The method of manufacturing a semiconductor device according to claim 1, wherein the first conductive film is deposited by selective metal CVD. 4. The insulating layer (2) is formed on the wiring layer (5), the via hole (4) is connected to the wiring layer (5), and the wiring layer (5) and the first conductive film Claims 1 to 3, characterized in that a metal layer is provided between (3a) and (3a).
A method for manufacturing a semiconductor device.
JP34013790A 1990-11-30 1990-11-30 Manufacture of semiconductor device Pending JPH04207033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34013790A JPH04207033A (en) 1990-11-30 1990-11-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34013790A JPH04207033A (en) 1990-11-30 1990-11-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04207033A true JPH04207033A (en) 1992-07-29

Family

ID=18334082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34013790A Pending JPH04207033A (en) 1990-11-30 1990-11-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04207033A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088001B2 (en) 2001-01-23 2006-08-08 Hitachi, Ltd. Semiconductor integrated circuit device with a metallization structure
US7476611B2 (en) * 2002-07-08 2009-01-13 Nec Electronics Corporation Semiconductor device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088001B2 (en) 2001-01-23 2006-08-08 Hitachi, Ltd. Semiconductor integrated circuit device with a metallization structure
US7476611B2 (en) * 2002-07-08 2009-01-13 Nec Electronics Corporation Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5250465A (en) Method of manufacturing semiconductor devices
US4748491A (en) Redundant circuit of semiconductor device and method of producing same
JPH06168943A (en) Treatment method of laser-cut wavy pattern
US5128732A (en) Stacked semiconductor device
US5100834A (en) Method of planarizing metal layer
US5110759A (en) Conductive plug forming method using laser planarization
JPH04207033A (en) Manufacture of semiconductor device
FR2774811A1 (en) Formation of conducting tracks on an integrated circuit
JPS60227446A (en) Manufacture of semiconductor device
JPH07297183A (en) Semiconductor device and its manufacture
JPS58115835A (en) Formation of buried wirings of semiconductor device
JP3104409B2 (en) Method for manufacturing semiconductor device
JPH02256230A (en) Manufacture of semiconductor device
JPS58182852A (en) Manufacture of semiconductor device
JPS6348841A (en) Manufacture of semiconductor device
JPS627142A (en) Manufacture of semiconductor device
JPH0691092B2 (en) Wiring layer flattening method
JPH03232232A (en) Manufacture of semiconductor device
JP2984383B2 (en) Method for manufacturing semiconductor device
JPH0691034B2 (en) Method for manufacturing semiconductor device
JP2790156B2 (en) Method for manufacturing semiconductor device
JPH04298029A (en) Method of manufacturing semiconductor device
JPH02170420A (en) Manufacture of semiconductor element
JPS6344723A (en) Manufacture of semiconductor device
JPH05267470A (en) Integrated circuit device and its manufacture