JPH04198763A - Insulation type voltage detector - Google Patents

Insulation type voltage detector

Info

Publication number
JPH04198763A
JPH04198763A JP2332506A JP33250690A JPH04198763A JP H04198763 A JPH04198763 A JP H04198763A JP 2332506 A JP2332506 A JP 2332506A JP 33250690 A JP33250690 A JP 33250690A JP H04198763 A JPH04198763 A JP H04198763A
Authority
JP
Japan
Prior art keywords
light
voltage
liquid crystal
crystal plate
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2332506A
Other languages
Japanese (ja)
Inventor
Yuji Hashimoto
裕司 橋本
Hiroshi Yamaguchi
広 山口
Atsuyoshi Ishikawa
石川 敦義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIKEN KK
Panasonic Holdings Corp
Original Assignee
ISHIKEN KK
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIKEN KK, Matsushita Electric Industrial Co Ltd filed Critical ISHIKEN KK
Priority to JP2332506A priority Critical patent/JPH04198763A/en
Publication of JPH04198763A publication Critical patent/JPH04198763A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the consumed current by providing a liquid crystal plate between light emitting and light receiving elements. CONSTITUTION:Voltage applying terminals 11a, 11b of a liquid crystal plate 11 are connected to a power source to be detected 12, and the output voltage is applied to the liquid crystal plate 11. When the output voltage is held within a normal range at the voltage threshold value V2 or above, the liquid crystal plate 11 interrupts a luminous beam from a light emitting element 13, and a light receiving element 14 is switched off. The DC voltage Vd of an output terminal 18 becomes +5V. When the output voltage is lowered to the threshold value V1 or below on the contrary, the light permeability of the liquid crystal plate 11 is increased, the element 14 is switched on, and the voltage Vd of the terminal 18 becomes +0V. The output voltage state of the power source 12 can be detected in the electrically insulated state from the power source 12. The liquid crystal plate 11 has high impedance, the change of the light permeability is determined by the applied voltage value, the power consumption on the power source 12 can be made very small.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気回路の電源状態を電気的絶縁状態で電圧変
化として検出するための絶縁形電圧検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an insulated voltage detector for detecting the power supply state of an electric circuit as a voltage change in an electrically isolated state.

従来の技術 従来、この種の絶縁形電圧検出器として交流結合回路に
よるトランス・リレー、光結合素子(たとえば、フォト
カブラまたはフォトアイソレータなど)が知られている
2. Description of the Related Art Conventionally, as this type of isolated voltage detector, a transformer relay using an AC coupling circuit and an optical coupling element (for example, a photocoupler or a photoisolator) are known.

第7図は従来のフォトカプラを使用した場合の回路構成
図を示している。図において、発光素子1(例えば、L
ED)のカソードCは抵抗器3を介して被検出電源2の
電圧検出端子Aに接続し、アノードaは被検出電源2の
電圧検出端子Bに接続している。 受光素子(例えば、
フォトトランジスタ)4のコレクタCは抵抗器5を介し
てDC5V電源の5V端子と出力端子6に接続され、受
光素子4のベースbは回路グラウンドに接続している。
FIG. 7 shows a circuit configuration diagram when a conventional photocoupler is used. In the figure, a light emitting element 1 (for example, L
The cathode C of the ED) is connected to the voltage detection terminal A of the power supply to be detected 2 via the resistor 3, and the anode a is connected to the voltage detection terminal B of the power supply to be detected 2. Light receiving element (e.g.
A collector C of the phototransistor 4 is connected to a 5V terminal of a 5V DC power source and an output terminal 6 via a resistor 5, and a base b of the light receiving element 4 is connected to the circuit ground.

ここで、被検出電源2というのは、各種の電気回路に使
用されているものであって、その電源状態が正常か否か
を判定しなければならない対象となる電源である。
Here, the power source to be detected 2 is a power source that is used in various electric circuits and is a target power source whose power state is to be determined whether or not it is normal.

次に、上記従来例の動作を説明する。Next, the operation of the above conventional example will be explained.

被検出電源2がONL上記被検出電源2の電圧検出端子
ASB間の出力電圧が抵抗器3を介して発光素子1に印
加される。発光素子1を順バイアスすることによって順
方向電流が流れると発光する。この光が入射すると、受
光素子(フォトトランジスタ)4がONになり+5v電
圧端子より抵抗器5を介してコレクタ電流がコレクタC
→アノードa→回路グラウンドと流れて出力端子の電圧
は+5vからOvに変化する。 このようにして、上記
従来例の絶縁形電圧検出器でも被検出電源の電圧変化を
フォトカブラによって電気的に絶縁して検出することが
できる。
When the detected power source 2 is ON, the output voltage between the voltage detection terminals ASB of the detected power source 2 is applied to the light emitting element 1 via the resistor 3. When the light emitting element 1 is forward biased and a forward current flows, it emits light. When this light enters, the light receiving element (phototransistor) 4 is turned on, and a collector current flows from the +5V voltage terminal through the resistor 5 to the collector C.
→Anode a→Circuit ground, and the voltage at the output terminal changes from +5V to Ov. In this way, even with the conventional insulated voltage detector described above, changes in the voltage of the power source to be detected can be detected while being electrically isolated by the photocoupler.

発明が解決しようとする課題 しかしながら、上記従来例のフォトカプラのような絶縁
形電圧検出器では、発光素子lに十数mA以上のコレク
タ電流を流して発光させなければならず、その結果被検
出電源の消費電流が増大するという問題があった。
Problems to be Solved by the Invention However, in an insulated voltage detector such as the conventional photocoupler described above, a collector current of more than ten mA must be passed through the light emitting element l to cause it to emit light. There was a problem that the current consumption of the power supply increased.

本発明はこのような従来の問題を解決するものであり、
簡単な部品構成で被検出電源の消費電流を低減できる優
れた低消費電力絶縁形電圧検出器を提供することを目的
とするものである。
The present invention solves these conventional problems,
It is an object of the present invention to provide an excellent low power consumption isolated voltage detector that can reduce the current consumption of a detected power supply with a simple component configuration.

課題を解決するための手段 本発明は上記目的を達成するために、一定光量で発光す
る発光素子と、上記発光素子からの受光量によって所定
のレベルの電圧信号を出力する受光素子と、上記発光素
子と受光素子との光路間に被検出電源から印加される電
圧の変化に応じて光の透過量が変化する液晶板とを設け
た絶縁形電圧検出器を構成するものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a light emitting element that emits light with a constant amount of light, a light receiving element that outputs a voltage signal of a predetermined level depending on the amount of light received from the light emitting element, and a light emitting element that emits light at a constant amount of light. This constitutes an insulated voltage detector in which a liquid crystal plate is provided between the element and the optical path of the light-receiving element, and the amount of light transmitted changes according to changes in the voltage applied from the power source to be detected.

作用 本発明は上記のように構成されているので、被検出電源
とは別の外部電源によって発光素子を常時発光させてお
き、この光を被検出電源の電圧変化により光の透過量が
変化する液晶板を通して受光素子で検出する。これによ
って被検出電源の電圧変化を液晶板の光透過量の変化に
よる受光素子の受光量の変化として検出できる。
Function Since the present invention is configured as described above, the light emitting element is constantly caused to emit light by an external power source different from the power source to be detected, and the amount of light transmitted changes depending on the voltage change of the power source to be detected. It is detected by a light receiving element through the liquid crystal plate. Thereby, a change in the voltage of the power source to be detected can be detected as a change in the amount of light received by the light receiving element due to a change in the amount of light transmitted through the liquid crystal plate.

従って、被検出電源により直接発光素子を駆動しないの
で、被検出電源の消費電力は発光素子と受光素子間に設
けた液晶板の光透過量を変化させるだけの低消費電力で
済むことになる。
Therefore, since the light emitting element is not directly driven by the power source to be detected, the power consumption of the power source to be detected is as low as changing the amount of light transmitted through the liquid crystal plate provided between the light emitting element and the light receiving element.

実施例 第1図は本発明の第1の一実施例における絶縁形検出回
路の回2路構成図を示し、第2図は上記絶縁形検出器に
おいて使用する液晶板への印加電圧と光透過量(フォト
・マル出力値)の関係を示す特性である。第3図は上記
絶縁形検出器の構造を示す斜視図である。
Embodiment FIG. 1 shows a circuit diagram of two circuits of an insulated detection circuit according to a first embodiment of the present invention, and FIG. 2 shows the applied voltage and light transmission to the liquid crystal plate used in the above insulated detector. This is a characteristic that shows the relationship between the amount (photo/multiple output value). FIG. 3 is a perspective view showing the structure of the insulated detector.

第1図および第3図において、液晶板11には電圧端子
11aと11bが設けられそれぞれ被検出電源12の電
圧端子A、Hに接続されている。
In FIGS. 1 and 3, voltage terminals 11a and 11b are provided on the liquid crystal plate 11 and connected to voltage terminals A and H of the detected power source 12, respectively.

発光素子(LED)13は抵抗器15を介して上記被検
出電源12とは独立した外部直流電源(特に、図示せず
)から1流電圧+5vが印加される。
A 1-current voltage of +5 V is applied to the light emitting element (LED) 13 via a resistor 15 from an external DC power source (particularly not shown) independent of the detected power source 12 .

受光素子(フォトトランジスタ)14は発光素子13か
らの光ビームを受光する位置に配置され、発光素子13
と同様に外部直流電源で駆動させる。外部直流電源より
抵抗器16を介して受光素子のコレクタには+5vが常
時印加されている。またコレクタは出力端子18に接続
している。
The light receiving element (phototransistor) 14 is arranged at a position to receive the light beam from the light emitting element 13.
Similarly, it is driven by an external DC power supply. +5V is constantly applied to the collector of the light receiving element from an external DC power supply via the resistor 16. The collector is also connected to the output terminal 18.

液晶板11は発光素子13から受光素子14への光ビー
ムの光路中に発光ビームを遮るように配置されている。
The liquid crystal plate 11 is placed in the optical path of the light beam from the light emitting element 13 to the light receiving element 14 so as to block the emitted beam.

上記本発明の第1の一実施例の動作について説明する。The operation of the first embodiment of the present invention will be described.

第1図の構成において、発光素子13のカソードCには
抵抗器15を介して直流電源より順バイアスに+5vが
印加すると、カソードC→アノードa→回路アースへと
順方向電流が流れ発光素子13が発光する。
In the configuration shown in FIG. 1, when a forward bias of +5V is applied to the cathode C of the light emitting element 13 from the DC power source via the resistor 15, a forward current flows from the cathode C to the anode a to the circuit ground, and the light emitting element 13 emits light.

受光素子(フォトトランジスタ)14は[流電源よりコ
レクタCに常時+5Vが印加されており、光ビームを受
光するとスイッチONの状態になり、従って出力端子1
8の直流電圧Vdは+Ovになる。発光素子13が発光
しており、その光ビームの光路中に光ビームを遮る物体
が挿入されると、光ビームを受光をできないので受光素
子14はOFF状態になり、出力端子18は直流電圧V
dはOVから+5vに変化する。
The light-receiving element (phototransistor) 14 has +5V constantly applied to its collector C from a current power supply, and when it receives a light beam, the switch turns on, and therefore the output terminal 1
The DC voltage Vd of 8 becomes +Ov. When the light emitting element 13 is emitting light and an object is inserted into the optical path of the light beam to block the light beam, the light receiving element 14 becomes OFF because it cannot receive the light beam, and the output terminal 18 becomes a DC voltage V.
d changes from OV to +5v.

本発明の一実施例では発光素子13は常時発光状態にし
ておくので、その光ビームを遮らない限り受光素子14
はスイッチONしており、出力端子18は常時Ov状態
を保持する。
In one embodiment of the present invention, the light emitting element 13 is always in a light emitting state, so unless the light beam is interrupted, the light receiving element 14
The switch is ON, and the output terminal 18 always maintains the Ov state.

しかるに、本発明の一実施例の構成を示す第1図のよう
に発光素子13の発光ビームから受光素子への光路中に
液晶板11が配置されている。第2図に示す液晶板の特
性曲線において印加電圧値がv1以下であれば発光ビー
ムは液晶板を透過し受光素子14に入射し受光素子14
をスイッチONし、出力端子18の直流電圧VdはOv
になる。一方、液晶板11に印加する電圧値がv2以上
になると光の透過量が急激に減少し、受光素子14はス
イッチOFFする。
However, as shown in FIG. 1 showing the configuration of an embodiment of the present invention, a liquid crystal plate 11 is disposed in the optical path from the emitted beam of the light emitting element 13 to the light receiving element. In the characteristic curve of the liquid crystal plate shown in FIG.
When the switch is turned on, the DC voltage Vd at the output terminal 18 becomes Ov.
become. On the other hand, when the voltage value applied to the liquid crystal plate 11 exceeds v2, the amount of transmitted light decreases rapidly, and the light receiving element 14 is switched off.

従って、出力端子18の直流電圧Vdは+5vになる。Therefore, the DC voltage Vd at the output terminal 18 becomes +5v.

液晶板11の電圧印加端子11aおよび11bは被検出
電源12の電圧モニタ端子AおよびBにそれぞれ接続さ
れているので、被検出電源12の出力電圧が液晶板11
に印加される。被検出電源12の出力電圧が正常範囲に
保持され電圧閾値72以上であれば、その電圧において
液晶板11が発光素子13からの発光ビームを遮断し、
受光素子14はスイッチOFFする。
Voltage application terminals 11a and 11b of the liquid crystal plate 11 are connected to voltage monitor terminals A and B of the detected power supply 12, respectively, so that the output voltage of the detected power supply 12 is applied to the liquid crystal plate 11.
is applied to If the output voltage of the detected power supply 12 is maintained within the normal range and is equal to or higher than the voltage threshold value 72, the liquid crystal plate 11 blocks the emitted light beam from the light emitting element 13 at that voltage.
The light receiving element 14 is switched off.

出力端子18の直流電圧Vdは+5vになる。The DC voltage Vd at the output terminal 18 becomes +5v.

逆に、被検出電源12の出力電圧が低下し電圧閾値v1
以下になると、液晶板の光透過率が上昇し受光素子14
がスイッチON状態になり、出力端子18の直流電圧V
dは+0■になる。
Conversely, the output voltage of the detected power supply 12 decreases and reaches the voltage threshold v1.
Below, the light transmittance of the liquid crystal plate increases and the light receiving element 14
becomes the switch ON state, and the DC voltage V at the output terminal 18
d becomes +0■.

このようにして、被検出電源12の出力電圧の状態(O
N状態かOFF状態か)を被検出電源とは電気的絶縁状
態で検出することができる。
In this way, the state of the output voltage (O
(N state or OFF state) can be detected in an electrically isolated state from the detected power supply.

しかも、液晶板11は高インピーダンスであって光透過
率の変化は印加する電圧値で決まる(電流値は数μAオ
ーダー)。従って、被検出電源への消費電力は非常に低
くすることができる。
Furthermore, the liquid crystal plate 11 has a high impedance, and the change in light transmittance is determined by the applied voltage value (the current value is on the order of several μA). Therefore, the power consumption of the detected power source can be made very low.

なお、液晶板11に被検出電源12より印加する電圧は
、第1図に示す実施例では直流電圧を一定レベル(V2
以上かv1以下か)に保持するようにしたが、パルス波
形の電圧であってもよい。この場合にはパルスの波高値
が上記電圧閾値v2以上か上記電圧閾値v1以下かによ
り光透過率が大きく変化することになる。
In addition, in the embodiment shown in FIG. 1, the voltage applied to the liquid crystal plate 11 from the detected power supply 12 is a DC voltage at a constant level (V2
In this example, the voltage is maintained at a voltage of a pulse waveform (either above or below v1), but a pulse waveform voltage may also be used. In this case, the light transmittance changes greatly depending on whether the peak value of the pulse is greater than or equal to the voltage threshold value v2 or less than the voltage threshold value v1.

第3図において、発光素子13と受光素子14との間に
液晶板11が配置され、さらに液晶板11を間に挾んで
光通過孔20h、21hを有するスリット板20.21
が設けられ他からの散乱入射光を阻止することができる
。液晶板11の端子11aおよびllbは被検出電源1
2の電圧モニタ端子(第2図では図示せず)に接続され
る。
In FIG. 3, a liquid crystal plate 11 is arranged between a light emitting element 13 and a light receiving element 14, and a slit plate 20.21 having light passage holes 20h and 21h with the liquid crystal plate 11 in between.
is provided to block scattered incident light from other sources. Terminals 11a and llb of the liquid crystal board 11 are connected to the detected power supply 1.
2 (not shown in FIG. 2).

第4図は本発明の第2の一実施例としてフォトインクラ
ブタを使用した場合における構造を示す斜視図である。
FIG. 4 is a perspective view showing a structure in which a photo ink club is used as a second embodiment of the present invention.

この場合、フォトインタラプタ22は一対の発光素子と
受光素子が対置しているが、この発光素子と受光素子の
間に物体の入る空間が設けられており、そこに物体が入
ると受光素子の受ける受光量が変化することを利用して
物体の有無、位置、位相等を検知する。
In this case, the photointerrupter 22 has a pair of light-emitting elements and a light-receiving element placed opposite each other, and a space is provided between the light-emitting element and the light-receiving element, so that when an object enters there, the light-receiving element receives the space. It uses changes in the amount of light received to detect the presence, position, phase, etc. of an object.

本実施例では、フォトインタラプタ22の発光素子と受
光素子の間に物体を移動通過させる替わりに第4図に示
すように被検出電源の出力電圧の印加によって発光素子
から受光素子への光透過量を変化させる液晶板を挿入し
固定する。このような構造により、第1の実施例と同じ
効果が実現できる。
In this embodiment, instead of moving an object between the light emitting element and the light receiving element of the photointerrupter 22, the amount of light transmitted from the light emitting element to the light receiving element is changed by applying the output voltage of the detected power source as shown in FIG. Insert and fix the liquid crystal plate that changes the With such a structure, the same effect as the first embodiment can be achieved.

第5図は本発明の第3の一実施例として反射形タイプの
構造を示す斜視図である。
FIG. 5 is a perspective view showing a reflective type structure as a third embodiment of the present invention.

図において、発光素子13と受光素子14とがスリット
板23に対し傾斜して配置されている。また、スリット
板23に対して平行に液晶板11が配置されており、液
晶板11の下面には反射板24が密着して配置されてい
る。
In the figure, a light emitting element 13 and a light receiving element 14 are arranged at an angle with respect to a slit plate 23. Further, a liquid crystal plate 11 is arranged parallel to the slit plate 23, and a reflection plate 24 is arranged in close contact with the lower surface of the liquid crystal plate 11.

なお、液晶板11の下面に反射面が予めコーティングさ
れていてもよい。
Note that the lower surface of the liquid crystal plate 11 may be coated with a reflective surface in advance.

発光素子13からの発光ビームはスリット板23の光通
過孔23hを通過すると液晶板11に入射し、液晶板1
1中を透過し反射板24で反射されて再びスリット板2
3の光通過孔23kを通過して受光素子14に受光され
る。  。
The emitted light beam from the light emitting element 13 passes through the light passage hole 23h of the slit plate 23 and enters the liquid crystal plate 11.
It passes through the slit plate 2, is reflected by the reflection plate 24, and returns to the slit plate 2.
The light passes through the light passing hole 23k of No. 3 and is received by the light receiving element 14. .

液晶板11の端子11a、llbは被検出電源12の電
圧モニタ端子A、Bに接続される。
Terminals 11a and llb of the liquid crystal plate 11 are connected to voltage monitor terminals A and B of the detected power source 12.

このような構造により、第1図に示した第1の実施例と
同様な効果が得られ、しかも回路基板等に実装する際の
部品配置の自由度が得られる。
With such a structure, the same effects as those of the first embodiment shown in FIG. 1 can be obtained, and moreover, the degree of freedom in the arrangement of components can be obtained when mounting on a circuit board or the like.

第6図は本発明の第4の一実施例における回路構成図を
示す。
FIG. 6 shows a circuit configuration diagram in a fourth embodiment of the present invention.

図において、第1図に示す第1の一実施例と異なる点は
受光素子としてフォトトランジスタの代わりにフォトダ
イオード19を使用していることである。ここで、液晶
板11には、特に被検出電源に限らず外部電気回路25
の信号モニタ端子M1およびM2を接続している。
In the figure, the difference from the first embodiment shown in FIG. 1 is that a photodiode 19 is used as a light receiving element instead of a phototransistor. Here, the liquid crystal plate 11 includes not only the power source to be detected but also an external electric circuit 25.
The signal monitor terminals M1 and M2 of the terminal are connected to each other.

フォトトランジスタの場合には上記液晶板に印加される
電圧が電圧閾値V2以上と電圧閾値■1以下の電圧の間
を変化しなければスイッチング0N10FFせず所定の
出力電圧の変化が得られないが、フォトダイオード19
の場合は受光素子13への入射光の強度に対して広い感
度レンジを有するので、液晶板11に印加する電圧によ
る液晶板の光透過送量の変化を広い出力電圧の変化とし
て検出することができる。
In the case of a phototransistor, unless the voltage applied to the liquid crystal plate changes between the voltage threshold V2 or higher and the voltage threshold ■1 or lower, switching 0N10FF will not occur and a predetermined change in output voltage will not be obtained. Photodiode 19
In this case, since it has a wide sensitivity range with respect to the intensity of light incident on the light receiving element 13, it is possible to detect a change in the amount of light transmitted through the liquid crystal plate due to the voltage applied to the liquid crystal plate 11 as a wide change in the output voltage. can.

従って、第6図に示す実施例では被検出電源の0N10
FF状態の監視に限らず、一般の電気回路の信号レベル
のアナログ的な変動も検出することができる。
Therefore, in the embodiment shown in FIG.
It is not limited to monitoring the FF state, but can also detect analog fluctuations in the signal level of general electric circuits.

発明の効果 本発明は上記実施例より明らかなように、従来は被検出
電源の状態監視において、被検出電源より発光素子の電
源を供給し発光させ受光素子で検出し、被検出電源が異
常の場合の発光素子の発光量の減少による受光素子の出
力電圧の変化で判定していた。
Effects of the Invention As is clear from the embodiments described above, conventionally, in monitoring the status of a power source to be detected, power is supplied from the power source to a light emitting element, which emits light and is detected by a light receiving element. The determination was made based on the change in the output voltage of the light receiving element due to a decrease in the amount of light emitted by the light emitting element.

発光素子の駆動電流は通常十数mA以上必要であり、被
検出電源にかなりの負荷になっていた。
The driving current of the light emitting element is usually more than ten mA, which is a considerable load on the power source to be detected.

これに対して、本発明の各実施例に示す構成により、発
光素子および受光素子の駆動をともに外部電源で常時駆
動させておき、発光素子とその発光ビームの受光素子の
光路間に液晶板を配置し被検出電源の電圧変化を液晶板
の光透過量の変化による受光素子の出力電圧の変化とし
て検出する。液晶板は高インピーダンスであり、光透過
率の変化は印加する電圧値で決まり、電流値は数μAオ
ーダーである。
In contrast, with the configuration shown in each embodiment of the present invention, both the light-emitting element and the light-receiving element are constantly driven by an external power source, and a liquid crystal plate is placed between the optical path of the light-emitting element and the light-receiving element of the emitted beam. A change in the voltage of the power source to be detected is detected as a change in the output voltage of the light receiving element due to a change in the amount of light transmitted through the liquid crystal plate. The liquid crystal plate has high impedance, and the change in light transmittance is determined by the applied voltage value, and the current value is on the order of several μA.

従って、被検出電源への本絶縁形電圧検出器による消費
電力は非常に低くすることができる。
Therefore, the power consumption by this isolated voltage detector to the power source to be detected can be made very low.

また、本絶縁形電圧検出器に使用する液晶板は一般市販
の液晶表示器(LCD)を利用してもよく、また簡単な
構造であるので低価格で生産できる。
Further, the liquid crystal plate used in the present insulated voltage detector may be a commercially available liquid crystal display (LCD), and since it has a simple structure, it can be produced at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の一実施例における絶縁形電圧検
出器の回路構成図、第2図は上記絶縁形検出器において
使用する液晶板への印加電圧と光透過量(フォト・マル
出力値)の関係を示す特性曲線、第3図は第1図の実施
例の具体的構成を示す斜視図、第4図は本発明の第2の
一実施例としてフォトインタラプタを使用した場合に使
用した場合における構造を示す斜視図、第5図は本発明
の第3の一実施例として反射形タイプの構造を示す斜視
図、第6図は本発明の第4の一実施例における回路構成
図、第7図は従来のフォトカプラを使用した場合の回路
構成図である。 11・・・液晶板、12・・・被検出電源、13・・・
発光素子(LED)、14・・・受光素子(フォトトラ
ンジスタ)、15および16・・・抵抗器、18・・・
出力端子、AおよびB・・・被検出電源の電圧モニタ端
子、19・・・フォトダイオード、22・・・フォトイ
ンタラプタ、23・・・スリット板、24・・・反射板
、25・・・外部電気回路、MlおよびM2・・・外部
電気回路25の信号モニタ端子。 第1図 第2図 フォトマル出力 第3図 第4図
FIG. 1 is a circuit diagram of an insulated voltage detector according to a first embodiment of the present invention, and FIG. FIG. 3 is a perspective view showing the specific configuration of the embodiment of FIG. 1, and FIG. 4 is a characteristic curve showing the relationship between output values), and FIG. 4 is a characteristic curve showing the relationship between FIG. 5 is a perspective view showing a reflective type structure as a third embodiment of the present invention, and FIG. 6 is a circuit configuration in a fourth embodiment of the present invention. 7 are circuit configuration diagrams when a conventional photocoupler is used. 11...Liquid crystal plate, 12...Power source to be detected, 13...
Light emitting element (LED), 14... Light receiving element (phototransistor), 15 and 16... Resistor, 18...
Output terminals, A and B...Voltage monitor terminal of the power supply to be detected, 19...Photodiode, 22...Photointerrupter, 23...Slit plate, 24...Reflector, 25...External Electric circuit, Ml and M2...signal monitor terminals of the external electric circuit 25. Figure 1 Figure 2 Photomultiple output Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 一定光量で発光する発光素子と、 上記発光素子からの受光量によって所定のレベルの電圧
信号を出力する受光素子と、 上記発光素子と受光素子との光路間に被検出電源から印
加される電圧の変化に応じて光の透過量が変化する液晶
板とを設けたことを特徴とする絶縁形電圧検出器。
[Scope of Claims] A light emitting element that emits light with a constant amount of light, a light receiving element that outputs a voltage signal at a predetermined level depending on the amount of light received from the light emitting element, and a detected power source between the optical path of the light emitting element and the light receiving element. 1. An insulated voltage detector comprising: a liquid crystal plate that changes the amount of light transmitted according to changes in voltage applied from the insulated voltage detector.
JP2332506A 1990-11-28 1990-11-28 Insulation type voltage detector Pending JPH04198763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2332506A JPH04198763A (en) 1990-11-28 1990-11-28 Insulation type voltage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2332506A JPH04198763A (en) 1990-11-28 1990-11-28 Insulation type voltage detector

Publications (1)

Publication Number Publication Date
JPH04198763A true JPH04198763A (en) 1992-07-20

Family

ID=18255695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2332506A Pending JPH04198763A (en) 1990-11-28 1990-11-28 Insulation type voltage detector

Country Status (1)

Country Link
JP (1) JPH04198763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112074A (en) * 2007-10-26 2009-05-21 Toshiba Corp Power failure display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896256A (en) * 1981-12-02 1983-06-08 Toyo Commun Equip Co Ltd Electric field sensor employing liquid crystal
JPS59122959A (en) * 1982-12-28 1984-07-16 Seiko Instr & Electronics Ltd Voltage measuring instrument
JPH02198365A (en) * 1989-01-27 1990-08-06 Furukawa Electric Co Ltd:The Optical voltage sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896256A (en) * 1981-12-02 1983-06-08 Toyo Commun Equip Co Ltd Electric field sensor employing liquid crystal
JPS59122959A (en) * 1982-12-28 1984-07-16 Seiko Instr & Electronics Ltd Voltage measuring instrument
JPH02198365A (en) * 1989-01-27 1990-08-06 Furukawa Electric Co Ltd:The Optical voltage sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112074A (en) * 2007-10-26 2009-05-21 Toshiba Corp Power failure display

Similar Documents

Publication Publication Date Title
US4810937A (en) Multicolor optical device
CA1265575A (en) Multicolour optical device
JPS63258113A (en) Photoelectric detection circuit
KR870005238A (en) Optical object detection device
JP2004265869A (en) Lamp driving device, backlight assembly and liquid crystal display device using the same
SE514945C2 (en) Apparatus and method for sensing proximity by light
JPH07114766B2 (en) Measuring device for intracardiac blood oxygen saturation detection
JPH04198763A (en) Insulation type voltage detector
JPS5944809B2 (en) Photoelectric switch
EP0629283A1 (en) Levelling device
US5889513A (en) Display device for detecting working load of a CPU
JP2003344266A (en) Light source for analyzer
JPH042916B2 (en)
RU2174269C2 (en) Multifunctional displaying optron
JPH038384A (en) Semiconductor laser device
JPH0568131U (en) 2-wire sensor switch
KR890001468Y1 (en) Hinder switch
JP2567502B2 (en) Detection switch circuit
KR101936500B1 (en) Organic Light Emitting Display JIG Device
KR970010939B1 (en) Apparatus for measuring s/n
JPS63254820A (en) Photoelectric switch
KR920006430Y1 (en) Indicating circuit for stand-by power source
JPS63195587A (en) Optical sensor
JPS63229792A (en) Temperature compensated light emitting element drive circuit
KR860003410Y1 (en) Detecting circuit of the lifetims of battery combined using recording indicator