JPS5896256A - Electric field sensor employing liquid crystal - Google Patents

Electric field sensor employing liquid crystal

Info

Publication number
JPS5896256A
JPS5896256A JP19501681A JP19501681A JPS5896256A JP S5896256 A JPS5896256 A JP S5896256A JP 19501681 A JP19501681 A JP 19501681A JP 19501681 A JP19501681 A JP 19501681A JP S5896256 A JPS5896256 A JP S5896256A
Authority
JP
Japan
Prior art keywords
liquid crystal
electric field
sensor
light
crystal panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19501681A
Other languages
Japanese (ja)
Inventor
Sadaichi Kurobe
黒部貞一
Yoshihiko Ogawa
小川吉彦
Yoshiaki Sugano
菅野芳章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP19501681A priority Critical patent/JPS5896256A/en
Publication of JPS5896256A publication Critical patent/JPS5896256A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • G01R29/0885Sensors; antennas; probes; detectors using optical probes, e.g. electro-optical, luminiscent, glow discharge, or optical interferometers

Abstract

PURPOSE:To supply inexpensively an electric field sensor of high sensitivity by constituting the sensor by using a liquid crystal panel. CONSTITUTION:A liquid crystal panel is connected to a light source and a detector by optical fibers. The panel is TN-type liquid crystal panel having the same structure as a display panel of a conventional desk-type electronic computer, and is constituted by two glass plates 1 and 2, a liquid crystal cell 3 sealed in between the glass plates, and polarizing plates 6 and 7 which are bonded on the outer surfaces of the glass plates and whose polarizing directions cross at right angles. The liquid crystal may have any quality on condition that it shows a TN effect, and it is possible to adjust the sensitivity of this sensor by utilizing the difference in a threshold voltage of the operation of the panel according to the quality of the liquid crystal.

Description

【発明の詳細な説明】 光学的な電界センサーとしては、従来よりポッケルス効
果による電気光学結晶の電界印加に対する屈折率変化の
異方性を用いたものが知られている。しかしこれは動作
特性が加工精度に大きく依存し、製造時における結晶軸
に対する切出面の角度の高精度の選定および研磨を行わ
ねばならない等の欠点がある。また、検出感度の調整は
光の透過距離を変えることにより行うため、高感度を狙
ったものでは透過損失により検出光強度が低下し、光フ
ァイバ等のように小開口、拡散性の光ガイドを使用する
時に光ガイドと電気光学結晶との結合が困難になる欠点
がある。さらに、電気光学定数が比較的大きいLiT工
014 L i N 60 s等管用いるときではそれ
らの複屈折特性の温度依存性が非常に大きく、屈折率の
温度変化を補償するため構造が徴雑化する欠点がある。
DETAILED DESCRIPTION OF THE INVENTION As an optical electric field sensor, one that uses the anisotropy of the refractive index change in response to the application of an electric field to an electro-optic crystal due to the Pockels effect is conventionally known. However, this method has drawbacks such as the operating characteristics largely depend on processing accuracy and the angle of the cut surface with respect to the crystal axis must be selected and polished with high precision during manufacturing. In addition, detection sensitivity is adjusted by changing the light transmission distance, so if you aim for high sensitivity, the detection light intensity will decrease due to transmission loss. A drawback is that it is difficult to connect the light guide and the electro-optic crystal during use. Furthermore, when using LiT 014 L i N 60 s tubes with relatively large electro-optic constants, the temperature dependence of their birefringence properties is very large, and the structure becomes complex to compensate for temperature changes in the refractive index. There are drawbacks to doing so.

以上のような欠点があるため、電気光学結晶を用い九電
界センサは低感度にとどまり、製造コストの高いものと
なっている。
Due to the above-mentioned drawbacks, nine electric field sensors using electro-optic crystals have low sensitivity and are expensive to manufacture.

本発明は現在、卓上電子計算機のディスプレイ用等に広
く使用されているものと同程度の品質の液晶パネルを用
いてセンサーを構成し、高感度の電界センサーを安価に
供給することを目的とする。これら液晶パネルでは従来
性われていた結晶の研磨岬精度を要する作業を必要とし
ない。
The present invention aims to provide a highly sensitive electric field sensor at a low cost by configuring the sensor using a liquid crystal panel of the same quality as that currently widely used for displays on desktop electronic computers, etc. . These liquid crystal panels do not require the conventional work that requires the precision of crystal polishing.

現在量も一般的であるTN形液晶パネル(偏光板を設け
たものを指す)金側にとって実験すると液晶セルで電極
間隔1071mのものに2■の直流電圧を印加すると9
0sの光透過率の変化が得られる。これに反し、電気光
学結晶の一つであるADP を用いたポッケルスセル(
半波長電圧V、=104V、厚さ1m)K同じ強度の電
界を加えた時の透過率変化は0.1%である。これより
、液晶パネルを用いた電界センサは電気光学結晶による
センサに比べはるかに高感度であることがわかる、この
高感度は使用光源強度の変動及び検出後の電気的針側に
対する要求を大幅に緩和する。上記に加えて液晶パネル
では偏光板を接着した状塾であってもパネルの厚さt1
m程度にすることができ、入射光、透過光の光ファイバ
による結合が容易となる。
In an experiment on the gold side of a common TN type liquid crystal panel (referring to one equipped with a polarizing plate), when a DC voltage of 2cm is applied to a liquid crystal cell with an electrode spacing of 1071m, 9
A change in light transmittance of 0s is obtained. On the other hand, Pockels cell (
Half-wavelength voltage V, = 104 V, thickness 1 m) When an electric field of the same intensity is applied, the transmittance change is 0.1%. From this, it can be seen that the electric field sensor using a liquid crystal panel has much higher sensitivity than the sensor using an electro-optic crystal. ease. In addition to the above, even if a liquid crystal panel has a polarizing plate glued on it, the thickness of the panel is t1.
m, and coupling of incident light and transmitted light through an optical fiber becomes easy.

本発明のセンナの場合は、液晶パネルの厚さ方向の構造
だけで動作特性が決まるため、ビーム断面積の小さな入
射光を用いて、センサ一部分を極めて小形化できる。そ
れは周囲電界の乱を少くできることを意味する。
In the case of the sensor of the present invention, since the operating characteristics are determined only by the structure in the thickness direction of the liquid crystal panel, a portion of the sensor can be made extremely small by using incident light with a small beam cross section. This means that disturbances in the surrounding electric field can be reduced.

wcI図に本センサの構造の一例を示す。!1図aは第
1図すのセンサ一部分11の拡大断面図である。ここで
は、液晶パネルと光源および検出器を光ファイバーで接
続しているが、l!は光が液晶パネルを厚さ方向で直進
すればよくレンズ、ミラー等の他の光学系を用いる党略
の構成も可能である。液晶パネルは通常の卓上電子計算
機のディスプレイ用パネルと同様の構造を持つTN形液
晶パネルであり、2枚のガラス板l、2、ガラス板間に
封入された液晶セル3、とガラス板の外画に接着された
互いの偏光方向を直交する偏光板6.7により構成され
る。液晶の材質はTN効果を示すものであれば何であっ
てもよく、材質によるパネル動作の鰻値電圧の違い1利
用して本センサの感度を調整することが可能である。
Figure wcI shows an example of the structure of this sensor. ! FIG. 1a is an enlarged sectional view of the sensor portion 11 of FIG. Here, the liquid crystal panel, light source, and detector are connected with optical fibers, but l! It is sufficient that the light travels straight through the liquid crystal panel in the thickness direction, and an abbreviated configuration using other optical systems such as lenses and mirrors is also possible. The liquid crystal panel is a TN type liquid crystal panel with a structure similar to the display panel of a normal desktop computer, and consists of two glass plates 1, 2, a liquid crystal cell 3 sealed between the glass plates, and a liquid crystal cell 3 sealed between the glass plates. It is composed of polarizing plates 6 and 7 whose polarization directions are orthogonal to each other and which are glued to each other. The material of the liquid crystal may be any material as long as it exhibits the TN effect, and the sensitivity of this sensor can be adjusted by utilizing the difference in the voltage value of panel operation depending on the material.

1!1図すで光源、LED 、検出器PDt−含む電気
的部分は長尺の光ファイバ12.1:1m!mセリサ1
111と結ばれている。この構成は被611定電界の乱
れを抑え、または強電界から電気的装置と観橢者管保静
し、遠隔測定を可能にし、党ガイド部分の空間占有率の
減少に効果がある。
1! Figure 1: The electrical part including the light source, LED, and detector PDt is a long optical fiber 12.1:1m! m serisa 1
It is connected to 111. This configuration is effective in suppressing disturbances in the constant electric field 611, protecting electrical devices and observers from strong electric fields, enabling remote measurement, and reducing the space occupation rate of the guide part.

元ファイバ12.13と液晶パネルは第1図aK示すよ
うに、ファイバ補強材10を用いて被覆接着し、一体化
している。補強材は不透明な絶縁材料(例えは黒色顔料
を含むエポキシ樹脂等)で作り、ファイバ結合部および
パネルの遮光を行う。必要なときは、更に上記光源検出
部PD、LED 等の周囲を塗装または樹脂モールド等
によシ補強、辿光會強化してもよい。
As shown in FIG. 1aK, the original fibers 12 and 13 and the liquid crystal panel are coated and bonded using a fiber reinforcing material 10 to be integrated. The reinforcement is made of an opaque insulating material (such as an epoxy resin containing a black pigment) to shade the fiber joints and the panel. If necessary, the surroundings of the light source detection section PD, LED, etc. may be further reinforced by painting or resin molding, and the light tracing may be strengthened.

第2図はTN形液晶パネルの印加電圧−透過率特性の例
である。一般的な幅10μmのセルの*’を持つTN液
晶パネルではl値電圧Vth=1.5(至)、飽和電圧
Vs a t = 2 V程度であるため、これでは2
000V/cmまでの電界強度がIII定可能である。
FIG. 2 is an example of applied voltage-transmittance characteristics of a TN type liquid crystal panel. In a typical TN liquid crystal panel with *' cell width of 10 μm, the l value voltage Vth = 1.5 (to) and the saturation voltage Vs a t = approximately 2 V, so this is 2
Electric field strengths up to 000 V/cm can be determined.

光源は単色光である必要はなく、液晶のねじれのピッチ
に比べ十分小さい波長を有効成分とするものであり、且
出力強度の安定しているものであれば何でも良く、例え
はこの図のようにLEDが使用できる。ポッケルス効果
を用いた光学的電界センサは光源が単色光でなければな
らずレーザーまたは狭帯域な波長フィルターの使用が必
要であるといった欠点があるのに対し、本センサーでq
LED、白熱ランプ等各種の光源が使用できるという大
きな特命をもつ。
The light source does not have to be monochromatic; it can be anything that has an effective wavelength that is sufficiently small compared to the twist pitch of the liquid crystal, and has a stable output intensity, for example, as shown in this figure. LEDs can be used for Optical electric field sensors that use the Pockels effect have the disadvantage that the light source must be monochromatic and require the use of a laser or a narrow band wavelength filter, whereas this sensor
It has the special purpose of being able to use various light sources such as LEDs and incandescent lamps.

なお、TN形液晶パネルの印加電界に対する透過光強度
の時間的応答は、DC,ステップ状パルス電圧で立上夛
、立下り時間とも数百B@ec〜数十g減であり、交流
電界印加時の分子配向は電界の絶対値の平均に比例する
Note that the temporal response of the transmitted light intensity to the applied electric field of a TN type liquid crystal panel is a decrease of several hundred B@ec to several tens of g for both the rise and fall times with DC and step pulse voltages, and when an AC electric field is applied, The molecular orientation at time is proportional to the average absolute value of the electric field.

従って交流の時の透過率は直流値におけるものと数KH
z  tで同等である。透過率の変化t電界の変化に追
随させたいときや検出後の増幅を容易にするためには光
源を適当な周波数(例えば10KHz)で強度変調して
目的を達成する。
Therefore, the transmittance during AC is several KH compared to that at DC value.
It is equivalent to z t. Changes in Transmittance When it is desired to follow changes in the electric field or to facilitate amplification after detection, the light source is intensity-modulated at an appropriate frequency (for example, 10 KHz) to achieve the purpose.

検出器は上記の光源の変調周波数に追従できるか、また
は光源強度一定の場合はステップ状電界印加に対する液
晶パネルの応答に追随できるものであれば良い。光源と
検出器は互に大きく離れた位置に置かれても良いが、第
1図は光源と検出器が近接して置れた場合で、しかも光
源出力の一部を取り出して検出部に導き検出光と直接比
較を行うものを示している。
The detector may be of any type as long as it can follow the modulation frequency of the light source, or if the intensity of the light source is constant, it can follow the response of the liquid crystal panel to the application of a stepped electric field. Although the light source and detector may be placed at a large distance from each other, Figure 1 shows a case where the light source and detector are placed close to each other, and a portion of the light source output is taken out and guided to the detector. This shows what is directly compared with the detected light.

また、第2図に見られるように、印加電圧−透過率特性
は一定の閾値を持つため既述のTN形液晶の材料の選択
で閾値調整を行うことで、センサー自体にレベル検出の
機能を持たせることができ、用途によっては検出後の電
気回路によるレベル検出を省略して一定値以上の電界の
存在を直ちに有効に検知できる。導電体の周囲の電界を
検出して、その導電体の電位を非接触で一定するような
場合は、(上記液晶材料による感度調整の他に)センサ
ーと被測定導体の相対位置を変えて感度およびFJ値レ
ベルを調整することができる。
In addition, as shown in Figure 2, the applied voltage-transmittance characteristic has a fixed threshold value, so by adjusting the threshold value by selecting the material of the TN type liquid crystal described above, the sensor itself can have a level detection function. Depending on the application, level detection by an electric circuit after detection may be omitted, and the presence of an electric field above a certain value can be immediately and effectively detected. If you want to detect the electric field around a conductor and keep the potential of the conductor constant without contact, you can adjust the sensitivity by changing the relative position of the sensor and the conductor to be measured (in addition to adjusting the sensitivity using the liquid crystal material mentioned above). and the FJ value level can be adjusted.

$3図aFi本センサで実際に電界強度t−S+定する
例を示し、塩ビ被覆32’を有する直線状導体31に印
加された商用交流の電界’till定する。
Figure 3 aFi shows an example in which the electric field strength t-S+ is actually determined using this sensor, and the electric field 'till of a commercial alternating current applied to a straight conductor 31 having a PVC coating 32' is determined.

第3図すにはその対地電圧によって生じた検出光強度の
変化を導体−センサ間距離tノ(ラメータとして実測し
グラフにしたものであり、2KVの変化(3KV〜5K
V の範囲)に対し約50−の検出光強度の変化が見ら
れ、本センサーが充分に高感度であることがわかり、ま
た配置位置による感度の変化もわかる。
Figure 3 shows the change in the detected light intensity caused by the ground voltage, measured as a distance t between the conductor and the sensor, and plotted as a graph.
A change in the detected light intensity of about 50 - with respect to the V range) is observed, indicating that this sensor has sufficiently high sensitivity, and also shows that the sensitivity changes depending on the placement position.

以上により、本センサーが従来のポッケルス効果による
光学的電界センサに比′べ、製造が容易であり、小形、
かつ高感であり、さらKM値時特性持つことより、電界
および電圧の一定のみでなく、一定値以上の電界強度の
有無の検出では特に有効であることを示した。
As a result, this sensor is easier to manufacture, smaller, and smaller than conventional optical electric field sensors based on the Pockels effect.
It is also highly sensitive and has characteristics at KM value, so it has been shown that it is particularly effective in detecting not only a constant electric field and voltage, but also the presence or absence of an electric field strength above a certain value.

本センサの応用としては、電力分野での強電界のIII
定および電圧の非接触測定を高絶縁、高インピーダンス
で安全にIII定するといった従来の光学的電界センサ
ーとまったく同様に使える。
The application of this sensor is to handle strong electric fields in the power field.
It can be used in exactly the same way as a conventional optical electric field sensor, such as non-contact measurement of constant and voltage with high insulation and high impedance.

高感度であるため、数KV以下の配電線の活線か非油a
t遠方から容易に一定できることが挙げられる。小形で
あるため、検出部を移動しながら空間電界の測定を行う
ことや、狭い場所へ挿入しくIII定すること等にも有
効に使用できる工業上有益な発明ということができる。
Because of its high sensitivity, it is suitable for live wires of distribution lines of several KV or less.
One example is that it can be easily fixed from a distance. Since it is small in size, it can be said to be an industrially useful invention that can be effectively used for measuring a spatial electric field while moving the detection section, and for inserting into a narrow place.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(b)は本発明の1.界センサーの実施例の構成
を示す図。 第1図(1)はその検出部の拡大断面図。 第・2図はTN形液晶ノ(ネルの印加電圧−透過率特性
の図。 93図(mlは本発明の実施例の検出状況の図。 w43図中)はその検出特性のグラフ。 1.2. ガラス板 3、  11晶 41  封着剤 5、  スペーサー 6.7.偏光板 8.9. 補強板 10、  補強材(塗装またはモールド)11、  セ
ンサ一部 12、  入射光ファイバー 13、  出射光ファイバー P、D、  フォトダイオード LED、  発光ダイオード 14、  比較器 り、  分配器 OUT 、   出  力 ■t h e 闇値電圧 vlt、飽和電圧 5iPD、  シ・リコンフォトダイオードd、  銅
線と液晶パネルの間隔 31、銅線 32、  塩ビ被覆 特許出題人  東洋通信機株亥会社 −f4− LED ≦ 一++PD 導1本の電反’(KV) 手続補正書C方幻 1、事件の表示 昭和丈6年  看g+  願第 lデ!θlΔ号2、ン
g月の名称 5良シとm・Iルt!乞シブ− 3、補正をする者 事件との関係   出願人 5、補正により増加する発明の数 0 6、補正の対象 rlJk)、。 7、補正の内容 −14−PD 葎 及 導1本の電、圧’(KV)
FIG. 1(b) shows 1. of the present invention. FIG. 2 is a diagram showing the configuration of an embodiment of a field sensor. FIG. 1 (1) is an enlarged sectional view of the detection section. Figure 2 is a diagram of the applied voltage-transmittance characteristics of a TN type liquid crystal panel. Figure 93 (ml is a diagram of the detection status of the embodiment of the present invention. Figure W43) is a graph of its detection characteristics. 1. 2. Glass plate 3, 11 crystal 41 Sealing agent 5, Spacer 6.7. Polarizing plate 8.9. Reinforcement plate 10, Reinforcement material (paint or mold) 11, Sensor part 12, Input optical fiber 13, Output optical fiber P ,D, Photodiode LED, Light emitting diode 14, Comparator, Distributor OUT, Output the Dark value voltage vlt, Saturation voltage 5iPD, Silicon photodiode d, Distance between copper wire and liquid crystal panel 31, Copper wire 32, PVC coated Patent issuer: Toyo Tsushinki Co., Ltd. - f4 - LED ≦ 1 + + PD Electrical conductor of 1 conductor (KV) Procedural amendment C Fang Gen 1, case indication 1932 RN g + petition No. 1D!θlΔ No. 2, Name of the month 5 and m・Ilt! Request 3, Relationship with the case of the person making the amendment Applicant 5, Number of inventions increased by the amendment 0 6, Correction target rlJk). 7. Contents of correction-14-PD Electricity and pressure of one conductor (KV)

Claims (1)

【特許請求の範囲】[Claims] (1)電界強度に対応して光の透過率または反射り\“
1 重音変化する素子を用いた光学的電界センサにおいて、
検出素子としてTN形液晶パネルを用い、光源からの光
を光ファイバ等のライトガイドにより該液晶パネルに導
き、骸液晶の透過光を再びライトガイドにより光検出器
に導き、該光源の光強度と収光検出器の検出光強度より
該液晶パネルの透過率を求めるこセンサー。
(1) Light transmittance or reflection depending on electric field strength
1. In an optical electric field sensor using an element that changes overtones,
A TN type liquid crystal panel is used as a detection element, light from a light source is guided to the liquid crystal panel through a light guide such as an optical fiber, and the transmitted light of the corpse liquid crystal is guided again to a photodetector by the light guide, and the light intensity of the light source and A sensor that calculates the transmittance of the liquid crystal panel from the detected light intensity of the light collection detector.
JP19501681A 1981-12-02 1981-12-02 Electric field sensor employing liquid crystal Pending JPS5896256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19501681A JPS5896256A (en) 1981-12-02 1981-12-02 Electric field sensor employing liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19501681A JPS5896256A (en) 1981-12-02 1981-12-02 Electric field sensor employing liquid crystal

Publications (1)

Publication Number Publication Date
JPS5896256A true JPS5896256A (en) 1983-06-08

Family

ID=16334123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19501681A Pending JPS5896256A (en) 1981-12-02 1981-12-02 Electric field sensor employing liquid crystal

Country Status (1)

Country Link
JP (1) JPS5896256A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308577A (en) * 1987-06-10 1988-12-15 Fuji Xerox Co Ltd Reading of electrostatic image
JPH01224679A (en) * 1988-03-04 1989-09-07 Tohoku Electric Power Co Inc Charging part approach warning device
JPH03101810U (en) * 1990-02-05 1991-10-23
JPH04198763A (en) * 1990-11-28 1992-07-20 Matsushita Electric Ind Co Ltd Insulation type voltage detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837097A (en) * 1971-09-11 1973-05-31
JPS4941905A (en) * 1972-08-30 1974-04-19

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837097A (en) * 1971-09-11 1973-05-31
JPS4941905A (en) * 1972-08-30 1974-04-19

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308577A (en) * 1987-06-10 1988-12-15 Fuji Xerox Co Ltd Reading of electrostatic image
JPH01224679A (en) * 1988-03-04 1989-09-07 Tohoku Electric Power Co Inc Charging part approach warning device
JPH03101810U (en) * 1990-02-05 1991-10-23
JPH04198763A (en) * 1990-11-28 1992-07-20 Matsushita Electric Ind Co Ltd Insulation type voltage detector

Similar Documents

Publication Publication Date Title
US6479979B1 (en) Opto-electric device for measuring the root-mean-square value of an alternating current voltage
JP5363679B2 (en) Light modulation element
EP0390581A2 (en) Instrument for concurrently optically measuring thermal and electric quantities
JPS61275627A (en) Measuring device for temperature of optical fiber
US6285182B1 (en) Electro-optic voltage sensor
JPH04332878A (en) Electromagnetic field intensity measuring device
JPS5896256A (en) Electric field sensor employing liquid crystal
US7228012B2 (en) On-fiber microwave modulator and high speed switch for telecommunication applications
JP5262186B2 (en) Optical waveguide device
JPS5896255A (en) Electric field sensor
JP2015011019A (en) Direct-current voltage measurement device
JPH0260985B2 (en)
JP3123007B2 (en) Electric field sensor device
CN111624390B (en) Optical fiber reflection type current sensor, system and method based on magnetic fluid
JPH02198365A (en) Optical voltage sensor
JPH07209341A (en) Photo electric field sensor
JPH07181212A (en) Surface potential measuring sensor
SU1101746A1 (en) Device for measuring electric field strength
Vetrov et al. Hybrid vibration sensor with conversion of a piezoelectric signal into modulation of optical radiation and its transmission through optical fiber
JP3355502B2 (en) Electric field sensor
JPH09292414A (en) Photoelectric field sensor
JPS60198419A (en) Calorimeter device for measuring transmission power of optical fiber
JP3355503B2 (en) Electric field sensor
SU935838A1 (en) Opto-electric pickup of magnetic field strength
JP2562287Y2 (en) Electric field antenna