JPH04202292A - Method for converting reformed lpg gas into highly calorific gas - Google Patents

Method for converting reformed lpg gas into highly calorific gas

Info

Publication number
JPH04202292A
JPH04202292A JP33205090A JP33205090A JPH04202292A JP H04202292 A JPH04202292 A JP H04202292A JP 33205090 A JP33205090 A JP 33205090A JP 33205090 A JP33205090 A JP 33205090A JP H04202292 A JPH04202292 A JP H04202292A
Authority
JP
Japan
Prior art keywords
gas
catalyst
reformed
lpg
liquefied petroleum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33205090A
Other languages
Japanese (ja)
Other versions
JPH0774349B2 (en
Inventor
Hiroshi Yoshida
弘 吉田
Masatoshi Mizusawa
水沢 正敏
Kazutsugu Kitajima
北島 一嗣
Etsuji Mitsunari
光成 閲治
Hidenori Eguchi
江口 英則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuyama Gas Kk
JFE Engineering Corp
Original Assignee
Fukuyama Gas Kk
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuyama Gas Kk, NKK Corp, Nippon Kokan Ltd filed Critical Fukuyama Gas Kk
Priority to JP2332050A priority Critical patent/JPH0774349B2/en
Publication of JPH04202292A publication Critical patent/JPH04202292A/en
Publication of JPH0774349B2 publication Critical patent/JPH0774349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Industrial Gases (AREA)

Abstract

PURPOSE:To obtain a highly calorific gas categorized in the standard of 12A, 13A, etc., and freed completely from S by subjecting a reformed liquefied petroleum gas to a plurality of specific treatments. CONSTITUTION:A reformed liquefied petroleum gas is brought into contact with a catalyst composed primarily of iron oxides to remove sulfur compounds, subjected to CO conversion, then brought into contact with an Ni-Al2O3 catalyst to react CO and H2 in the gas so as to form CH4, and mixed with liquefied petroleum gas as required.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液化石油ガス(LPG)を原料として高カロ
リーの都市ガスを製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing high-calorie city gas using liquefied petroleum gas (LPG) as a raw material.

〔従来の技術〕[Conventional technology]

LPGを改質して都市ガスに適する品質にするために従
来はLPGをスチーム改質し、次に銅−亜鉛系触媒でc
o変成してCofIA度を減少させ、更に銅−亜鉛系触
媒でCO濃度を低下させていた(社団法人日本ガス協会
、[第37回都市シンポジウム講演要旨集、P14〜1
5、平成元年」)。
Conventionally, in order to reform LPG to a quality suitable for city gas, LPG was reformed with steam, and then treated with a copper-zinc catalyst.
o modification to reduce the CofIA degree, and a copper-zinc catalyst to reduce the CO concentration (Japan Gas Association, [37th Urban Symposium Lecture Abstracts, P14-1
5. 1989).

そのフローシートの概略を第2図に示す。すなわち、L
PGは図面左方よりスチームとともにスチーム改質基1
に入って改質が行なわれ、次に銅−亜鉛系触媒に脱硫剤
として酸化亜鉛触媒を充填した第1CO変成塔2でco
変成が行なわれる。
An outline of the flow sheet is shown in Figure 2. That is, L
PG is steam modified group 1 with steam from the left side of the drawing.
Co
Transmutation takes place.

そのオフガスは熱交換器3で熱交換が行なわれる。The off-gas undergoes heat exchange in a heat exchanger 3.

そこで、CO濃度5%以下にまで低下させて、LPGを
添加して製品ガスとされていた。この方法におけるガス
の組成等の変化の一例を表1に示す。
Therefore, the CO concentration was lowered to 5% or less and LPG was added to produce a product gas. Table 1 shows an example of changes in gas composition, etc. in this method.

表1 [発明が解決しようとする課題] この方法は12A、13A等の高カロリーガスの規格値
に入りにくい問題があった。
Table 1 [Problems to be Solved by the Invention] This method has a problem in that it is difficult to meet the standard values of high-calorie gases such as 12A and 13A.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記課題を解決した高カロリーガスの製造方法
を提供するものである。
The present invention provides a method for producing high-calorie gas that solves the above problems.

すわなち、本発明は液化石油ガスの改質ガスを酸化鉄を
主成分とする触媒に接触させて硫黄化合物を除去し、C
O変成後ニッケル−アルミナ系触媒に接触させて該ガス
中の一酸化炭素と水素を反応させてメタンを生成させ、
必要により液化石油ガス添加を行なうことを特徴とする
液化石油ガス改質ガスの高カロリー化方法に関するも′
のである。
That is, the present invention removes sulfur compounds by bringing reformed gas of liquefied petroleum gas into contact with a catalyst containing iron oxide as a main component, and
After O modification, contact with a nickel-alumina catalyst to react carbon monoxide and hydrogen in the gas to generate methane,
This invention also relates to a method for increasing the calorie content of liquefied petroleum gas reformed gas, which is characterized by adding liquefied petroleum gas as necessary.
It is.

本発明の方法は、LPGをスチーム改質等によってクラ
ンキングしたガス、又はこれをさらに改質したガスに適
用するものであり、例えば第2図のプロセスにおいては
※印で示す位置のスチーム改質ガスが好ましい。
The method of the present invention is applied to a gas obtained by cranking LPG by steam reforming or the like, or to a gas further reformed. For example, in the process shown in Fig. 2, steam reforming is performed at the positions marked with Gas is preferred.

酸化鉄を主成分とする触媒は担体に酸化鉄(αF ex
 O3)と酸化亜鉛(ZnO)及び酸化銅(Cub)を
担持し、これに塩基性化合物を添加したものである。担
体はCaO1Sin、、Af203、MgO1Ti○2
等を単独あるいは適宜混合したものである。
Catalysts containing iron oxide as the main component contain iron oxide (αF ex
ZnO3), zinc oxide (ZnO), and copper oxide (Cub) are supported, and a basic compound is added thereto. The carrier is CaO1Sin, Af203, MgO1Ti○2
etc. alone or in an appropriate mixture.

酸化鉄は、α−Fez03を主とするもので粒径60p
以下の超微粉が好ましい。このような酸化鉄超微粉は鉄
粉を希塩酸等に溶解した溶液を燃料とともに700〜8
00°Cで噴霧して焙焼することにより得ることができ
る。ZnO及びCuOは市販されている工業用のものを
そのまま使用することができる。
Iron oxide is mainly α-Fez03 and has a particle size of 60p.
The following ultrafine powders are preferred. This type of ultrafine iron oxide powder is produced by mixing a solution of iron powder in dilute hydrochloric acid, etc. with a fuel of 700 to 8
It can be obtained by spraying and roasting at 00°C. Commercially available industrial ZnO and CuO can be used as they are.

これに添加される塩基性化合物はアルカリ金属又はアル
カリ土類金属の酸化物及び炭酸塩が適当である。酸化物
の例としてCaOlMgO等、そして炭酸塩の例として
はN a HC03、N a z CO:l、CaCO
3、K、CO2等を挙げることができる。
The basic compounds added thereto are suitably alkali metal or alkaline earth metal oxides and carbonates. Examples of oxides include CaOlMgO, and examples of carbonates include Na HC03, Na z CO:l, CaCO
3, K, CO2, etc.

触媒の組成としては酸化鉄30〜80重量%程度、酸化
亜鉛2〜15重量%重量%酸化銅2〜15重量%程度、
担体10〜30重量%程度、そして塩基性化合物の添加
物1〜10重景%重量が適当である。
The composition of the catalyst is approximately 30-80% by weight of iron oxide, 2-15% by weight of zinc oxide, 2-15% by weight of copper oxide,
Appropriate amounts are about 10 to 30% by weight of the carrier and 1 to 10% by weight of the basic compound additive.

この触媒の製造方法としては酸化鉄、酸化亜鉛及び酸化
銅を混合後、担体、塩基性化合物の添加物と水を加えて
混合造粒し、結晶水除去のため100〜400″C程度
゛で軽(焙焼すればよい。担体及び塩基性化合物は酸化
鉄等と一緒に加えてもよい。
The method for producing this catalyst is to mix iron oxide, zinc oxide, and copper oxide, then add a carrier, basic compound additives, and water, granulate the mixture, and heat the mixture at about 100 to 400"C to remove crystallization water. Light (roasting may be sufficient.) A carrier and a basic compound may be added together with iron oxide, etc.

粒径は5〜20閤程度が適当であり、7〜15圓程度が
好ましい。
The particle size is suitably about 5 to 20 g, preferably about 7 to 15 g.

この触媒は120〜300℃、常圧以上の比較的低圧で
有機イオウ、NOx及びジエン類を同時に分解すること
ができる。混合ガスの流速は空間速度(SV)で100
〜1000hr−’程度の範囲で使用でき、650hr
−’以下では極めて良好な除去成績を上げることができ
る。また、触媒の再生は少量の空気と水蒸気を送入する
ことによってFezS=、FeS等の硫化物に変化した
触媒がFe、03に再生され、長期間の継続使用が可能
である。
This catalyst can simultaneously decompose organic sulfur, NOx, and dienes at a temperature of 120 to 300°C and a relatively low pressure above normal pressure. The flow velocity of the mixed gas is 100 in space velocity (SV)
It can be used within the range of ~1000hr-' and 650hr
-' or less, extremely good removal results can be achieved. Further, the catalyst is regenerated by introducing a small amount of air and water vapor, so that the catalyst that has changed to sulfides such as FezS= and FeS is regenerated to Fe and 03, allowing continuous use for a long period of time.

LPG又はその改質ガスは、この酸化鉄系触媒塔に10
0〜200″C程度、好ましくは120〜200″C程
度に加熱して送入する。そうすると、この塔内で硫黄化
合物質等が除去され、その後CO変成する。
LPG or its reformed gas is fed to this iron oxide catalyst tower at a rate of 10
It is heated to about 0 to 200''C, preferably about 120 to 200''C, and then fed. Then, sulfur compounds and the like are removed in this column, and then CO is converted.

このオフガスをニッケル−アルミナ系触媒に接触させて
該混合ガス中の一酸化炭素と二酸化炭素に水素を反応さ
せてメタンを生成させる。
This off-gas is brought into contact with a nickel-alumina catalyst to cause carbon monoxide and carbon dioxide in the mixed gas to react with hydrogen to produce methane.

この反応により温度が200〜300″C程度上昇する
ので、この熱を熱交換等で回収してから熱量調節を行な
い、製品ガス化する。
This reaction raises the temperature by about 200-300''C, so this heat is recovered by heat exchange or the like, and then the amount of heat is adjusted and the product is gasified.

〔作用〕[Effect]

LPG改質ガスに酸化鉄系触媒を作用させることによっ
てH2S、CO3,C52、メルカプタン、NOx等を
除去し、CO変成後ニッケル−アルミナ触媒を作用させ
ることによってガス中のCOとH2を反応させてCH,
に変え、さらに脱炭酸を必要によりLPG添加を行なう
ことにより、高カロリー都市ガスとして使用しうるガス
を調製している。
H2S, CO3, C52, mercaptan, NOx, etc. are removed by applying an iron oxide catalyst to LPG reformed gas, and after CO conversion, CO and H2 in the gas are reacted by applying a nickel-alumina catalyst. CH,
Gas that can be used as high-calorie city gas is prepared by decarboxylating and adding LPG if necessary.

〔実施例〕 第2図に示す従来のプロセスのスチーム改質基1の出口
に第1図に示す装置を接続した。この装置は、酸化鉄系
触媒を充填した触媒塔4、CO変成塔5とニッケル−ア
ルミナ系触媒を充填した触媒塔6が直列に接続されてお
り、各触媒塔の出口側には熱交換器7.8が接続されて
いる。そして、熱交換器8の出口にてLPG熱量調整用
として添加し、その後製品ガスとして取出しうるように
なっている。
[Example] The apparatus shown in FIG. 1 was connected to the outlet of the steam reforming group 1 of the conventional process shown in FIG. In this device, a catalyst tower 4 filled with an iron oxide catalyst, a CO shift tower 5, and a catalyst tower 6 filled with a nickel-alumina catalyst are connected in series, and a heat exchanger is installed on the outlet side of each catalyst tower. 7.8 is connected. Then, it is added at the outlet of the heat exchanger 8 to adjust the LPG calorific value, and can then be taken out as a product gas.

このような装置を用いて、LPGから高カロリーガスの
製造を行なった。第2図のプロセスから抜出したスチー
ム改質ガスの組成は表2に示す通りである。
Using such an apparatus, high calorie gas was produced from LPG. The composition of the steam reformed gas extracted from the process shown in FIG. 2 is as shown in Table 2.

触媒塔4に充填した触媒は次のようにして作製した。す
なわち、製鉄業において銅板を塩酸で酸洗するときに発
生する廃酸(FeCfz20〜30%)を700〜80
0″Cで噴霧焙焼して粒径6〇−以下のα−Fez03
粉を得た。この酸洗ダスト50重量%にZnO1CuO
をそれぞれ5重量%を加えて均一に混合し、ボルトラン
ドモメント(CaO64%、5i022%、AfzCh
5%等)15重量%と焼結鉱23重量%及び重炭酸ソー
ダ2重量%に水を加えて均一に混練した後、7〜15m
m粒径程度に造粒した。
The catalyst packed in the catalyst tower 4 was prepared as follows. In other words, the waste acid (FeCfz 20-30%) generated when pickling copper plates with hydrochloric acid in the steel industry is
α-Fez03 with a particle size of 60- or less by spray roasting at 0″C
Got the powder. ZnO1CuO is added to 50% by weight of this pickling dust.
5% by weight of each were added and mixed uniformly, and Bortland moment (CaO64%, 5i022%, AfzCh
After adding water to 15% by weight of sintered ore, 23% by weight of sintered ore, and 2% by weight of bicarbonate of soda and kneading them uniformly, 7 to 15 m
It was granulated to about m particle size.

触媒塔6のニッケル−アルミナ系触媒には市販品を使用
した。
A commercially available product was used as the nickel-alumina catalyst in the catalyst column 6.

触媒塔4のSVは600/hr、そして触媒塔6のSV
は5000/hrであり、ガス温度は触媒塔4人口が2
00°C前後、出口も300°C前後、触媒塔6人口も
300″C前後、出口が500°C前後、そして熱交換
器7出口が200°C前後であった。圧力3 kg/d
のLPGの混合量は4段階に変えた。
The SV of catalyst tower 4 is 600/hr, and the SV of catalyst tower 6 is
is 5000/hr, and the gas temperature is 2 when the catalyst tower 4 population is 2.
The temperature was around 00°C, the outlet temperature was around 300°C, the catalyst column 6 population was around 300°C, the outlet temperature was around 500°C, and the heat exchanger 7 outlet temperature was around 200°C. Pressure 3 kg/d.
The amount of LPG mixed was changed in four stages.

運転結果を表2に示す。The operation results are shown in Table 2.

(以下余白) 次に、前記の触媒塔6のオフガスにLPGを各種割合で
添加してCpとWIの関係を求めた結果を第2図に実線
で示す。一方、改質ガスをco変成しただけのガスにL
PGを添加した場合のCpとWIの関係を同図に点線で
示す。
(Left space below) Next, the relationship between Cp and WI was determined by adding LPG in various proportions to the off-gas of the catalyst tower 6, and the results are shown in FIG. 2 by solid lines. On the other hand, L
The relationship between Cp and WI when PG is added is shown by a dotted line in the figure.

〔発明の効果〕〔Effect of the invention〕

本発明の方法により、容易に12A、13A等の規格に
入る高カロリーガスを製造することができる。
By the method of the present invention, it is possible to easily produce high-calorie gas that meets standards such as 12A and 13A.

製造プロセスでは各触媒の寿命を大幅に延ばすことがで
き、また製品ガスからは硫黄分等がほぼ完全に診去され
ているところから配管腐食等の問題も全く生じない。
In the manufacturing process, the life of each catalyst can be significantly extended, and since sulfur content is almost completely removed from the product gas, problems such as pipe corrosion do not occur at all.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はLPGから高カロリー都市ガスを製造するプロ
セスにおいて、本発明の実施例で使用した改造部分を示
すフローシートであり、第2図は従来例のフローシート
である。第3図は本発明の実施例で得られたガスと比較
例のガスについてLPGの添加量を変えた場合のCpと
Wlの関係を示すグラフである。
FIG. 1 is a flow sheet showing a modified part used in an embodiment of the present invention in the process of producing high-calorie city gas from LPG, and FIG. 2 is a flow sheet of a conventional example. FIG. 3 is a graph showing the relationship between Cp and Wl when the amount of LPG added is changed for the gas obtained in the example of the present invention and the gas of the comparative example.

Claims (1)

【特許請求の範囲】[Claims]  液化石油ガスの改質ガスを酸化鉄を主成分とする触媒
に接触させて硫黄化合物を除去し、CO変成後ニッケル
−アルミナ系触媒に接触させて該ガス中の一酸化炭素と
水素を反応させてメタンを生成させ、必要により液化石
油ガス添加を行なうことを特徴とする液化石油ガス改質
ガスの高カロリー化方法
The reformed gas of liquefied petroleum gas is brought into contact with a catalyst mainly composed of iron oxide to remove sulfur compounds, and after CO conversion, the reformed gas is brought into contact with a nickel-alumina catalyst to react the carbon monoxide and hydrogen in the gas. A method for increasing the calorie content of liquefied petroleum gas reformed gas, characterized by producing methane and adding liquefied petroleum gas as necessary.
JP2332050A 1990-11-29 1990-11-29 Method for producing high calorie gas from LPG reformed gas Expired - Lifetime JPH0774349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2332050A JPH0774349B2 (en) 1990-11-29 1990-11-29 Method for producing high calorie gas from LPG reformed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2332050A JPH0774349B2 (en) 1990-11-29 1990-11-29 Method for producing high calorie gas from LPG reformed gas

Publications (2)

Publication Number Publication Date
JPH04202292A true JPH04202292A (en) 1992-07-23
JPH0774349B2 JPH0774349B2 (en) 1995-08-09

Family

ID=18250581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2332050A Expired - Lifetime JPH0774349B2 (en) 1990-11-29 1990-11-29 Method for producing high calorie gas from LPG reformed gas

Country Status (1)

Country Link
JP (1) JPH0774349B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156324A (en) * 1982-02-26 1983-09-17 ザ・グツドイヤ−・タイヤ・アンド・ラバ−・カンパニ− Desulfurizing method from gas current
JPS594183A (en) * 1982-06-30 1984-01-10 Fujitsu Ltd Color detecting system
JPS60264304A (en) * 1984-06-12 1985-12-27 Osaka Gas Co Ltd Apparatus for producing fuel gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156324A (en) * 1982-02-26 1983-09-17 ザ・グツドイヤ−・タイヤ・アンド・ラバ−・カンパニ− Desulfurizing method from gas current
JPS594183A (en) * 1982-06-30 1984-01-10 Fujitsu Ltd Color detecting system
JPS60264304A (en) * 1984-06-12 1985-12-27 Osaka Gas Co Ltd Apparatus for producing fuel gas

Also Published As

Publication number Publication date
JPH0774349B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
JPS6041116B2 (en) Synthesis gas production method
JPS57151693A (en) Production of town gas from solid waste
EA033955B1 (en) Integrated process for the production of formaldehyde-stabilized urea
JPS5827837B2 (en) Processing method for sulfur-containing heavy oil
GB2039518A (en) A process and a plant for preparing a gas rich in methane
US6083862A (en) Cyclic process for oxidation of calcium sulfide
CN113213425A (en) System and method for preparing hydrogen by using natural gas
EP2657215A1 (en) Method and device for producing methanol
JPH0451481B2 (en)
US4040816A (en) Process for the production of sponge iron
JP2009108241A (en) Method for increasing calorie of blast furnace gas
JPS5938161B2 (en) Method for producing synthesis gas for ammonia production
JP4113951B2 (en) Methanol production method using biomass
US5653955A (en) Cyclic process for oxidation of calcium sulfide
JP5009829B2 (en) Blast furnace gas reforming method and utilization method
JPH04202292A (en) Method for converting reformed lpg gas into highly calorific gas
JP2007051181A (en) Method for recovering sensible heat of coke oven gas
JP2010082611A (en) Decomposition method of carbon dioxide
JPH0261410B2 (en)
JPS59204687A (en) Fuel gas desulfurization
EP3411356A1 (en) A carbon neutral process and relating apparatus to produce urea from municipal or industrial wastes with zero emissions
US3808325A (en) Continuous process for scrubbing so2 from a gas stream with co regeneration and co2 stripping
JPS6128446A (en) Preparation of inert gas
JPH04202290A (en) Method for converting by-product gas in iron mill into highly calorific gas
JPS59203702A (en) Manufacture of hydrogen