JPS594183A - Color detecting system - Google Patents

Color detecting system

Info

Publication number
JPS594183A
JPS594183A JP57113435A JP11343582A JPS594183A JP S594183 A JPS594183 A JP S594183A JP 57113435 A JP57113435 A JP 57113435A JP 11343582 A JP11343582 A JP 11343582A JP S594183 A JPS594183 A JP S594183A
Authority
JP
Japan
Prior art keywords
reverse bias
light
value
sensitivity
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57113435A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ozawa
清 小沢
Nobuyoshi Takagi
高城 信義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57113435A priority Critical patent/JPS594183A/en
Publication of JPS594183A publication Critical patent/JPS594183A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enable to discriminate multiple colors with a sole element on the basis of the displacement of a peak point of a current value at each applied voltage by varying the value of reverse bias applied to a photodiode at two stages and more. CONSTITUTION:When a reverse bias is applied to a diode 7, a depletion layer is generated in a Schottky junction between an i-type layer 3 and a platinum layer 4, and a current flowed in a photocarrier, but when the value of a reverse bias is increased, the extension of the depletion layer gradually increases. However, when the wavelength of the incident light is short, the light of the short wavelength can be relatively effectively absorbed when the extension of the depletion layer is small. When the reverse bias is increased to extend the depletion layer, the light gradually decreased the relative sensitivity, but when the wavelength of the light is long, the sensitivity gradually increases, it reaches the peak point at the long wavelength side as compared with the voltage V1. As a result, when the reverse bias is increased from the voltage V1 to the voltages V2, V3, the peak point of the sensitivity is gradually displaced to the long wavelength side. Accordingly, the value of the reverse bias is switched by a measuring circuit, the current value for each bias voltage is detected across a detecting resistor 8, and the output ratio is measured. In this manner, the color can be discriminated from the output ratio.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は、ファクシミリのリーダ部などにおけるカラー
検出に適するカラー検出方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a color detection method suitable for color detection in a facsimile reader section or the like.

fbl従来技術とその問題点 第1図は従来の半導体カラーセンナを模式的に示す図で
、−ヒ下のP層の中間にN層がサンドイッチされた構成
になっている。そして両側のP層と中央のNNから端子
を引き出して、3端子構成とし、中央の共通端子と両側
のP層の端子間で、受光時の電流値11、■2を検出す
ることにより、受光した光の周波数を判別し、色を識別
している。
fbl Prior Art and Its Problems FIG. 1 is a diagram schematically showing a conventional semiconductor color sensor, which has a structure in which an N layer is sandwiched between a P layer below the . Then, terminals are drawn out from the P layers on both sides and the NN in the center to form a three-terminal configuration, and a current value of 11, 2 during light reception is detected between the common terminal in the center and the terminals of the P layers on both sides. It determines the frequency of light emitted and identifies colors.

即ち下側のP層とN層との間の電流値12 と、上側の
P層とN層との間の電流値It  との比を測定するこ
とによって、光の周波数を検知することができる。
That is, the frequency of light can be detected by measuring the ratio of the current value 12 between the lower P layer and the N layer to the current value It between the upper P layer and the N layer. .

この上・うに従来の単結晶構成のカラーセンサでは、互
いに逆方向に接続されたダイオードの中間にも端子を設
ける必要があるので、構造が複雑化する。またアモール
ファスSiで作成すると、中間電極を取り出すために、
ダイオードの製作工程を2度に分けなければならず、製
造上の効率が著しく低下する。または中間電極を取り出
すためにダイオ−1zの中間点を正確に検出する必要が
あるが、そのプロセスが複雑になるなど、端子引き出し
に困難を伴う。更に性能的には、応答速度が遅く、1.
11力も小さいなどの問題もある。
Furthermore, in the conventional single-crystal color sensor, it is necessary to provide a terminal between the diodes connected in opposite directions, which complicates the structure. In addition, if it is made of amorphous Si, in order to take out the intermediate electrode,
The diode manufacturing process must be divided into two steps, which significantly reduces manufacturing efficiency. Alternatively, in order to take out the intermediate electrode, it is necessary to accurately detect the midpoint of the diode 1z, but the process becomes complicated, which causes difficulties in drawing out the terminal. Furthermore, in terms of performance, the response speed is slow; 1.
11 There are also problems such as low power.

一方アモールファスSiを用いて、各色ごとのカラーフ
ィルタ機能をもたせたカラーセンサもあるが、複数素子
から成る構成となるので、構成が複雑になると共に、小
形化が困難である。
On the other hand, there is a color sensor that uses amorphous Si and has a color filter function for each color, but since it is composed of a plurality of elements, the structure is complicated and it is difficult to miniaturize.

(C)発明の目的 本発明は、従来のカラー検出方式におけるこのような問
題を解決し、2端子の構造でもカラー検出を行なえるよ
うにすることにより、端子引き出しなどの製作プロセス
を簡易化すると共に検出性能を向上させ、また各色ごと
にカラーフィルタ機能をもたせた複数素子構成と違って
単素子で多色の判別を可能にすることを目的とする。
(C) Purpose of the Invention The present invention solves these problems in the conventional color detection method and simplifies the manufacturing process such as terminal extraction by making it possible to perform color detection even in a two-terminal structure. The present invention also aims to improve detection performance and to enable multi-color discrimination with a single element, unlike a multiple element configuration in which each color has a color filter function.

fd+発明の構成 この目的を達成するために本発明は、1つのフォトダイ
オードに逆バイアスを印加することによって光の色を検
出する方式であって、 印加する逆バイアス電圧の値を
2段階以上に変え、それぞれの印加電圧における感度の
ピーク点のずれに基づいて、受光した光の色を判別する
構成を採っている。
Structure of fd+ Invention In order to achieve this object, the present invention is a method of detecting the color of light by applying a reverse bias to one photodiode, and the value of the applied reverse bias voltage is set in two or more levels. The color of the received light is determined based on the shift of the sensitivity peak point at each applied voltage.

[81発明の実施例 次に本発明によるカラー検出方式が実際上どのように具
体化されるかを実施例で説明する。第2図は2端子カラ
ーセンサの断面図で、例えばガラスなどの基板の上に、
モリブデンN1を被着形成し、その」二に500人程変
形リン(P)をドーピングしたアモールファスSiから
なるn 層2を形成し、該0層2の−1−にグロー放電
法などでアモールファスSiからなるi IN 3を1
μm程度の厚さに形成する。そしてこのi If 3の
上にポロン(B)をドーピングしたアモールファスSi
からなるP 層4を500人程変形成し、最後に端子取
り出しのために酸化インジウム(Ir+z Oy )な
どで電極5を形成する。
[81 Embodiments of the Invention Next, examples will explain how the color detection method according to the present invention is actually implemented. Figure 2 is a cross-sectional view of a two-terminal color sensor, for example, on a substrate such as glass.
Molybdenum N1 is deposited, and then an n layer 2 made of amorphous Si doped with about 500 deformed phosphorus (P) is formed, and the amorphous layer 2 is formed on -1- of the layer 2 by a glow discharge method or the like. i IN 3 made of fas Si is 1
It is formed to a thickness of approximately μm. And amorphous Si doped with poron (B) on this i If 3
The P layer 4 consisting of P 2 is formed by about 500 layers, and finally the electrode 5 is formed of indium oxide (Ir+z Oy) or the like to take out the terminal.

このダイオ−I・でカラー検出するには、電極5とモリ
ブデン電極1との間に、バイアス電源6を接続し、逆バ
イアスを印加するが、本発明ではこのときのバイアス電
圧の値を段階的に切り替えて、各バイアス電圧ごとの感
度のピーク点を検出する。
In order to detect color with this diode I, a bias power supply 6 is connected between the electrode 5 and the molybdenum electrode 1, and a reverse bias is applied.In the present invention, the value of the bias voltage at this time is changed stepwise. , and detect the peak point of sensitivity for each bias voltage.

第3図はこのようにバイアス電圧を切り替えうるように
した検出回路を示す図で、第2図のダイオードと同様な
2端子構造のダイオード7に、検出用の抵抗8を介して
バイアス電源61.62.63を選択的に接続できるよ
うになっている。即ち端子の値がそれぞれ異なるバイア
ス電源6162.63の片方の端子は共通に接続されて
いるが、他方の端子は、切り替えスイッチ9で選択する
ような構成になっている。
FIG. 3 is a diagram showing a detection circuit in which the bias voltage can be switched in this manner. A bias power source 61. 62 and 63 can be selectively connected. That is, one terminal of the bias power supplies 6162 and 63, each having a different terminal value, is connected in common, while the other terminal is selected by the changeover switch 9.

第4図は波長による感度の特性を示すもので、横軸は波
長、縦軸は相対感度を表している。また曲線■1はバイ
アス電源61を印加したときの感度を、曲IJ V 2
はバイアス電源62を印加したときの感度を、曲線■3
はバイアス電源63を印加したときの感度をそれぞれ示
している。即ち第2図のような構成のダイオード7に逆
バイアス電圧を印加すると、1層3と白金層4間のショ
ットキージャンクション部で空乏層が発生してホトキャ
リヤで電流が流れるが、逆バイアスの値を大きくしてい
くと、空乏層の拡がりが次第に大きくなる。ところが入
射光の波長が短い場合は空乏層の拡がりが小さいほうが
、短波長の光が相対的に有効に吸収され、その結果第4
図の曲線■1のような特性を示す。逆バイアスを大きく
していって空乏層を拡5− げていくと、前記の光はその相対感度が次第に低下する
が、更に波長の長い光の場合であれば、感度は次第に増
加して、Vlのときより長波長側でピーク点に達する。
FIG. 4 shows sensitivity characteristics depending on wavelength, where the horizontal axis represents wavelength and the vertical axis represents relative sensitivity. Curve 1 shows the sensitivity when bias power supply 61 is applied.
is the sensitivity when bias power supply 62 is applied, curve ■3
1 and 2 respectively indicate the sensitivity when the bias power supply 63 is applied. That is, when a reverse bias voltage is applied to the diode 7 configured as shown in FIG. As the value increases, the depletion layer gradually expands. However, when the wavelength of the incident light is short, the smaller the spread of the depletion layer, the more effectively the short wavelength light is absorbed, and as a result, the fourth
It exhibits characteristics as shown in curve 1 in the figure. As the reverse bias is increased and the depletion layer is expanded, the relative sensitivity of the light described above gradually decreases, but for light with a longer wavelength, the sensitivity gradually increases. The peak point is reached on the longer wavelength side than at Vl.

その結果逆バイアスをVlからV2 、V3 と大きく
していくと、感度のピーク点が次第に長波長側にずれて
いく。
As a result, as the reverse bias is increased from Vl to V2 and V3, the peak point of sensitivity gradually shifts toward longer wavelengths.

従って第3図のような測定回路で逆バイアスの値を切り
替えて、各バイアス電圧ごとの電流値を検出用抵抗8の
両端で検出し、出力比を測定していくことにより、出力
比から色を判別することができる。バイアス電圧が2つ
だけの場合は、出力比が同一になることもありうるが、
バイアス電圧をVl、V2 、V3と3つ以上測定し、
例えば出力をf  (V)で示すとき、f  (Vi 
) / f  (Vi)にf  (Vi ) / f 
 (V3 )をあわせて考慮すれば、光量と関係なしに
波長を検出できる。つまり成る波長λ1の場合の、バイ
アス電圧V+の場合の感度と、バイアス電圧■2の場合
の感度、バイアス電圧v3の場合の感度のそれぞれの比
を検出することにより、入射光に対応する波長を判別す
6− ることができる。
Therefore, by switching the reverse bias value using the measurement circuit shown in Figure 3, detecting the current value for each bias voltage at both ends of the detection resistor 8, and measuring the output ratio, the color can be determined from the output ratio. can be determined. If there are only two bias voltages, the output ratio may be the same, but
Measure three or more bias voltages, Vl, V2, and V3,
For example, when the output is expressed as f (V), f (Vi
) / f (Vi) to f (Vi) / f
(V3), the wavelength can be detected regardless of the amount of light. In other words, by detecting the respective ratios of the sensitivity for the bias voltage V+, the sensitivity for the bias voltage ■2, and the sensitivity for the bias voltage v3 for the wavelength λ1, the wavelength corresponding to the incident light can be determined. 6- Can be distinguished.

(f1発明の効y 以−1−のように本発明によれば、1つのフォトダイオ
ードに逆バイアスを印加することによって光の色を検出
する方式であって、印加する逆バイアスの値を2段階以
」二に変え、それぞれの印加電圧にお(〕る電流値のピ
ーク点のずれに基づいて受光した光の色を判別する方式
になっている。その結果、使用するダイオードは1 f
llilで〆斉むので、引出し端子は2本となり、端子
の引き出しが筒中で、アモールファスSiなどでダイオ
ードを構成する場合であっ−ζも、簡単な工程で作成す
ることができ、かつ単素子で構成できると共に引き出し
端子数が少ないので、センサーを小形化でき高密度に配
列する場合に通ずる。また2つの端子の間に、印加する
バイアス電圧を2段階以」二に変えて、各バイアス電圧
における感度のピーク値のずれに基づいて、受光した光
の波長を検出するため、2端子構成が可能になるほか、
バイアス電圧を印加するので、出力が大きく且つ応答速
度も速くなる。
(f1 Effect of the invention y As described below-1-, according to the present invention, the color of light is detected by applying a reverse bias to one photodiode, and the value of the applied reverse bias is set to 2. The color of the received light is determined based on the deviation of the peak point of the current value for each applied voltage.As a result, the diode used is 1 f
llil, so there are only two lead-out terminals, and even when the terminal is drawn out in a cylinder and the diode is constructed from amorphous Si, etc., it can be made in a simple process and can be made from a single element. Since the sensor can be configured with a small number of lead-out terminals, the sensor can be made smaller and can be arranged in a high-density arrangement. In addition, the bias voltage applied between the two terminals is changed in two or more stages, and the wavelength of the received light is detected based on the shift in the peak sensitivity value at each bias voltage. In addition to being possible,
Since a bias voltage is applied, the output is large and the response speed is fast.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は(メを来のカラーセンサを示す模式図、第2図
は本発明によるカラーセンサを示す断面図、第3図は波
長検出用の回路構成を示す図、第4図し、1波長と相り
1懇度との特性を示す図である。 図において、1,5は電極、3はアモールファス5it
e、 6はバイアス電源、61.62.63ばバイアス
電源、7はフォトダイオード、8は検出用抵抗をそれぞ
れ示す。 特許出願人      富士通株式会社代理人 弁理士
    青 柳   稔−夏掌μ叶 〜
FIG. 1 is a schematic diagram showing a color sensor according to the present invention, FIG. 2 is a sectional view showing a color sensor according to the present invention, FIG. 3 is a diagram showing a circuit configuration for wavelength detection, and FIG. It is a diagram showing the characteristics of wavelength and coherence. In the diagram, 1 and 5 are electrodes, and 3 is amorphous 5it.
e, 6 is a bias power supply, 61, 62, 63 are bias power supplies, 7 is a photodiode, and 8 is a detection resistor, respectively. Patent Applicant: Fujitsu Limited Agent, Patent Attorney: Minoru Aoyagi - Natsashi μ Kano ~

Claims (1)

【特許請求の範囲】[Claims] 1つのフォトダイオードに逆バイアスを印加することに
よって光の色を検出する方式であって、印加する逆バイ
アス電圧の値を2段階以上に変え、それぞれの印加電圧
におりる感度のピーク点のずれに基づいて、受光した光
の色を判別することを特徴とするカラー検出方式。
This method detects the color of light by applying a reverse bias to one photodiode, and the value of the applied reverse bias voltage is varied in two or more steps, and the shift in the peak point of sensitivity at each applied voltage is A color detection method that distinguishes the color of received light based on the color of the received light.
JP57113435A 1982-06-30 1982-06-30 Color detecting system Pending JPS594183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57113435A JPS594183A (en) 1982-06-30 1982-06-30 Color detecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57113435A JPS594183A (en) 1982-06-30 1982-06-30 Color detecting system

Publications (1)

Publication Number Publication Date
JPS594183A true JPS594183A (en) 1984-01-10

Family

ID=14612142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57113435A Pending JPS594183A (en) 1982-06-30 1982-06-30 Color detecting system

Country Status (1)

Country Link
JP (1) JPS594183A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007769A1 (en) * 1987-03-31 1988-10-06 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Color sensor
JPH02288269A (en) * 1989-04-05 1990-11-28 Natl Sci Council Amorphous silicon si/sic heterogeneous coupling detecting phototransistor
JPH04202292A (en) * 1990-11-29 1992-07-23 Nkk Corp Method for converting reformed lpg gas into highly calorific gas
EP1172865A3 (en) * 2000-07-11 2003-08-13 Sony Corporation Semiconductor photosensitive device
DE102010043822A1 (en) * 2010-11-12 2012-05-16 Namlab Gmbh Photodiode used for detection of color images in digital camera, has one doped region and low doped region that are applied with variable voltage to vary extent of space charge zone via pn junction

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007769A1 (en) * 1987-03-31 1988-10-06 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Color sensor
JPH02288269A (en) * 1989-04-05 1990-11-28 Natl Sci Council Amorphous silicon si/sic heterogeneous coupling detecting phototransistor
JPH04202292A (en) * 1990-11-29 1992-07-23 Nkk Corp Method for converting reformed lpg gas into highly calorific gas
EP1172865A3 (en) * 2000-07-11 2003-08-13 Sony Corporation Semiconductor photosensitive device
DE102010043822A1 (en) * 2010-11-12 2012-05-16 Namlab Gmbh Photodiode used for detection of color images in digital camera, has one doped region and low doped region that are applied with variable voltage to vary extent of space charge zone via pn junction
DE102010043822B4 (en) * 2010-11-12 2014-02-13 Namlab Ggmbh Photodiode and photodiode array and method for their operation

Similar Documents

Publication Publication Date Title
JPS594183A (en) Color detecting system
US4698658A (en) Amorphous semiconductor device
US4564808A (en) Direct determination of quantum efficiency of semiconducting films
EP0682375B1 (en) Voltage-controlled variable spectrum photodetector for 2D colour image detection
JP2661341B2 (en) Semiconductor light receiving element
US3938894A (en) Focus detecting device
JPS6341226B2 (en)
US5093694A (en) Semiconductor variable capacitance diode with forward biasing
US4039824A (en) Focus detecting photoelectric device
GB2138206A (en) Variable capacitor element
JPS594184A (en) Color detecting system
JPH04313279A (en) One-dimensional light position detection element
EP1136797A2 (en) Polarity-independent optical receiver and method for fabricating same
EP0296725B1 (en) Photosensors
JPS6177375A (en) Color sensor
JPH0238824A (en) Photodetector apparatus
JPH01283882A (en) Lateral photodiode
JP2734680B2 (en) Light detection method
JPS586181A (en) Variable capacitor
JPS6338256A (en) Image sensor
Kub et al. Large-length high-speed discrete silicon photodetectors for coherent optical processing
JPH02241065A (en) Photodetector
JPH0533543B2 (en)
JPH06302851A (en) Beam-position detector
Dorogan et al. Quadrant detector based on InGaAsP heterostructures