JPH04206165A - Negative electrode gas absorbing type sealed type lead acid battery - Google Patents

Negative electrode gas absorbing type sealed type lead acid battery

Info

Publication number
JPH04206165A
JPH04206165A JP2332500A JP33250090A JPH04206165A JP H04206165 A JPH04206165 A JP H04206165A JP 2332500 A JP2332500 A JP 2332500A JP 33250090 A JP33250090 A JP 33250090A JP H04206165 A JPH04206165 A JP H04206165A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
acid battery
active material
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2332500A
Other languages
Japanese (ja)
Other versions
JP2949839B2 (en
Inventor
Koichi Yamasaka
山坂 孝一
Miyuki Toyoda
豊田 美由紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2332500A priority Critical patent/JP2949839B2/en
Publication of JPH04206165A publication Critical patent/JPH04206165A/en
Application granted granted Critical
Publication of JP2949839B2 publication Critical patent/JP2949839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase discharge capacity by adding metallic tin, tin oxide or tin compound in an active material of a positive electrode so as to increase existing ratio of the active material having pores of 0.1-1mum. CONSTITUTION:The more Sn and SO4 to be added in a positive electrode increase, the smaller become average pores with change of pore diameter distribution. This effect is used to apply to a lead acid battery, and porous body layers of 0.1-1mum being most effective for utilization factor of the positive electrode are increased. Further, by changing adding volume of Sn and SO4, porous volume of 0.1-1mum can be increase selectively. Thereby, diffusivity of SO ion into an active material of the positive electrode can be improved, so that capacity can be increased even under a condition that electrolyte quantity is small.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は負極ガス吸収式密閉型鉛蓄電池、とくにその放
電容量の向上に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a negative electrode gas absorption type sealed lead acid battery, and particularly to improvement of its discharge capacity.

従来の技術 鉛蓄電池は二次電池として性能とコストのバランスがよ
くとれた電池であり、自動車用のSLI用電源、小型電
子機器や電動車に用いられる移動用電源、あるいはコン
ピューターなどの電源の停電時に作動するバックアップ
用据置き用電源と広く普及している。
Conventional technology Lead-acid batteries are secondary batteries with a good balance of performance and cost, and can be used as power sources for SLI in automobiles, mobile power sources for small electronic devices and electric vehicles, or power outages for computers, etc. It is widely used as a backup stationary power supply that operates occasionally.

鉛蓄電池の特長の一つとして補液などのメンテナンスを
不要とする密閉化が可能であることかあげられる。この
密閉化の反応は正極表面上で発生した酸素がリテーナ中
を拡散し負極に達し、下式に示すような反応によって水
に還元されると同時に負極からの水素発生も制御される
ため、水の電気分解による電解液減少が低減される。
One of the features of lead-acid batteries is that they can be sealed, eliminating the need for maintenance such as fluid replacement. In this sealing reaction, oxygen generated on the surface of the positive electrode diffuses through the retainer and reaches the negative electrode, and is reduced to water by the reaction shown in the equation below.At the same time, hydrogen generation from the negative electrode is also controlled. The decrease in electrolyte due to electrolysis is reduced.

正極:H2C1,/202÷2 )(+ + 2e負極
・Pb+1/202−  Pb○ PbO+H2SO4→ P b S 04PbSO4+
28++2e  − Pb+H2SO+ 正極で発生した酸素ガスがいかに効率よく水に還元され
るかは、リテーナ中の酸素ガスの透過のしやすさに左右
される。そこで負極ガス吸収式密閉型鉛蓄電池では電解
液量を少なくし酸素ガスがすテーナ中を透過しやすいよ
うに設計しである。しかし、リテーナ中の電解液が歩な
(なると極板中に含まれる電解液も少なくなるっ 一方、正極の放電反応は下式に示すようにpbo、とH
こSO4の反応であり、 PbO2+4H”−,2e十S○42−−P b S 
04+ 2 H:O 3○42−イオンの移動のしやすさが正極の利用率を向
上させるのに重要となり、多くの研究がなされてきた。
Positive electrode: H2C1, /202÷2 ) (+ + 2e negative electrode・Pb+1/202− Pb○ PbO+H2SO4→ P b S 04PbSO4+
28++2e − Pb+H2SO+ How efficiently the oxygen gas generated at the positive electrode is reduced to water depends on how easily the oxygen gas permeates through the retainer. Therefore, the negative electrode gas absorption type sealed lead-acid battery is designed to reduce the amount of electrolyte so that oxygen gas can easily permeate through the container. However, as the electrolyte in the retainer decreases (as the electrolyte contained in the electrode plate decreases), the discharge reaction of the positive electrode becomes pbo and H as shown in the equation below.
This is the reaction of SO4, PbO2+4H"-,2e10S○42--PbS
The ease of movement of 04+ 2 H:O 3○42- ions is important for improving the utilization rate of the positive electrode, and many studies have been conducted on this.

また、負極ガス吸収式密閉型鉛蓄電池では、前述のガス
吸収反応が負極上で起こるために負極容量のほうが正極
容量よりも大きくなるように正極容量規制の電池設計が
なされている。従って、負極ガス吸収式密閉型鉛蓄電池
の放電容量を増大させるためには、正極の利用率を向上
させることが最も重要である。
Furthermore, in a sealed lead-acid battery with negative electrode gas absorption, the battery design is such that the negative electrode capacity is larger than the positive electrode capacity because the gas absorption reaction described above occurs on the negative electrode. Therefore, in order to increase the discharge capacity of a negative electrode gas absorption type sealed lead acid battery, it is most important to improve the utilization rate of the positive electrode.

発明が解決しようとする課題 負極ガス吸収式密閉型鉛蓄電池の正極活物質の1時間率
放電による放電前と後の孔径分布を水銀ポロシメーター
を用いて測定を行うと第1図にイミすような孔径分布の
差か見られた。すなわち、放電によって、おもに0.1
〜1μmの孔径を有する正極活物質が反応することかわ
かる。このことから負極ガス吸収式密閉型鉛蓄電池の正
極利用率を向上させるためには、0.1〜1μmの孔径
を有する正極活物質を増やせばよいことかわかる本発明
は、この0.1〜1μmの孔径を有する正極活物質を選
択的に増加させ、負極カス吸収式密閉型鉛蓄電池の容量
を向上させるものである。
Problem to be Solved by the Invention When the pore size distribution of the positive electrode active material of a negative electrode gas absorption type sealed lead-acid battery is measured before and after discharge by 1-hour rate discharge using a mercury porosimeter, the result is as shown in Figure 1. Differences in pore size distribution were observed. That is, due to the discharge, mainly 0.1
It can be seen that the positive electrode active material having a pore diameter of ~1 μm reacts. From this, it can be seen that in order to improve the positive electrode utilization rate of a negative electrode gas absorption type sealed lead-acid battery, it is sufficient to increase the positive electrode active material having a pore diameter of 0.1 to 1 μm. The capacity of a sealed lead-acid battery with negative electrode sludge absorption is improved by selectively increasing the amount of positive electrode active material having a pore diameter of 1 μm.

課題を解決するための手段 上記の課題を解決するために正極活物質中に金属錫、錫
酸化物、あるいは錫化合物を錫元素のモル数を正極活物
質中の鉛のモル数に対して0.01〜5%添加すること
により0.1〜1μmの細孔体積を増加させた活物質を
負極ガス吸収式密閉型鉛蓄電池に用いるものである。ま
た、正極活物質中の0.1〜1μmの細孔体積が全細孔
体積の40%以上にすることにより最も効果的な利用率
を得るものである。
Means for Solving the Problems In order to solve the above problems, metallic tin, tin oxide, or a tin compound is added to the positive electrode active material so that the number of moles of the tin element is 0 to the number of moles of lead in the positive electrode active material. An active material whose pore volume has been increased by 0.1 to 1 μm by adding .01 to 5% is used in a negative electrode gas absorption type sealed lead acid battery. Further, the most effective utilization rate is obtained by making the volume of 0.1 to 1 μm pores in the positive electrode active material 40% or more of the total pore volume.

作用 表1に正極中に添加したS n S 04の添加量と平
均細孔径の関係を示した。表1によると、S n S 
04の添加量が多いぼと平均細孔径が小さくなり孔径分
布か変化していることがわかる。この効果を鉛蓄電池に
適用すれば正極の利用率の向上に最も効果的な0.1〜
1μmの細孔体積を選択的に増加させることが可能とな
る。さらに、S n S O4の添加量と正極活物質の
全細孔体積および0.1〜1μmの細孔体積を表2に示
した。
Table 1 shows the relationship between the amount of S n S 04 added to the positive electrode and the average pore diameter. According to Table 1, S n S
It can be seen that as the amount of 04 added is large, the average pore diameter becomes smaller and the pore diameter distribution changes. If this effect is applied to lead-acid batteries, 0.1~
It becomes possible to selectively increase the pore volume of 1 μm. Furthermore, Table 2 shows the amount of S n S O 4 added, the total pore volume of the positive electrode active material, and the pore volume of 0.1 to 1 μm.

表2かられかるように、S n S 04の添加量を変
化させることによって0.1〜1μmの細孔体積を選択
的に増加させることができるので、S 042−イオン
の正極活物質中への拡散性が向上し、電解液が少ない状
態での容量がアップすると考えられる。
As shown in Table 2, by changing the amount of S n S 04 added, the pore volume of 0.1 to 1 μm can be selectively increased. It is thought that this improves the diffusivity of the electrolyte and increases the capacity when the amount of electrolyte is small.

(以  下  余  白) 実施例 本発明の実施例について以下゛説明する。(Hereafter, remaining white) Example Examples of the present invention will be described below.

鉛蓄電池製造用の鉛粉に、鉛粉中の鉛のモル数に対して
錫元素のモル数かO〜7%七なるように硫酸第1錫を添
加後、混合した。これに、常法にしたがって水と希硫酸
を滴下しなから練合し、正極用ペーストを作製した。P
b−Ca−Sn合金正極格子にこのペーストを充填した
後、熟成、乾燥の工程を経て未化成正極を得た。この未
化成正極と従来の未化成負極とをガラス繊維を主成分と
する不織布(リテーナ)を介して対向させた極板群を電
槽内に納め、所定量の電解液を注入した後、化成を行い
、容量2Ah(10時間率)の負極ガス吸収式の密閉型
鉛蓄電池を作製した。
Stannous sulfate was added to lead powder for manufacturing lead-acid batteries so that the number of moles of tin element was 0 to 7% with respect to the number of moles of lead in the lead powder, and then mixed. To this, water and dilute sulfuric acid were added dropwise and kneaded according to a conventional method to prepare a positive electrode paste. P
After filling the b-Ca-Sn alloy positive electrode grid with this paste, an unformed positive electrode was obtained through aging and drying steps. A group of electrode plates in which this unformed positive electrode and a conventional unformed negative electrode are placed facing each other via a nonwoven fabric (retainer) mainly composed of glass fibers is placed in a battery container, and after injecting a predetermined amount of electrolyte, the chemical A negative electrode gas absorption type sealed lead-acid battery with a capacity of 2 Ah (10 hour rate) was prepared.

これらの電池を充電○、IC(放電容量の120%まで
充電)、放電IC(放電終止電池圧1.60V)の条件
でサイクル試験を行い、各電池の容量とサイクル寿命(
初期容量の1/2容量に達したサイクル数)を測定した
。サイクル試験中の容量の比較とサイクル寿命を表3に
示す。
These batteries were subjected to cycle tests under the conditions of charge ○, IC (charged to 120% of discharge capacity), and discharge IC (cell pressure at end of discharge 1.60V), and the capacity and cycle life of each battery (
The number of cycles at which the capacity reached 1/2 of the initial capacity was measured. Table 3 shows a comparison of capacities during cycle tests and cycle life.

ニド “1cc: ・  ・−: (N : ・   i:1 1  へ 1−   〇 □ 1− i ” l : 1 1  ′−1″′)1 ヒー千−冊−H この表3かられかるように、SnSO4を添加  4す
ると0.01%以上の添加率の場合に、放電容量かアッ
プすることかわかった。しかし、7%まで添加量を増や
すと放電容量の増加傾向が認められなくなり、さらにサ
イクル寿命も無添加の場合よりも短(なった。また、0
.1〜1μmの細孔体積の占有率と放電容量、サイクル
寿命の関係を見ると占有率が40%を越えた場合に、著
しく放電容量の増加が認められた。
Nido "1cc: ・ ・-: (N: ・i: 1 1 to 1- 〇 □ 1- i ” l: 1 1 '-1''') 1 He 1000 volumes-H As can be seen from this table 3 , it was found that the discharge capacity increased when the addition rate of SnSO4 was 0.01% or more.However, when the addition amount was increased to 7%, the tendency for the discharge capacity to increase was no longer observed, and further cycles The lifespan was also shorter than that without additives.
.. Looking at the relationship between the occupancy of pore volume of 1 to 1 μm, discharge capacity, and cycle life, when the occupancy exceeded 40%, a significant increase in discharge capacity was observed.

なお、上記実施例には、添加物として硫酸第1錫を用い
たが、金属錫、錫酸化物を用いても同様の効果が得られ
ることがわかった。
Although stannous sulfate was used as an additive in the above embodiments, it was found that similar effects could be obtained by using metallic tin or tin oxide.

発明の効果 以上のように、本発明によれば金属錫、錫酸化物、ある
いは錫化合物を正極活物質中に添加することにより、0
.1〜1μmの細孔を有する活物質の占有率を増加させ
、放電容量を増加させることが可能となった。
Effects of the Invention As described above, according to the present invention, by adding metal tin, tin oxide, or a tin compound to the positive electrode active material,
.. It became possible to increase the occupancy of the active material having pores of 1 to 1 μm, thereby increasing the discharge capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は正極活物質の放電前と後の孔径分布をしした図
である。
FIG. 1 is a diagram showing the pore size distribution of the positive electrode active material before and after discharge.

Claims (2)

【特許請求の範囲】[Claims] (1)金属錫、錫酸化物、あるいは錫化合物に含有され
る錫元素のモル数が、鉛蓄電池の正極活物質中の鉛元素
のモル数の0.01〜5%の割合で添加された正極と、
ガラス繊維を主成分とした不織布に電解液を保持させた
リテーナと、負極とよりなる負極ガス吸収式密閉型鉛蓄
電池。
(1) The number of moles of tin element contained in metallic tin, tin oxide, or tin compound is 0.01 to 5% of the number of moles of lead element in the positive electrode active material of the lead-acid battery. a positive electrode;
A negative electrode gas absorption type sealed lead-acid battery consisting of a negative electrode and a retainer that holds an electrolyte in a nonwoven fabric mainly made of glass fiber.
(2)請求項1に記載の正極活物質の0.1〜1μmの
孔径を有する細孔の体積が全細孔体積の40%以上であ
る負極ガス吸収式密閉型鉛蓄電池。
(2) A negative electrode gas absorption type sealed lead-acid battery, in which the volume of pores having a pore diameter of 0.1 to 1 μm in the positive electrode active material according to claim 1 is 40% or more of the total pore volume.
JP2332500A 1990-11-28 1990-11-28 Negative gas absorption sealed lead-acid battery Expired - Lifetime JP2949839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2332500A JP2949839B2 (en) 1990-11-28 1990-11-28 Negative gas absorption sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2332500A JP2949839B2 (en) 1990-11-28 1990-11-28 Negative gas absorption sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH04206165A true JPH04206165A (en) 1992-07-28
JP2949839B2 JP2949839B2 (en) 1999-09-20

Family

ID=18255631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2332500A Expired - Lifetime JP2949839B2 (en) 1990-11-28 1990-11-28 Negative gas absorption sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP2949839B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158286A (en) * 2007-12-26 2009-07-16 Gs Yuasa Corporation Lead-acid battery and method of manufacturing the same
JP2021057108A (en) * 2019-09-26 2021-04-08 古河電池株式会社 Lead-acid battery
JP2021086732A (en) * 2019-11-27 2021-06-03 古河電池株式会社 Positive electrode plate for lead acid battery, and lead acid battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158286A (en) * 2007-12-26 2009-07-16 Gs Yuasa Corporation Lead-acid battery and method of manufacturing the same
JP2021057108A (en) * 2019-09-26 2021-04-08 古河電池株式会社 Lead-acid battery
JP2021086732A (en) * 2019-11-27 2021-06-03 古河電池株式会社 Positive electrode plate for lead acid battery, and lead acid battery

Also Published As

Publication number Publication date
JP2949839B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
CN105514505A (en) Deep circulating valve controlled lead-acid battery and preparation method thereof
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
JPH01187760A (en) Cylindrical alkaline zinc storage battery
JPH04206165A (en) Negative electrode gas absorbing type sealed type lead acid battery
WO2011077640A1 (en) Valve-regulated lead acid battery
JPH067486B2 (en) Sealed lead acid battery
JPH04196059A (en) Lead-acid battery
JPS63152868A (en) Lead-acid battery
JPS63126161A (en) Enclosed type lead storage battery
JP3114419B2 (en) Sealed storage battery
JP3038995B2 (en) Lead storage battery
JP2000149932A (en) Lead-acid battery and its manufacture
JP2002343359A (en) Sealed type lead storage battery
JPS6293857A (en) Manufacture of enclosed lead storage battery
JP2007066741A (en) Method for manufacturing negative electrode plate for lead accumulator
JPH04149968A (en) Sealed-type lead secondary battery
JP2002343413A (en) Seal type lead-acid battery
JPH01248459A (en) Sealed lead-acid battery
JPH0246653A (en) Lead-acid battery
JPH06140042A (en) Sealed lead-acid battery
JPH11273666A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JPH08180857A (en) Electrode plate for lead-acid battery
JPH08329921A (en) Sealed lead-acid battery
JPH06267524A (en) Sealed lead-acid battery
JPH04206150A (en) Lead acid battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 12