JPH04203440A - Fuel injection control device - Google Patents

Fuel injection control device

Info

Publication number
JPH04203440A
JPH04203440A JP33861090A JP33861090A JPH04203440A JP H04203440 A JPH04203440 A JP H04203440A JP 33861090 A JP33861090 A JP 33861090A JP 33861090 A JP33861090 A JP 33861090A JP H04203440 A JPH04203440 A JP H04203440A
Authority
JP
Japan
Prior art keywords
intake air
pulse width
fuel injection
air temperature
injection pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33861090A
Other languages
Japanese (ja)
Other versions
JP3028851B2 (en
Inventor
Masaru Kurihara
優 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2338610A priority Critical patent/JP3028851B2/en
Publication of JPH04203440A publication Critical patent/JPH04203440A/en
Application granted granted Critical
Publication of JP3028851B2 publication Critical patent/JP3028851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To most suitably control the correction of abnormal increase in combustion speed, exhaust temperature and the like over the whole range of change in intake air temperature by constituting an intake air temperature correction factor to be set in response to the condition of actual combustion when intake air is changed in temperature. CONSTITUTION:The fuel injection pulse width is operated by an operating section 12 based on the basic injection pulse width and a correction factor in response to each running condition and engine conditions, and based on an intake air temperature correction factor in response to environmental conditions at the time of running with an engine driven, so that fuel injection is thereby controlled. In this case, the actual absolute pressure of an intake pipe when intake air is changed in temperature and a value firmly correlated with combustion speed owing to the basic injection pulse width are determined by a computing section 18, and the intake air temperature correction factor in the output area is set by a setting section 19 in response to the case of actual running based on the aforesaid value firmly correlated with combustion speed. And based on the newly set correction factor, fuel is increased/decreased so as to be corrected, so that optimum correction control is thereby performed at all times.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車両用エンジンにおいて、インジェクタから
の燃料の噴射量を電子的に制御する燃料噴射制御装置に
関し、詳しくは、吸気温度に対する出力域の補正係数の
設定に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a fuel injection control device that electronically controls the amount of fuel injected from an injector in a vehicle engine. Regarding the setting of the correction coefficient.

〔従来の技術〕[Conventional technology]

一般に、この種の燃料噴射制御装置は、エンジン1回−
当たりの吸入空気量に対応した基本噴射パルス幅に、種
々の走行条件1機関状態等に応じた補正係数を付加して
燃料噴射パルス幅を算出し、この噴射パルス幅に基づい
て燃料噴射制御するようになっている。ところで、車両
は吸気温度、大気圧等の環境条件が比較的大きく変化す
る過酷な条件て使用されたり、インククーラ等により強
制的に吸気冷却されることもある。この場合の、例えば
吸気温度の変動は、吸入管の圧力、吸入空気量及び混合
気の燃焼状態に大きく影響することが知られており、こ
のため特に上述のような使用環境を考慮する場合は、吸
気温度等に対し燃料噴射量を定量iに補正することが望
まれる。
Generally, this type of fuel injection control device is
The fuel injection pulse width is calculated by adding a correction coefficient according to various driving conditions, engine status, etc. to the basic injection pulse width corresponding to the intake air amount per engine, and fuel injection is controlled based on this injection pulse width. It looks like this. Incidentally, vehicles are sometimes used under severe conditions in which environmental conditions such as intake air temperature and atmospheric pressure change relatively significantly, or where the intake air is forcibly cooled by an ink cooler or the like. In this case, for example, it is known that fluctuations in intake air temperature greatly affect the pressure in the intake pipe, the amount of intake air, and the combustion state of the mixture. Therefore, especially when considering the usage environment as described above, It is desirable to correct the fuel injection amount to a fixed amount i based on the intake air temperature and the like.

従来、上記燃料噴射制御装置の吸気温度に対する補正に
関しては、例えば特開昭62−7945号公報の先行技
術がある。ここで、スロットル開度とエンジン回転数の
要素により燃料供給領域と燃料カット領域を定めて噴射
制御する制御系において、吸気温度の高温時はカット領
域を拡大し、低温時、1      は供給領域を拡大
するように補正することが示されている。
Conventionally, regarding correction of the intake air temperature of the fuel injection control device, there is a prior art, for example, disclosed in Japanese Patent Application Laid-open No. 7945/1983. Here, in a control system that controls injection by determining the fuel supply area and fuel cut area based on factors such as throttle opening and engine speed, when the intake air temperature is high, the cut area is expanded, and when the intake air temperature is low, 1 increases the supply area. It is shown that the image is corrected to enlarge the image.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記先行技術のものにあっては、吸気温度に
よる燃焼の良否を考慮して、燃料カットを促進するもの
であり、このため燃料供給による出力域において吸気温
度に対し燃料噴射量を定量的に補正できない。即ち、吸
気温度に対する燃料噴射の充分な補正対策になっていな
い等の問題がある。
By the way, in the prior art described above, fuel cut is promoted by considering the quality of combustion depending on the intake air temperature, and for this reason, the fuel injection amount is quantitatively determined with respect to the intake air temperature in the output range due to fuel supply. cannot be corrected. That is, there are problems such as insufficient correction of fuel injection for intake air temperature.

本発明は、かかる点に鑑みてなされたもので、その目的
とするところは、吸気温度に対して出力域の燃料噴射量
を定量的に補正し、エンジン出力。
The present invention has been made in view of this point, and its purpose is to quantitatively correct the fuel injection amount in the power range with respect to the intake air temperature, thereby improving the engine output.

燃費等を向上することが可能な燃料噴射制御装置を提供
することにある。
An object of the present invention is to provide a fuel injection control device that can improve fuel efficiency and the like.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の燃料噴射制御装置は
、基本噴射パルス幅と種々の補正係数で燃料噴射パルス
幅を演算する燃料噴射制御系において、吸気温度変化の
際の実際の吸入管絶対圧。
In order to achieve the above object, the fuel injection control device of the present invention has a fuel injection control system that calculates the fuel injection pulse width using the basic injection pulse width and various correction coefficients, and uses the actual intake pipe absolute value when the intake air temperature changes. Pressure.

基本噴射パルス幅により燃焼速度と強い相関をもつ値を
算出する手段と、少なくともこの燃焼速度と強い相関を
もつ値に応じて吸気温補正係数を設定する手段と、この
吸気温補正係数も付加して燃料噴射パルス幅を演算する
手段と、を備えるものである。
A means for calculating a value that has a strong correlation with the combustion speed based on the basic injection pulse width, a means for setting an intake temperature correction coefficient according to at least a value that has a strong correlation with the combustion speed, and this intake temperature correction coefficient is also added. and means for calculating the fuel injection pulse width.

〔作   用〕[For production]

上記構成に基づき、エンジン運転による走行時に、基本
噴射パルス幅、各走行条件や機関状態に応じた補正係数
、環境条件に応した吸気温補正係数により燃料噴射パル
ス幅を演算して燃料噴射制御される。このとき、吸気温
度変化の際の実際の吸入管絶対圧、基本噴射パルス幅に
より燃焼速度と強い相関をもつ値を求め、この燃焼速度
と強い相関をもつ値から出力域の吸気温補正係数が、実
走行時の場合に適応して設定され、これに基づいて燃料
が増量または減量補正されて、常に最適に補正制御する
ようになる。
Based on the above configuration, when driving with the engine running, fuel injection is controlled by calculating the fuel injection pulse width using the basic injection pulse width, a correction coefficient according to each driving condition and engine state, and an intake temperature correction coefficient according to environmental conditions. Ru. At this time, a value that has a strong correlation with the combustion speed is determined using the actual intake pipe absolute pressure and the basic injection pulse width when the intake air temperature changes, and the intake temperature correction coefficient for the power range is determined from the value that has a strong correlation with the combustion speed. , is set in accordance with the actual driving situation, and based on this setting, the amount of fuel is corrected to increase or decrease, so that the correction control is always performed optimally.

〔実 施 例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図において、本発明の燃料噴射制御装置の実施例の
電子!IJaIIl系について述べる。先ず、エンジン
の吸気系に装着されて吸入空気質量流量を計測するホッ
トワイヤ型エアフローメータl、エンジン回転数を検出
するエンジン回転数センサ2゜エンジンの排気系に装着
されて酸素濃度がら空体比を検出する02センサ3.更
に水温センサ4゜アクセルスイッチ5吸入管の絶対□圧
を検出する圧力センサ6等を有する。そして、これらの
センサ等の信号が制御ユニット10に入力して、処理さ
れるようになっている。
In FIG. 1, an electronic ! The IJaII system will be described. First, a hot wire air flow meter (1) is installed in the engine's intake system to measure the intake air mass flow rate, an engine speed sensor (2) is installed in the engine's exhaust system to measure the air-to-air ratio based on the oxygen concentration. 02 sensor that detects 3. It further includes a water temperature sensor 4, an accelerator switch 5, a pressure sensor 6 for detecting the absolute □ pressure of the suction pipe, and the like. Signals from these sensors and the like are input to the control unit 10 and processed.

そこで、燃料噴射制御系について述べると、制御ユニッ
トIOは、エアフローメータ1からの吸入空気質量流量
Q、エンジン回転数センサ2からのエンジン回転数Nが
入力する基本噴射パルス幅設定部11を有し、基本噴射
パルス幅TpをTp−K・ (Q/N) により算出して定める。ここでKは、吸気質j1Mをス
トイキ相当のインジェクタ噴射幅に変換する定数(単位
IIs/g)である。そして、この基本噴射パルス幅T
pが燃料噴射パルス幅演算部I2に入力する。
Therefore, regarding the fuel injection control system, the control unit IO has a basic injection pulse width setting section 11 into which the intake air mass flow rate Q from the air flow meter 1 and the engine speed N from the engine speed sensor 2 are input. , the basic injection pulse width Tp is calculated and determined by Tp-K·(Q/N). Here, K is a constant (unit: IIs/g) that converts the intake air quality j1M into an injector injection width equivalent to stoichiometry. And this basic injection pulse width T
p is input to the fuel injection pulse width calculation section I2.

また、02センサ3からの突然比信号が空然比判定部1
3に入力し、空体比のリッチまたはリーンを判断し、こ
れに応じたp、r値をフィードバック係数設定部14に
入力する。一方、水温センサ4からの水温Tv、エンジ
ン回転数Nが入力するフィードバック条件判定部15を
有し、これらの要素により02センサ3.触媒コンバー
タの活性化に伴う突然比フィードバック制御条件成立の
有無を判断する。そこで、フィードバック係数設定M1
4は、フィードバック条件が成立すると、学習制御部1
6のマツプを空然比判定部13の判定結果に応し検索し
てフィードバック係数λを設定し、燃料噴射パルス幅演
算部12に入力する。ここで、学習制御部16は、エン
ジン回転数Nと基本噴射パルス幅Tpによる各エンジン
運転条件で、フィードバック係数λを逐次取入れて、設
定頻度に応じλ値を順次更新するように学習する。
Further, the sudden ratio signal from the 02 sensor 3 is transmitted to the air ratio determination unit 1.
3 to determine whether the air-to-air ratio is rich or lean, and input p and r values corresponding to this into the feedback coefficient setting section 14. On the other hand, it has a feedback condition determining section 15 into which the water temperature Tv from the water temperature sensor 4 and the engine rotation speed N are input, and based on these elements, the 02 sensor 3. It is determined whether or not sudden ratio feedback control conditions are met due to activation of the catalytic converter. Therefore, feedback coefficient setting M1
4, when the feedback condition is satisfied, the learning control unit 1
The feedback coefficient λ is set by searching the map No. 6 according to the determination result of the air-to-air ratio determining section 13 and inputting it to the fuel injection pulse width calculating section 12. Here, the learning control unit 16 learns to sequentially take in the feedback coefficient λ under each engine operating condition based on the engine speed N and the basic injection pulse width Tp, and sequentially update the λ value according to the set frequency.

更に、エンジン回転数N、水温Tw、アクセルスイッチ
信号が人力する燃料カット条件判定部17を有し、暖機
後の減速時において所定のエンジン回転数以上の場合に
、燃料カット条件の成立を判断する。また、水温Twは
水温補正係数設定部20に入力し、水温Twに応じた補
正係数KTWを設定するのであり、この燃料カット、水
温補正係数の信号が燃料噴射パルス幅演算部12に入力
する。
Furthermore, it has a fuel cut condition determining section 17 in which the engine rotation speed N, water temperature Tw, and accelerator switch signal are manually input, and it is determined whether the fuel cut condition is met if the engine rotation speed is a predetermined engine speed or more during deceleration after warming up. do. Further, the water temperature Tw is input to the water temperature correction coefficient setting section 20, and a correction coefficient KTW corresponding to the water temperature Tw is set.The signal of this fuel cut and water temperature correction coefficient is input to the fuel injection pulse width calculation section 12.

次に、吸気温度に対する補正対策について述べる。Next, correction measures for intake air temperature will be described.

この吸気温度補正は、吸気温度の変化に対する実際の吸
入管絶対圧、吸入空気質量流量の変化状態を考察して、
これにより実際の燃焼室の混合気燃焼状態、即ち燃焼速
度と強い相関をもつ値を求める。そして、この燃焼速度
と強い相関をもつ・値により吸気温補正係数を設定し、
高温時の燃焼速度と強い相関をもつ値が大きい条件では
燃料を増量補正して出力アップし、低温時の燃焼速度と
強い相関をもつ値が小さい条件では減量補正して燃費の
向上を自衛している。
This intake air temperature correction takes into consideration the changes in the actual intake pipe absolute pressure and intake air mass flow rate with respect to changes in intake air temperature.
This determines a value that has a strong correlation with the actual air-fuel mixture combustion state in the combustion chamber, that is, the combustion speed. Then, the intake temperature correction coefficient is set based on the value that has a strong correlation with this combustion speed,
Under conditions where the value that has a strong correlation with the combustion speed at high temperatures is large, the amount of fuel is corrected to increase the output, and under conditions where the value that has a strong correlation with the combustion speed at low temperatures is small, the amount of fuel is corrected and reduced to improve fuel efficiency. ing.

そこでまず、本発明の点火時期制御の基本的原理につい
て説明する。エンジンにおいて、体積効率が一定とし、
吸気管絶対圧P、  1気筒当り排気量V、吸気温度T
、吸気質量M、気体定数R1体積効率ηVとすると、気
体の状態方程式から以下の式が成立する。
First, the basic principle of ignition timing control of the present invention will be explained. In an engine, assuming that the volumetric efficiency is constant,
Intake pipe absolute pressure P, displacement per cylinder V, intake air temperature T
, intake mass M, and gas constant R1 volumetric efficiency ηV, the following equation is established from the gas state equation.

P−■・ηv−M−R会T ここでηV≠1とすれば、 P−v≠M−R−T 、’、P−(M/V)・R−T ここで(M/V)は吸気密度であり、基本燃料噴射量T
pや充填効率に比例した値である。そこで、種々の運転
条件において、点火時期の進角または遅角の状態を考察
する。
P-■・ηv-M-R-T Here, if ηV≠1, P-v≠M-R-T,', P-(M/V)・R-T Here (M/V) is the intake air density, and the basic fuel injection amount T
It is a value proportional to p and filling efficiency. Therefore, the state of advance or retardation of the ignition timing will be considered under various operating conditions.

先ず、吸気温度Tが一定の条件では、吸気密度(M/V
)の減少に対し燃焼速度が遅くなるから進角する必要が
ある。
First, under the condition that the intake air temperature T is constant, the intake air density (M/V
) decreases, the combustion speed slows down, so it is necessary to advance the angle.

吸気密度(M/lが一定の条件では、吸気温度Tの低下
に対し燃焼速度が遅くなるから進角する必要がある。更
に吸気管絶対圧Pが一定の条件では、吸気温度Tの低下
に対し吸気密度(M/V)が増大して相殺する方向に作
用するが、吸気温度Tの影響の方が大きくなる。
Under conditions where the intake air density (M/l) is constant, it is necessary to advance the combustion speed as the intake air temperature T decreases because the combustion rate slows down.Furthermore, under conditions where the intake pipe absolute pressure P is constant, the combustion rate must be advanced as the intake air temperature T decreases. On the other hand, the intake air density (M/V) increases and acts in the direction of canceling it out, but the influence of the intake air temperature T becomes larger.

また、吸気温度Tに対して燃焼速度は指数関数的に変化
することが知られているが、実際の運転条件で使用され
る温度範囲はさほど大きくない。
Furthermore, although it is known that the combustion rate changes exponentially with respect to the intake air temperature T, the temperature range used under actual operating conditions is not so large.

そこで、使用燃料の燃焼反応速度から吸気温度に対する
基準値Toを設定すると、燃焼速度と強い相関をもつ値
χは以下のように近似することができる。
Therefore, if the reference value To for the intake air temperature is set from the combustion reaction rate of the fuel used, the value χ that has a strong correlation with the combustion rate can be approximated as follows.

xoc (M/V)  ・ (T−To)CK: (M
/V)−(PV/MR−To)a:P/R−(M/V)
  ・T。
xoc (M/V) ・ (T-To)CK: (M
/V)-(PV/MR-To)a:P/R-(M/V)
・T.

OCC−P −(M/V) (C二定数、C−1/ToR) このことから、燃焼速度と強い相関をもっ値χは、吸気
温度Tに応じて変化する吸入管絶対圧Pと、吸気密度(
M/V)に対応した基本燃料噴射量Tpとの関数として
も表わせることがわかる。
OCC-P - (M/V) (C two constants, C-1/ToR) From this, the value χ, which has a strong correlation with the combustion rate, is the intake pipe absolute pressure P that changes depending on the intake air temperature T, Intake density (
It can be seen that it can also be expressed as a function of the basic fuel injection amount Tp corresponding to M/V).

そこで、この燃焼速度と強い相関をもっ値χと各運転状
態に応じたエンジン回転数Nとのマツプで吸気温補正係
数KTAを設定することで、常に定量的に燃料噴射量を
補正することができることになる。
Therefore, by setting the intake air temperature correction coefficient KTA using a map of the value χ, which has a strong correlation with the combustion speed, and the engine speed N according to each operating state, it is possible to constantly correct the fuel injection amount quantitatively. It will be possible.

技術思想に基づき、圧力センサ6の吸入管絶対圧Pと基
本噴射パルス幅Tpが入力する燃焼速度と強い相関をも
つ値の算出部18を有し、燃焼速度と強い相関をもっ値
χを、上述の式を用いてP。
Based on the technical idea, the calculation unit 18 has a value that has a strong correlation with the combustion rate inputted by the intake pipe absolute pressure P of the pressure sensor 6 and the basic injection pulse width Tp, and calculates the value χ that has a strong correlation with the combustion rate. P using the above formula.

Tpの減算により算出する。そして、この燃焼速度と強
い相関をもつ値χとエンジン回転数Nが吸気温補正係数
設定部19に入力して、吸気温補正係数KTAを設定す
るようになっている。
Calculated by subtracting Tp. The value χ and the engine speed N, which have a strong correlation with the combustion speed, are input to the intake temperature correction coefficient setting section 19 to set the intake temperature correction coefficient KTA.

ここで吸気温補正係数KTAは、第2図(a)のように
燃焼速度と強い相関をもつ値χと、各運転状態に応じた
エンジン回転数Nとの2次元マツプで与えられる。即ち
、同図(b) 、 (c)のように補正係数KTAは、
エンジン回転数N、燃焼速度と強い相関をもつ値χのい
ずれに対しても増大関数的に設定される。
Here, the intake air temperature correction coefficient KTA is given by a two-dimensional map of a value χ that has a strong correlation with the combustion rate and the engine rotational speed N depending on each operating state, as shown in FIG. 2(a). That is, as shown in (b) and (c) in the same figure, the correction coefficient KTA is
It is set as an increasing function for both the engine rotation speed N and the value χ that has a strong correlation with the combustion speed.

こうして、吸気温度上昇時に吸入管絶対圧PがΔPに増
大し、空気の膨張で基本噴射パルス幅Tpが−ΔTpに
減少すると、燃焼速度と強い相関をもつ値χは+(ΔP
+ΔTp)になって増し、この分捕正係数KTAが大き
くなる。また、吸気温度低下時に吸入管絶対圧Pが一Δ
Pに減少し、空気の収縮で基本噴射パルス幅TpがΔT
pに増大すると、燃焼速度と強い相関をもつ値χは−(
ΔP+ΔTp)になって減し、この分捕正係数KTAが
小さくなる。そして、このような吸気温度補正係数KT
Aも燃料噴射パルス幅演算部12に人力する。
In this way, when the intake pipe absolute pressure P increases to ΔP when the intake air temperature rises, and the basic injection pulse width Tp decreases to -ΔTp due to air expansion, the value χ that has a strong correlation with the combustion rate becomes +(ΔP
+ΔTp), and this fractional positive coefficient KTA becomes larger. In addition, when the intake air temperature decreases, the intake pipe absolute pressure
P and the basic injection pulse width Tp becomes ΔT due to air contraction.
As p increases, the value χ, which is strongly correlated with the burning rate, becomes −(
ΔP+ΔTp), and this fractional positive coefficient KTA becomes smaller. Then, such an intake air temperature correction coefficient KT
A is also manually input to the fuel injection pulse width calculation section 12.

燃料噴射パルス幅演算部12は、基本噴射パルス幅Tp
、フィードバック係数λ、燃料カット係数NFC,水温
補正係数KTW、吸気温度補正係数KTA等を用いて、
燃料噴射パルス幅TIを以下のように演算する。
The fuel injection pulse width calculation unit 12 calculates the basic injection pulse width Tp.
, feedback coefficient λ, fuel cut coefficient NFC, water temperature correction coefficient KTW, intake air temperature correction coefficient KTA, etc.
The fuel injection pulse width TI is calculated as follows.

Ti−Tp・λφKFC x(1+KTW+KTA・・・)+TsTs :電圧補
正 そして、この燃料噴射パルス幅Tiの噴射信号が駆動回
路21を介しインジェクタ7に出力し、インジェクタ7
を開弁動作して所定の燃料噴射を行うようになっている
Ti-Tp・λφKFC x (1+KTW+KTA...)+TsTs: Voltage correction Then, the injection signal with this fuel injection pulse width Ti is output to the injector 7 via the drive circuit 21, and the injector 7
The valve is opened to perform a predetermined fuel injection.

次に、この実施例の作用について述べる。Next, the operation of this embodiment will be described.

先ず、エンジン運転による走行時には、制御ユニットI
Oの燃料噴射制御系に、エアフローメータlからの吸入
空気質量流量Q、エンジン回転数センサ2からのエンジ
ン回転数N102センサ3からの空然比信号、水温セン
サ4からの水温Tv。
First, when driving by engine operation, the control unit I
The fuel injection control system of O includes the intake air mass flow rate Q from the air flow meter 1, the engine rotation speed N from the engine rotation speed sensor 2, the air-to-air ratio signal from the sensor 3, and the water temperature Tv from the water temperature sensor 4.

圧力センサ6からの吸入管絶対圧P等か入力する。Input the suction pipe absolute pressure P from the pressure sensor 6, etc.

そして、制御ユニット10て基本噴射パルス幅Tp。Then, the control unit 10 determines the basic injection pulse width Tp.

フィードバック係数λ、水温補正係数KTWが設定され
、更に燃料カットの有無が判断される。
A feedback coefficient λ and a water temperature correction coefficient KTW are set, and it is further determined whether a fuel cut is to be performed.

また、制御ユニット10では、吸気温度変化時の実際の
吸入管絶対圧P、基本噴射パルス幅”rpから燃焼速度
と強い相関をもつ値χが算出され、この燃焼速度と強い
相関をもつ値χとエンジン回転数Nで各運転状態の燃焼
状態に適応した吸気温補正係数KTAが設定される。そ
して、燃料カット以外の出力域では、これらの要素によ
り燃料噴射パルス幅TIが演算され、この噴射信号がイ
ンジェクタ7に出力して燃料噴射するのである。
In addition, the control unit 10 calculates a value χ that has a strong correlation with the combustion rate from the actual intake pipe absolute pressure P and the basic injection pulse width ``rp'' when the intake air temperature changes, and calculates a value χ that has a strong correlation with the combustion rate. An intake air temperature correction coefficient KTA adapted to the combustion state of each operating state is set at the engine speed N and A signal is output to the injector 7 to inject fuel.

ここで、特に吸気温度Tが上昇すると、実際の燃焼速度
と強い相関をもつ値χの速さに適応してその補正係数K
TAの値が大きくなり、燃料が増量補正される。このた
め、増量された燃料は常に完全燃焼して有効に燃料補正
されることになり、これに伴いエンジン出力も増大する
。一方、吸気温度Tが低下変化すると、この場合は実際
の燃焼速度と強い相関をもつ値χの遅れに適応して補正
係数KTAの値が小さくなり、燃料が減少補正されるの
であり、これにより燃費の向上が図られる。
Here, especially when the intake air temperature T rises, the correction coefficient K is adjusted to the speed χ, which has a strong correlation with the actual combustion speed.
The value of TA increases, and the amount of fuel is corrected to increase. Therefore, the increased amount of fuel is always completely combusted and the fuel is effectively compensated, and the engine output is accordingly increased. On the other hand, when the intake air temperature T decreases, the value of the correction coefficient KTA decreases in response to the delay in the value χ, which has a strong correlation with the actual combustion rate, and the fuel is corrected to decrease. Fuel efficiency will be improved.

こうして、各走行条件1機関状態及び環境条件に応して
燃料が最適に噴射制御され、且つ混合気の空然比も常に
適正に制御されることになる。
In this way, fuel injection is optimally controlled according to each running condition, engine state, and environmental condition, and the air-air ratio of the air-fuel mixture is always appropriately controlled.

以上、本発明の実施例について説明したが、これのみに
限定されない。
Although the embodiments of the present invention have been described above, the present invention is not limited thereto.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、吸気温度を加味
した燃料噴射制御系において、吸気温度変化の際の実際
の燃焼状態に応じて吸気温補正係数を設定する構成であ
るから、燃焼速度の異常上昇や排気温度の異常上昇なと
を吸気温度の変化全域で最適に補正制御することができ
る。
As explained above, according to the present invention, in the fuel injection control system that takes the intake air temperature into consideration, the intake air temperature correction coefficient is set according to the actual combustion state when the intake air temperature changes. It is possible to optimally correct and control abnormal rises in air temperature and exhaust gas temperature over the entire range of changes in intake air temperature.

吸気温度変化の際の実際の吸入管絶対圧、基本噴射パル
ス幅の変化状態から燃焼状態を求め、この燃焼状態に応
じて吸気温補正係数を設定するので、実走行時の場合に
適応して最適に補正係数を設定できる。
The combustion state is calculated from the change in the actual intake pipe absolute pressure and basic injection pulse width when the intake air temperature changes, and the intake temperature correction coefficient is set according to this combustion state, so it can be adjusted to suit actual driving conditions. Correction coefficients can be set optimally.

出力域の燃料噴射量が吸気温度により適正に補正される
ので、出力や燃費を有効に向上することができ、過酷な
使用環境においてエンジン性能を充分に発揮できる。
Since the fuel injection amount in the power range is appropriately corrected according to the intake air temperature, the power and fuel efficiency can be effectively improved, and the engine performance can be fully demonstrated in harsh usage environments.

吸気温補正係数は燃焼速度と強い相関をもつ値とエンジ
ン回転数とのマツプにより、容易且つ適正に設定するこ
とができ、制御も容易である。
The intake air temperature correction coefficient can be easily and appropriately set using a map of engine speed and a value that has a strong correlation with the combustion speed, and control is also easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃料噴射制御装置の実施例に係る電子
制御系のブロック図、 第2図(a)は吸気温補正係数の設定マツプを示す図、
(b)は吸気温補正係数のエンジン回転数に対する関係
を示す図、(C)は吸気温補正係数の燃焼速度と強い相
関をもつ値に対する関係を示す図である。 6・・・圧力センサ、IO・・制御ユニット、11・・
・基本噴射パルス幅算出部、■2・・燃料噴射パルス幅
演算部、18・・・燃焼速度と強い相関をもつ値の算出
部、19・・・吸気温補正係数設定部。
FIG. 1 is a block diagram of an electronic control system according to an embodiment of the fuel injection control device of the present invention, FIG. 2(a) is a diagram showing a setting map of the intake temperature correction coefficient,
(b) is a diagram showing the relationship between the intake temperature correction coefficient and the engine speed, and (C) is a diagram showing the relationship between the intake temperature correction coefficient and a value that has a strong correlation with the combustion speed. 6...Pressure sensor, IO...control unit, 11...
・Basic injection pulse width calculation section, ■2.. Fuel injection pulse width calculation section, 18.. Calculation section for a value having a strong correlation with the combustion rate, 19.. Intake temperature correction coefficient setting section.

Claims (3)

【特許請求の範囲】[Claims] (1)基本噴射パルス幅と種々の補正係数で燃料噴射パ
ルス幅を演算する燃料噴射制御系において、吸気温度変
化の際の実際の吸入管絶対圧,基本噴射パルス幅により
燃焼速度と強い相関をもつ値を算出する手段と、 少なくともこの燃焼速度と強い相関をもつ値に応じて吸
気温補正係数を設定する手段と、この吸気温補正係数も
付加して燃料噴射パルス幅を演算する手段と、 を備えることを特徴とする燃料噴射制御装置。
(1) In a fuel injection control system that calculates the fuel injection pulse width using the basic injection pulse width and various correction coefficients, a strong correlation with the combustion rate is established based on the actual intake pipe absolute pressure and the basic injection pulse width when the intake air temperature changes. means for calculating a value having a strong correlation with at least the combustion speed, means for setting an intake temperature correction coefficient according to a value having a strong correlation with at least this combustion speed, and means for calculating a fuel injection pulse width by also adding this intake temperature correction coefficient; A fuel injection control device comprising:
(2)上記燃焼速度と強い相関をもつ値は、実際の吸入
管絶対圧と基本噴射パルス幅を減算して算出することを
特徴とする請求項(1)記載の燃料噴射制御装置。
(2) The fuel injection control device according to claim 1, wherein the value having a strong correlation with the combustion rate is calculated by subtracting the actual intake pipe absolute pressure and the basic injection pulse width.
(3)上記吸気温補正係数は、燃焼速度と強い相関をも
つ値とエンジン回転数とのマップで設定することを特徴
とする請求項(1)記載の燃料噴射制御装置。
(3) The fuel injection control device according to claim 1, wherein the intake air temperature correction coefficient is set using a map of a value having a strong correlation with the combustion speed and the engine rotation speed.
JP2338610A 1990-11-30 1990-11-30 Fuel injection control device Expired - Fee Related JP3028851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2338610A JP3028851B2 (en) 1990-11-30 1990-11-30 Fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2338610A JP3028851B2 (en) 1990-11-30 1990-11-30 Fuel injection control device

Publications (2)

Publication Number Publication Date
JPH04203440A true JPH04203440A (en) 1992-07-24
JP3028851B2 JP3028851B2 (en) 2000-04-04

Family

ID=18319798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2338610A Expired - Fee Related JP3028851B2 (en) 1990-11-30 1990-11-30 Fuel injection control device

Country Status (1)

Country Link
JP (1) JP3028851B2 (en)

Also Published As

Publication number Publication date
JP3028851B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
EP0136519B1 (en) Air-fuel ratio control apparatus for internal combustion engines
US5765530A (en) Method of controlling ignition timing of internal combustion engine and apparatus therefore
JPS59176450A (en) Internal-combustion engine controller
JPH09287507A (en) Throttle valve controller for internal combustion engine
JPH04187845A (en) Air-fuel feed-back control method for multi-kind fuel internal combustion engine
JP3791032B2 (en) Fuel injection control device for internal combustion engine
JPH06108903A (en) Combustion control device for internal combustion engine
JPH04203440A (en) Fuel injection control device
JP3843492B2 (en) Engine intake control device
JP2570417B2 (en) EGR rate detecting device for internal combustion engine
JPH09287510A (en) Air-fuel ratio controller for internal combustion engine
JPH06294342A (en) Air-fuel ratio feedback controller of internal combustion engine
JP3331118B2 (en) Throttle valve control device for internal combustion engine
JPH06108901A (en) Air fuel ratio control device for internal combustion engine
JPH10196429A (en) Controller for internal combustion engine
JPH09113481A (en) Activity decision unit for oxygen sensor
JPH0357861A (en) Intake air temperature detecting device for internal combustion engine
JPH09287494A (en) Controller for internal combustion engine having electronically controlled throttle
JP3029455B2 (en) Ignition timing control device
JP3726432B2 (en) Air quantity detection device for internal combustion engine
JP3029454B2 (en) Ignition timing control device
JP2512726Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH06213046A (en) Fuel injection controller
JPS61138849A (en) Feed back controlling method for fuel supply of multi-cylinder internal-combustion engine
JPH01151748A (en) Electronic control fuel injection device for internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees