JPH0774349B2 - Method for producing high calorie gas from LPG reformed gas - Google Patents

Method for producing high calorie gas from LPG reformed gas

Info

Publication number
JPH0774349B2
JPH0774349B2 JP2332050A JP33205090A JPH0774349B2 JP H0774349 B2 JPH0774349 B2 JP H0774349B2 JP 2332050 A JP2332050 A JP 2332050A JP 33205090 A JP33205090 A JP 33205090A JP H0774349 B2 JPH0774349 B2 JP H0774349B2
Authority
JP
Japan
Prior art keywords
gas
lpg
catalyst
producing high
reformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2332050A
Other languages
Japanese (ja)
Other versions
JPH04202292A (en
Inventor
弘 吉田
正敏 水沢
一嗣 北島
閲治 光成
英則 江口
Original Assignee
日本鋼管株式会社
福山瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社, 福山瓦斯株式会社 filed Critical 日本鋼管株式会社
Priority to JP2332050A priority Critical patent/JPH0774349B2/en
Publication of JPH04202292A publication Critical patent/JPH04202292A/en
Publication of JPH0774349B2 publication Critical patent/JPH0774349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Industrial Gases (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液化石油ガス(LPG)を原料として高カロリ
ーの都市ガスを製造する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing high-calorie city gas using liquefied petroleum gas (LPG) as a raw material.

〔従来の技術〕[Conventional technology]

LPGを改質して都市ガスに適する品質にするために従来
はLPGをスチーム改質し、次に銅−亜鉛系触媒でCO変成
してCO濃度を減少させていた(社団法人 日本ガス協
会、「第37回都市シンポジウム講演要旨集、P14〜15、
平成元年」)。
In order to reform LPG to obtain a quality suitable for city gas, steam reforming LPG has been conventionally used, and then CO conversion was performed with a copper-zinc catalyst to reduce the CO concentration (Japan Gas Association, "The 37th Urban Symposium Abstracts, P14-15,"
1989 ").

そのフローシートの概略を第2図に示す。すなわち、LP
Gは図面左上よりスチームとともにスチーム改質塔1に
入って改質が行なわれ、次に銅−亜鉛系触媒に脱硫剤と
して酸化亜鉛触媒を充填した第1CO変成塔2でCO変成が
行なわれる。そのオフガスは熱交換器3で熱交換が行な
われる。そこで、CO濃度5%以下にまで低下させて、LP
Gを添加して製品ガスとされていた。この方法における
ガスの組成等の変化の一例を表1に示す。
The outline of the flow sheet is shown in FIG. That is, LP
G enters the steam reforming tower 1 together with steam from the upper left of the drawing for reforming, and then CO shift is carried out in the first CO shift tower 2 in which a copper-zinc catalyst is filled with a zinc oxide catalyst as a desulfurizing agent. The off gas undergoes heat exchange in the heat exchanger 3. Therefore, lower the CO concentration to 5% or less and
G was added to the product gas. Table 1 shows an example of changes in gas composition and the like in this method.

〔発明が解決しようとする課題〕 この方法は12A、13A等の高カロリーガスの規格値に入り
にくい問題があった。
[Problems to be Solved by the Invention] This method has a problem that it is difficult to enter the standard value of high-calorie gas such as 12A and 13A.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は上記課題を解決した高カロリーガスの製造方法
を提供するものである。
The present invention provides a method for producing high-calorie gas that solves the above-mentioned problems.

すなわち、本発明は液化石油ガスの改質ガスを酸化鉄を
主成分とする触媒に接触させて硫黄化合物を除去し、CO
変成後ニッケル−アルミナ系触媒に接触させて該ガス中
の一酸化炭素と水素を反応させてメタンを生成させ、液
化石油ガス添加を行なうことを特徴とする都市ガスの12
A又は13Aの規格に入る高カロリーガスの製造方法に関す
るものである。
That is, in the present invention, the reformed gas of liquefied petroleum gas is brought into contact with a catalyst containing iron oxide as a main component to remove sulfur compounds,
After the conversion, it is brought into contact with a nickel-alumina-based catalyst to react carbon monoxide and hydrogen in the gas to produce methane, and liquefied petroleum gas is added.
The present invention relates to a method for producing high-calorie gas that falls within the A or 13A standard.

本発明の方法は、LPGをスチーム改質等によってクラッ
キングしたガス、又はこれをさらに改質したガスに適用
するものであり、例えば第2図のプロセスにおいては※
印で示す位置のスチーム改質ガスが好ましい。
The method of the present invention is applied to a gas obtained by cracking LPG by steam reforming or the like, or a gas obtained by further reforming it. For example, in the process of FIG.
The steam reformed gas at the position indicated by the mark is preferable.

酸化鉄を主成分とする触媒は担体に酸化鉄(α−Fe
2O3)と酸化亜鉛(ZnO)及び酸化銅(CuO)を担持し、
これに塩基性化合物を添加したものである。担体はCa
O、SiO2、Al2O3、MgO、TiO2等を単独あるいは適宜混合
したものである。
The catalyst containing iron oxide as the main component is iron oxide (α-Fe
2 O 3 ) and zinc oxide (ZnO) and copper oxide (CuO) are supported,
A basic compound is added to this. Carrier is Ca
O, SiO 2 , Al 2 O 3 , MgO, TiO 2 and the like are used alone or in a suitable mixture.

酸化鉄は、α−Fe2O3を主とするもので粒径60μm以下
の超微粉が好ましい。このような酸化鉄超微粉は鉄粉を
希塩酸等に溶解した溶液を燃料とともに700〜800℃で噴
霧して焙焼することにより得ることができる。ZnO及びC
uOは市販されている工業用のものをそのまま使用するこ
とができる。
Iron oxide is mainly composed of α-Fe 2 O 3 , and ultrafine powder having a particle size of 60 μm or less is preferable. Such ultrafine iron oxide powder can be obtained by spraying a solution of iron powder dissolved in dilute hydrochloric acid or the like with fuel at 700 to 800 ° C. and roasting. ZnO and C
As uO, commercially available products can be used as they are.

これに添加される塩基性化合物はアルカリ金属又はアル
カリ土類金属の酸化物及び炭酸塩が適当である。酸化物
の例としてCaO、MgO等、そして炭酸塩の例としてはNaHC
O3、Na2CO3、CaCO3、K2CO3等を挙げることができる。
The basic compound added to this is suitably an oxide or carbonate of an alkali metal or alkaline earth metal. Examples of oxides are CaO, MgO, etc., and examples of carbonates are NaHC
O 3, Na 2 CO 3, may be mentioned CaCO 3, K 2 CO 3 and the like.

触媒の組成としては酸化鉄30〜80重量%程度、酸化亜鉛
2〜15重量%程度、酸化銅2〜15重量%程度、担体10〜
30重量%程度、そして塩基性化合物の添加物1〜10重量
%程度が適当である。
The composition of the catalyst is about 30 to 80% by weight of iron oxide, about 2 to 15% by weight of zinc oxide, about 2 to 15% by weight of copper oxide, and about 10 to 10% of carrier.
About 30% by weight, and about 1 to 10% by weight of the additive of the basic compound are suitable.

この触媒の製造方法としては酸化鉄、酸化亜鉛及び酸化
銅を混合後、担体、塩基性化合物の添加物を水と加えて
混合造粒し、結晶水除去のため100〜400℃程度で軽く焙
焼すればよい。担体及び塩基性化合物は酸化鉄等と一緒
に加えてもよい。粒径は5〜20mm程度が適当であり、7
〜15mm程度が好ましい。
As a method for producing this catalyst, after iron oxide, zinc oxide and copper oxide are mixed, a carrier and an additive of a basic compound are added to water and mixed and granulated. Just bake. The carrier and basic compound may be added together with iron oxide or the like. A particle size of 5 to 20 mm is appropriate, 7
It is preferably about 15 mm.

この触媒は120〜300℃、常圧以上の比較的低圧で有機イ
オウ、NOx及びジエン類を同時に分解することができ
る。混合ガスの流速は空間速度(SV)で100〜1000hr-1
程度の範囲で使用でき、650hr-1以下では極めて良好な
除去成績を上げることができる。また、触媒の再生は少
量の空気と水蒸気を送入することによってFe2S3、FeS等
の硫化物に変化した触媒がFe2O3に再生され、長期間の
継続使用が可能である。
This catalyst is capable of simultaneously decomposing organic sulfur, NOx and dienes at a relatively low pressure of 120 to 300 ° C and atmospheric pressure or higher. The flow velocity of the mixed gas is 100-1000hr -1 in space velocity (SV)
It can be used in a range of about 650 hr -1 , and very good removal results can be obtained at 650 hr -1 or less. In addition, the catalyst is regenerated by feeding a small amount of air and water vapor into sulfides such as Fe 2 S 3 and FeS which are regenerated into Fe 2 O 3 and can be continuously used for a long time.

LPG又はその改質ガスは、この酸化鉄系触媒塔に100〜20
0℃程度、好ましくは120〜200℃程度に加熱して送入す
る。そうすると、この塔内で硫黄化合物質等が除去さ
れ、その後CO変成する。このオフガスをニッケル−アル
ミナ系触媒に接触させて該混合ガス中の一酸化炭素と二
酸化炭素に水素を反応させてメタンを生成させる。
LPG or its reformed gas is fed to the iron oxide catalyst tower at 100 to 20
The mixture is heated to about 0 ° C, preferably about 120 to 200 ° C and fed. Then, sulfur compounds and the like are removed in this tower, and then CO is converted. This off-gas is brought into contact with a nickel-alumina-based catalyst to react carbon monoxide and carbon dioxide in the mixed gas with hydrogen to generate methane.

この反応により温度が200〜300℃程度上昇するので、こ
の熱を熱交換等で回収してから熱量調節を行ない、製品
ガス化する。熱量調節はLPGの添加によって行う。
Since this reaction raises the temperature by about 200 to 300 ° C, the heat is recovered by heat exchange or the like, and then the heat amount is adjusted to gasify the product. The amount of heat is adjusted by adding LPG.

〔作用〕[Action]

LPG改質ガスに酸化鉄系触媒を作用させることによってH
2S、COS、CS2、メルカプタン、NOx等を除去し、CO変成
後ニッケル−アルミナ触媒を作用させることによってガ
ス中のCOとH2を反応させてCH4に変え、LPG添加を行なう
ことにより、高カロリー都市ガスとして使用しうるガス
を調製している。
By reacting the iron oxide catalyst with the LPG reformed gas, H
2 S, COS, CS 2 , mercaptan, NOx, etc. are removed, and after the CO conversion, the nickel-alumina catalyst is reacted to react CO in the gas with H 2 to change it to CH 4 , and by adding LPG. We are preparing a gas that can be used as a high-calorie city gas.

〔実施例〕〔Example〕

第2図に示す従来のプロセスのスチール改質塔1の出口
に第1図に示す装置を接続した。この装置は、酸化鉄系
触媒を充填した触媒塔4、CO変成塔5とニッケル−アル
ミナ系触媒を充填した触媒塔6が直列に接続されてお
り、各触媒塔の出口側には熱交換器7、8が接続されて
いる。そして、熱交換器8の出口にてLPGを熱量調整用
として添加し、その後製品ガスとして取出しうるように
なっている。
The apparatus shown in FIG. 1 was connected to the outlet of the steel reforming tower 1 of the conventional process shown in FIG. In this apparatus, a catalyst tower 4 filled with an iron oxide-based catalyst, a CO shift tower 5 and a catalyst tower 6 filled with a nickel-alumina-based catalyst are connected in series, and a heat exchanger is provided on the outlet side of each catalyst tower. 7 and 8 are connected. Then, LPG can be added at the outlet of the heat exchanger 8 for heat quantity adjustment, and then taken out as a product gas.

このような装置を用いて、LPGから高カロリーガスの製
造を行なった。第2図のプロセスから抜出したスチーム
改質ガスの組成は表2に示す通りである。
High-calorie gas was produced from LPG using such an apparatus. The composition of the steam reformed gas extracted from the process of FIG. 2 is as shown in Table 2.

触媒塔4に充填した触媒は次のようにして作製した。す
なわち、製鉄業において鋼板を塩酸で酸洗するときに発
生する廃酸(FeCl220〜30%)を700〜800℃で噴霧焙焼
して粒径60μm以下のα−Fe2O3粉を得た。この酸洗ダ
スト50重量%にZnO、CuOをそれぞれ5重量%を加えて均
一に混合し、ポルトランドセメント(CaO64%、SiO22
%、Al2O35%等)15重量%と焼結鉱23重量%及び重炭酸
ソーダ2重量%に水を加えて均一に混練した後、7〜15
mm粒径程度に造粒した。
The catalyst packed in the catalyst tower 4 was produced as follows. That is, in the steel industry, waste acid (FeCl 2 20 to 30%) generated when a steel sheet is pickled with hydrochloric acid is spray roasted at 700 to 800 ° C. to produce α-Fe 2 O 3 powder having a particle size of 60 μm or less. Obtained. To 50% by weight of this pickling dust, 5% by weight of ZnO and 5% by weight of CuO were added and mixed uniformly, and Portland cement (CaO 64%, SiO22
%, Al 2 O 3 5%, etc.), sinter ore 23% by weight, and sodium bicarbonate 2% by weight, and water is added to the mixture to obtain a uniform mixture of 7 to 15%.
Granulated to a particle size of about mm.

触媒塔6のニッケル−アルミナ系触媒には市販品を使用
した。
A commercially available product was used as the nickel-alumina-based catalyst in the catalyst tower 6.

触媒塔4のSVは600/hr、そして触媒塔6のSVは5000/hr
であり、ガス温度は触媒塔4入口が200℃前後、出口も3
00℃前後、触媒塔6入口も300℃前後、出口が500℃前
後、そして熱交換器7出口が200℃前後であった。圧力
は3kg/cm2でLPGの混合量は4段階に変えた。
SV of catalyst tower 4 is 600 / hr, and SV of catalyst tower 6 is 5000 / hr
The gas temperature is around 200 ° C at the inlet of the catalyst tower 4 and 3 at the outlet.
The temperature was around 00 ° C, the catalyst tower 6 inlet was around 300 ° C, the outlet was around 500 ° C, and the heat exchanger 7 outlet was around 200 ° C. The pressure was 3 kg / cm 2 and the amount of LPG mixed was changed in four stages.

運転結果を表2に示す。The operation results are shown in Table 2.

次に、前記の触媒塔6のオフガスにLPGを各種割合で添
加してCpとWIの関係を求めた結果を第3図に実線で示
す。一方、改質ガスをCO変成しただけのガスにLPGを添
加した場合のCpとWIの関係を同図に点線で示す。
Next, the results of obtaining the relationship between Cp and WI by adding LPG to the off gas of the catalyst tower 6 in various proportions are shown by the solid line in FIG. On the other hand, the relationship between Cp and WI when LPG is added to the reformed gas that has just been CO-transformed is shown by the dotted line in the figure.

〔発明の効果〕〔The invention's effect〕

本発明の方法により、容易に12A、13A等の規格に入る高
カロリーガスを製造することができる。製造プロセスで
は各触媒の寿命を大幅に延ばすことができ、また製品ガ
スからは硫黄分等がほぼ完全に除去されているところか
ら配管腐食等の問題も全く生じない。
By the method of the present invention, a high-calorie gas that meets the standards such as 12A and 13A can be easily produced. In the manufacturing process, the life of each catalyst can be greatly extended, and since the sulfur content and the like are almost completely removed from the product gas, problems such as pipe corrosion do not occur at all.

【図面の簡単な説明】[Brief description of drawings]

第1図はLPGから高カロリー都市ガスを製造するプロセ
スにおいて、本発明の実施例で使用した改造部分を示す
フローシートであり、第2図は従来例のフローシートで
ある。第3図は本発明の実施例で得られたガスと比較例
のガスについてLPGの添加量を変えた場合のCpとWIの関
係を示すグラフである。
FIG. 1 is a flow sheet showing a modified portion used in an embodiment of the present invention in the process of producing high-calorie city gas from LPG, and FIG. 2 is a flow sheet of a conventional example. FIG. 3 is a graph showing the relationship between Cp and WI when the amount of LPG added was changed for the gas obtained in the example of the present invention and the gas of the comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北島 一嗣 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 光成 閲治 広島県福山市南手城町2丁目26番1号 福 山瓦斯株式会社内 (72)発明者 江口 英則 広島県福山市南手城町2丁目26番1号 福 山瓦斯株式会社内 (56)参考文献 特開 昭60−264304(JP,A) 特開 昭58−16324(JP,A) 特公 昭59−4183(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazutsugu Kitajima 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. Chome 26-1 Fukuyama Gas Co., Ltd. (72) Inventor Hidenori Eguchi 2-26-1 Minatekicho, Fukuyama City, Hiroshima Prefecture Fukuyama Gas Co., Ltd. (56) Reference JP-A-60-264304 ( JP, A) JP 58-16324 (JP, A) JP 59-4183 (JP, B1)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】液化石油ガスの改質ガスを酸化鉄を主成分
とする触媒に接触させて硫黄化合物を除去し、CO変成後
ニッケル−アルミナ系触媒に接触させて該ガス中の一酸
化炭素と水素を反応させてメタンを生成させ、液化石油
ガス添加を行なうことを特徴とする都市ガスの12A又は1
3Aの規格に入る高カロリーガスの製造方法
1. A reformed gas of liquefied petroleum gas is brought into contact with a catalyst containing iron oxide as a main component to remove sulfur compounds. After CO conversion, the reformed gas is brought into contact with a nickel-alumina-based catalyst to form carbon monoxide in the gas. 12A or 1 of city gas characterized by reacting hydrogen with hydrogen to generate methane and adding liquefied petroleum gas
Production method of high-calorie gas that meets the standard of 3A
JP2332050A 1990-11-29 1990-11-29 Method for producing high calorie gas from LPG reformed gas Expired - Lifetime JPH0774349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2332050A JPH0774349B2 (en) 1990-11-29 1990-11-29 Method for producing high calorie gas from LPG reformed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2332050A JPH0774349B2 (en) 1990-11-29 1990-11-29 Method for producing high calorie gas from LPG reformed gas

Publications (2)

Publication Number Publication Date
JPH04202292A JPH04202292A (en) 1992-07-23
JPH0774349B2 true JPH0774349B2 (en) 1995-08-09

Family

ID=18250581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2332050A Expired - Lifetime JPH0774349B2 (en) 1990-11-29 1990-11-29 Method for producing high calorie gas from LPG reformed gas

Country Status (1)

Country Link
JP (1) JPH0774349B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435371A (en) * 1982-02-26 1984-03-06 The Goodyear Tire & Rubber Company Sulfur removal from a gas stream
JPS594183A (en) * 1982-06-30 1984-01-10 Fujitsu Ltd Color detecting system
JPS60264304A (en) * 1984-06-12 1985-12-27 Osaka Gas Co Ltd Apparatus for producing fuel gas

Also Published As

Publication number Publication date
JPH04202292A (en) 1992-07-23

Similar Documents

Publication Publication Date Title
US3031287A (en) Process for manufacturing mixtures of hydrogen, carbon monoxide, and methane
US4541841A (en) Method for converting carbon-containing raw material into a combustible product gas
US4224140A (en) Process for producing cracked distillate and hydrogen from heavy oil
US4198380A (en) Absorption of sulfur oxides from hot gases
US4061716A (en) Process for the production of sorbent solids for use in the desulfurization of gases
JPS6317118B2 (en)
JPS5827837B2 (en) Processing method for sulfur-containing heavy oil
US6083862A (en) Cyclic process for oxidation of calcium sulfide
US4223001A (en) Production of hydrogen from carbon monoxide and water
US4008169A (en) Preparation of iron oxide sorbent for sulfur oxides
US4159201A (en) Process for producing a carbon monoxide-rich gas
JPS61287420A (en) Removal of gaseous sulfur compound from flue gas of furnace
JPS5951336B2 (en) Catalyst for treatment of heavy hydrocarbons
JPH0774349B2 (en) Method for producing high calorie gas from LPG reformed gas
JP5009829B2 (en) Blast furnace gas reforming method and utilization method
US5653955A (en) Cyclic process for oxidation of calcium sulfide
US3148950A (en) Process of treating metal sulfates
US4370161A (en) Ore reduction using calcium oxide desulfurization
US5433939A (en) Cyclic process for oxidation of calcium sulfide
GB191227955A (en) Improvements in, or connected with, the Manufacture of Hydrogen.
JP3525184B2 (en) Catalyst for producing hydrogen and method for producing hydrogen
JP2007051181A (en) Method for recovering sensible heat of coke oven gas
US4321242A (en) Low sulfur content hot reducing gas production using calcium oxide desulfurization with water recycle
HU202423B (en) Method for removing gaseous sulfur compounds from flue gas of boilers
US2838460A (en) Production of ammonia synthesis feed gas