JPH04198673A - Heat pump utilizing waste heat of turbine condenser - Google Patents

Heat pump utilizing waste heat of turbine condenser

Info

Publication number
JPH04198673A
JPH04198673A JP2326624A JP32662490A JPH04198673A JP H04198673 A JPH04198673 A JP H04198673A JP 2326624 A JP2326624 A JP 2326624A JP 32662490 A JP32662490 A JP 32662490A JP H04198673 A JPH04198673 A JP H04198673A
Authority
JP
Japan
Prior art keywords
cooling water
heat
condenser
water
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2326624A
Other languages
Japanese (ja)
Inventor
Toshio Yamanishi
山西 年男
Takeshi Terada
武 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO SHISETSU KK
Fuji Electric Co Ltd
Original Assignee
TOYO SHISETSU KK
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO SHISETSU KK, Fuji Electric Co Ltd filed Critical TOYO SHISETSU KK
Priority to JP2326624A priority Critical patent/JPH04198673A/en
Publication of JPH04198673A publication Critical patent/JPH04198673A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

PURPOSE:To permit the taking-out of high-temperature hot-water through a condenser by a method wherein a heat pipe is provided with a bypass heat source water pipeline for sending heat source water to an evaporator bypassing a heat exchanger for heating the heat source water through heat exchange between cooling water discharged out of a condenser. CONSTITUTION:A heat pump is provided with a heat pump, having an evaporator 1, through which heat source water is conducted, the condenser 21 of a condensed water turbine 20, which conducts cooling water which can not be mixed with the heat source water since the quality, purity and the like are different from the heat source water, a heat exchanger 30, provided at the fore stage of the evaporator 1 and effecting heat exchange between the discharging cooling water discharged from the condenser 21 with a high temperature difference between temperatures at the inlet port and the outlet port thereof, and a bypass heat source water pipeline 45 for sending the heat source water to the evaporator 1 while bypassing the heat exchanger 30. The cooling water discharged out of the condenser 21 of a condensed water turbine 20 is heated to a temperature having a temperature difference larger than the normal temperature difference between the inlet port and the outlet port of the cooling water flowing through the condenser 21 while the heat source water, flowing through the evaporator 1, is heated utilizing the waste heat of the high-temperature discharging cooling water to obtain high-temperature hot-water from the condenser 4 and utilize it for heating.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、復水タービンの復水器から排出される冷却水
の排熱を利用して温度の高い暖房用の温水を得る冷凍機
を使用したヒートポンプに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a refrigerating machine that obtains high-temperature hot water for heating by using the exhaust heat of cooling water discharged from a condenser of a condensing turbine. Regarding the heat pump used.

〔従来の技術〕[Conventional technology]

ヒートポンプとしても使用する冷凍機は、夏には冷却塔
等からの冷却水により凝縮器にある冷媒を冷却して液体
にし、この冷媒を蒸発器で蒸発させて蒸発器にて供給さ
れる温水を冷水にして冷房用として使用し、冬にはこれ
と逆に蒸発器にて熱源水から冷媒の蒸発により熱を取り
、蒸発した冷媒蒸気を凝縮器で凝縮させて供給される冷
水に熱を与えて温水を得て暖房用として使用している。
Refrigerators, which are also used as heat pumps, cool the refrigerant in the condenser into a liquid using cooling water from a cooling tower etc. in the summer, and evaporate this refrigerant in an evaporator to generate hot water supplied by the evaporator. It is used as cold water for air conditioning, and in the winter, heat is taken from the heat source water by evaporation of the refrigerant in the evaporator, and the evaporated refrigerant vapor is condensed in the condenser to give heat to the supplied cold water. The hot water is obtained and used for heating.

このような冷凍機として第2図に示す吸収冷凍機が知ら
れている。第2図において吸収冷凍機は1      
IN発器l、吸収器2.再生器3及び凝縮器4からなり
、装置全体は大気圧以下の圧力に保持され、各器内に伝
熱管を内蔵している。
An absorption refrigerator shown in FIG. 2 is known as such a refrigerator. In Figure 2, the absorption refrigerator is 1
IN generator 1, absorber 2. The apparatus consists of a regenerator 3 and a condenser 4, and the entire apparatus is maintained at a pressure below atmospheric pressure, and each vessel has a built-in heat exchanger tube.

このような構成の吸収冷凍機の作用は次記の這りである
。まず、冬季Il房用の温水を得る作用について説明す
る。高真空になっている蒸発器lの下部に滞留する水か
らなる冷媒はポンプ6により冷媒散布器7で器内に散布
されるとともに凝縮器4の下部に滞留する水からなる冷
媒が蒸発器1に送られて冷媒は蒸発器lの高真空の圧力
に相当する気化温度で蒸発する。この際、伝熱管8を流
れる熱源水から気化熱を奪うので、熱源水は低温となっ
て外部に排出される。
The action of an absorption refrigerator with such a configuration is as follows. First, the function of obtaining hot water for the winter Il room will be explained. The refrigerant consisting of water that remains in the lower part of the evaporator 1, which is in a high vacuum, is sprayed into the vessel by the refrigerant sprayer 7 by the pump 6, and the refrigerant consisting of water that remains in the lower part of the condenser 4 is distributed to the evaporator 1. The refrigerant is evaporated at a vaporization temperature corresponding to the high vacuum pressure of the evaporator L. At this time, the heat of vaporization is taken away from the heat source water flowing through the heat transfer tubes 8, so that the heat source water becomes low temperature and is discharged to the outside.

蒸発器l内の冷媒蒸気は吸収器2に送られ、再生器3か
ら吸収器2に送られる溶液に吸収されて伝熱管9を流れ
る冷却水により冷却されながら流下し、冷媒蒸気は吸収
器2内に速やかに吸収される。吸収に際して発生する吸
収熱は伝熱管9を流れる冷却水により奪われ、冷却水の
温度は土葬する。冷媒蒸気を吸収ビて稀薄になつた稀I
溶液は下部に滞留する。この下部に滞留する溶液はポン
プ12により熱交換器11にて昇温された後再住器3に
送られる。そして再生器3の下部に滞留する溶液は伝熱
管13を流れる蒸気により加熱され、溶液は蒸発して冷
媒蒸気を発生するとともに濃縮される。この冷媒蒸気は
II縮器4に送られ、伝熱管9を経て伝熱管14を流れ
る冷却水により冷却凝縮して冷媒の水となり、下部に滞
留する。この際伝熱管14を流れる冷却水は凝縮熱を冷
媒から奪って昇温しで外部に排出される。astit器
4の下部に滞留する冷媒は前述のように蒸発器1に送ら
れる。
The refrigerant vapor in the evaporator 1 is sent to the absorber 2, is absorbed by the solution sent from the regenerator 3 to the absorber 2, and flows down while being cooled by the cooling water flowing through the heat transfer tube 9. It is quickly absorbed into the body. The absorbed heat generated during absorption is taken away by the cooling water flowing through the heat transfer tubes 9, and the temperature of the cooling water is reduced. It absorbs refrigerant vapor and becomes diluted.
The solution stays at the bottom. The solution staying in this lower part is heated in a heat exchanger 11 by a pump 12 and then sent to a rehabitator 3. The solution remaining in the lower part of the regenerator 3 is heated by the steam flowing through the heat transfer tube 13, and the solution evaporates to generate refrigerant vapor and is concentrated. This refrigerant vapor is sent to the II condenser 4, cooled and condensed by the cooling water flowing through the heat exchanger tubes 14 through the heat exchanger tubes 9, and becomes refrigerant water, which is retained in the lower part. At this time, the cooling water flowing through the heat transfer tubes 14 removes condensation heat from the refrigerant, raises its temperature, and is discharged to the outside. The refrigerant remaining in the lower part of the astit unit 4 is sent to the evaporator 1 as described above.

このようにして伝熱管9.14を流れる冷却水は吸収B
2で吸収熱を奪い、さらに凝縮器4での冷媒蒸気のii
縮熱を奪って高温の温水となり、暖房用に使用される。
In this way, the cooling water flowing through the heat transfer tubes 9.14 absorbs B
2 removes absorption heat, and further refrigerant vapor ii in condenser 4
The condensed heat is removed and the water becomes high-temperature, which is used for heating.

夏に冷房用として吸収冷凍機を使用するときには前述と
逆に吸収器2.凝縮器4の伝熱管9.14に冷却水を流
すことにより、再生器3からの冷媒蒸気を凝縮器4にて
冷却凝縮し、iI縮した冷媒を蒸発器1にて気化する。
When using an absorption refrigerator for cooling in the summer, the absorber 2. By flowing cooling water through the heat transfer tubes 9 and 14 of the condenser 4, the refrigerant vapor from the regenerator 3 is cooled and condensed in the condenser 4, and the condensed refrigerant is vaporized in the evaporator 1.

この際伝熱管8を流れる冷却水は気化熱が奪われて冷却
して冷水となり、外部に排出される。なお蒸発器1で発
生した冷媒蒸気は吸収器2の溶液に吸収され、吸収した
溶液は前述のように再生器3に送液され、冷媒蒸気を発
生する。
At this time, the cooling water flowing through the heat exchanger tubes 8 is deprived of vaporization heat, becomes cold water, and is discharged to the outside. Note that the refrigerant vapor generated in the evaporator 1 is absorbed by the solution in the absorber 2, and the absorbed solution is sent to the regenerator 3 as described above to generate refrigerant vapor.

上記のようにして得られた冷水は冷房用として使用され
る。
The cold water obtained as described above is used for cooling.

〔発明が解決しようとするWfi) 上記のような冷凍機をヒートポンプして使用する場合、
i[縮器から得られる@医用の温水の温度は蒸発器を通
流する熱源水の温度に支配され、この熱源水の温度が低
いと得られる温水の温度が低くなる。したがって、冬季
十分な温度の温水を得るためには蒸発器に通流させる熱
源水の温度は高くする必要がある。
[Wfi to be solved by the invention] When using the above-mentioned refrigerator as a heat pump,
i [The temperature of medical hot water obtained from the condenser is controlled by the temperature of the heat source water flowing through the evaporator, and if the temperature of this heat source water is low, the temperature of the hot water obtained will be low. Therefore, in order to obtain hot water at a sufficient temperature during winter, the temperature of the heat source water flowing through the evaporator needs to be high.

ところで本出願人は、ごみ焼却炉ボイラからの1気によ
り復水器を備えた復水タービンを駆動して発tStによ
り発電する後水タービンと前記ヒートポンプとしての冷
凍機を組合わせ、複水器から排出される排出冷却水の温
度を通常より高くして、この排熱により熱源水を加熱し
た抜蒸発器に供給することにより冬季十分な温度の温水
をヒートポンプから得られることに着目した。なお、こ
の際火力プラントでは復水器から外域に排出される排出
冷却水の温度と復水器に流入する入口冷却水の温度との
入口、出口温度差は環境、エコロジーの関係から7℃以
下にtlL製されており、この規諷値を守る必要がある
By the way, the present applicant has combined the above-mentioned refrigerator as a heat pump with a water turbine that generates electricity by driving a condensation turbine equipped with a condenser with 1 air from a waste incinerator boiler and generates electricity using the generated tSt. We focused on the fact that hot water at a temperature sufficient for winter can be obtained from the heat pump by increasing the temperature of the discharged cooling water discharged from the heat pump to a temperature higher than normal and supplying the heat source water to the de-evaporator which heated the heat source water using the exhaust heat. At this time, in thermal power plants, the difference in temperature between the inlet and outlet between the temperature of the discharged cooling water discharged from the condenser to the outside and the temperature of the inlet cooling water flowing into the condenser must be 7 degrees Celsius or less due to environmental and ecological considerations. It is necessary to adhere to this standard value.

本発明の目的は、復水タービンの復水器から排出される
排出冷却水の排熱により熱源水を昇温した後蒸発器に通
流してil縮器を介して高温の温水を取出することがで
き、かつ、復水器に流入する入口冷却水の温度と、復水
器から排出された排出冷却水の排熱を利用した後の外域
に排出される排出冷却水の温度との入口、出口温度差を
規制値以下にすることのできるタービン復水器排熱利用
のヒートポンプを提供することである。
An object of the present invention is to raise the temperature of heat source water by the exhaust heat of exhaust cooling water discharged from a condenser of a condensing turbine, and then flow it to an evaporator to extract high-temperature hot water through an il condenser. and the temperature of the inlet cooling water flowing into the condenser and the temperature of the discharged cooling water discharged to the outside area after utilizing the exhaust heat of the discharged cooling water discharged from the condenser, It is an object of the present invention to provide a heat pump that utilizes waste heat from a turbine condenser and is capable of reducing an outlet temperature difference below a regulation value.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明によれば熱源水が通
流する蒸発器を有するし一トボンブと、熱源水と水質、
清浄度等が異なるため熱源水に混合不能な冷却水が通流
する復水タービンの復水器と、蒸発器の前段に設けられ
、復水器から冷却水の入口、出口温度差を大きくして排
出される排出冷却水と熱交換して熱源水を加熱する熱交
換器と、この熱交換器をバイパスして熱源水を蒸発器に
送水するバイパス熱源水配管とを備えてタービン復水器
排熱利用のヒートポンプを構成するものとする。また熱
源水が通流する蒸発器を有するし一トボンブと、熱源水
と水質、清浄度等が同程度のため熱源水に混合可能な冷
却水が通流する覆水タービンの復水器と、この復水器か
ら冷却水の入口。
In order to solve the above problems, according to the present invention, there is provided a bomb having an evaporator through which heat source water flows;
It is installed in the front stage of the condenser of the condensing turbine and the evaporator, through which cooling water that cannot be mixed with the heat source water flows due to the difference in cleanliness etc., and increases the temperature difference between the inlet and outlet of the cooling water from the condenser. The turbine condenser is equipped with a heat exchanger that heats the heat source water by exchanging heat with the discharged cooling water discharged from the turbine, and a bypass heat source water piping that bypasses this heat exchanger and sends the heat source water to the evaporator. A heat pump that utilizes waste heat is configured. In addition, there is a water turbine condenser that has an evaporator through which heat source water flows, a water-covered turbine condenser through which cooling water that can be mixed with the heat source water because the water quality and cleanliness are similar to the heat source water, and Cooling water inlet from the condenser.

出口温度差を大きくして排出される排出冷却水を取出し
て熱源水として蒸発器に導く冷却水配管とを備えてター
ビン復水器排熱利用のし一トポンプを構成するものとす
る。
A cooling water pipe that takes out discharged cooling water with a large outlet temperature difference and guides it to the evaporator as heat source water constitutes a turbine condenser exhaust heat utilization pump.

なお、前記熱源水と冷却水との混合不能の場合のタービ
ン復水器排熱利用のヒートポンプにおいて、復水器に通
流する冷却水の入口冷却水配管と復水器から排出後熱交
換器を通流する前記冷却水の出口冷却水配管とに接続さ
れ、第1の流量調整弁を備える第1のバイパス冷却水配
管と、復水器の冷却水出口と熱交換器の冷却水入口とに
接続する中間冷却水配管と前記出口冷却水配管とに接続
され、第2の流量調整弁を備えるIJ2のバイパス冷却
水配管とを設けるものとする。
In addition, in a heat pump that uses waste heat from a turbine condenser when the heat source water and cooling water cannot be mixed, the inlet cooling water piping for the cooling water flowing into the condenser and the heat exchanger after being discharged from the condenser are used. a first bypass cooling water pipe connected to the cooling water outlet cooling water pipe flowing therethrough and having a first flow rate regulating valve; a cooling water outlet of the condenser and a cooling water inlet of the heat exchanger; An IJ2 bypass cooling water pipe connected to the intermediate cooling water pipe and the outlet cooling water pipe and equipped with a second flow rate regulating valve is provided.

また、前記熱源水と冷却水との混合可能の場合のタービ
ン復水器排熱利用のヒートポンプにおいて、前記復水器
から排出される排出冷却水を外域に排出する出口冷却水
配管に設けられる第3の流量調整弁と、蒸発器から排出
される冷水を第3の流量11!I弁の下流の出口冷却水
配管に導く第4の流量調整弁を備えた混入冷却水配管と
を設けるものとする。
Further, in the heat pump that utilizes waste heat from a turbine condenser in a case where the heat source water and the cooling water can be mixed, a pipe provided in the outlet cooling water pipe for discharging the exhaust cooling water discharged from the condenser to an outside area is provided. 3 flow rate adjustment valve and the third flow rate 11! of the cold water discharged from the evaporator! A mixed cooling water pipe provided with a fourth flow rate regulating valve leading to the outlet cooling water pipe downstream of the I valve shall be provided.

〔作用〕[Effect]

復水タービンの復水器から排出される排出冷却水を、復
水器を通流する冷却水の通常の入口、出口温度差より大
きい温度差を育する温度まで昇温し、この高温の排出冷
却水の排熱を利用して蒸発器に通流する熱源水を昇温し
で凝縮器から高温の温水を得て暖房に利用する。この際
冷却水と熱源水とが水質、1*浄度等が異なるため、混
合不能の場合と、同程度のため混合可能の場合があり、
この混合可否に耐応する前記手段の作用は下記の通りで
ある。
The exhaust cooling water discharged from the condenser of the condensing turbine is heated to a temperature that develops a temperature difference greater than the normal inlet and outlet temperature difference of cooling water flowing through the condenser, and this high temperature discharge is The exhaust heat of the cooling water is used to raise the temperature of the heat source water flowing through the evaporator, and high-temperature hot water is obtained from the condenser and used for heating. At this time, the cooling water and heat source water may not be able to mix because they have different water quality, 1*purity, etc., or they may be able to mix because they are of the same quality.
The operation of the means for dealing with this mixing possibility is as follows.

熱源水と冷却水との混合不能の場合は復水器から排出さ
れる排出冷却水の温度を復水器を通流する入口、出口温
度差を通常値より、例えば規l1li便以上に昇温し、
この高温の排出冷却水を熱交換器にて蒸発器に供給する
熱源水と熱交換して熱源水を昇温した後蒸発器に供給す
ることにより、凝縮器から暖房用の高温の温水が得られ
る。この際排出冷却水は熱交換により降温して熱交換器
から排出されるので、復水器に流入する入口冷却水と熱
交換器を経て外域に排出される出口冷却水との入口、出
口温度差は規制値以下に抑えることができる。
If heat source water and cooling water cannot be mixed, raise the temperature of the discharged cooling water discharged from the condenser to a temperature higher than the normal value, for example, by increasing the temperature difference between the inlet and outlet of the condenser. death,
This high-temperature discharged cooling water is exchanged with heat source water supplied to the evaporator in a heat exchanger to raise the temperature of the heat source water, and then supplied to the evaporator to obtain high-temperature hot water for heating from the condenser. It will be done. At this time, the discharged cooling water is cooled by heat exchange and discharged from the heat exchanger, so the inlet and outlet temperatures of the inlet cooling water that flows into the condenser and the outlet cooling water that passes through the heat exchanger and is discharged to the outside area. The difference can be kept below the regulatory value.

夏季、冷房を行なうときには蒸発器に供給する熱源水は
熱交換器に通流させずにバイパス冷却水配管に通流する
ことにより、冷房に十分な冷水を得る。
During the summer, when performing air conditioning, the heat source water supplied to the evaporator is passed through the bypass cooling water pipe without passing through the heat exchanger, thereby obtaining sufficient cold water for cooling.

なお、上記冬季暖房を行なう場合、復水器へ流入する入
口冷却水の温度は、熱交換器から排出される出口冷却水
を第1の流量mw弁により流量をli!!!シて第1の
バイパス冷却水配管を経て復水器の入口冷却水に混合し
て調整され、また熱交換器の負荷の調整は、復水器から
排出される排出冷却水を第2の流量調整弁により流量調
整して第2のバイパス冷却水配管を経て熱交換器から排
出される出口冷却水に混合することにより調整される。
In addition, when performing the above-mentioned winter heating, the temperature of the inlet cooling water flowing into the condenser is determined by adjusting the flow rate of the outlet cooling water discharged from the heat exchanger by the first flow rate mw valve li! ! ! The heat exchanger is mixed with the inlet cooling water of the condenser through the first bypass cooling water pipe to adjust the heat exchanger load. The flow rate is adjusted by a regulating valve and mixed with the outlet cooling water discharged from the heat exchanger via the second bypass cooling water pipe.

一方、熱源水と冷却水との混合可能の場合には復水器か
ら排出される排出冷却水の温度を冷却水の入口、出口温
度差の規制値以下に昇温した排出冷却水を取出して冷却
水配管を経て蒸発器に供給する。この場合、熱交換器を
使用しないので熱交換器による熱損失がなくなり、この
ため排出冷却水である熱源水は高温であり、したがって
凝縮器から暖房用の高温の温水を得る。この隙、復水器
からの排出冷却水は冷却水の入口、出口温度差の規制値
以下に昇温されているので、出口冷却水配管を経て外域
に排出される冷却水の入口、出口温度差は規制値以下に
抑えることができる。
On the other hand, if the heat source water and cooling water can be mixed, the temperature of the discharged cooling water discharged from the condenser is raised to below the regulation value for the temperature difference between the inlet and outlet of the cooling water, and the discharged cooling water is taken out. Supplied to the evaporator via cooling water piping. In this case, since no heat exchanger is used, there is no heat loss due to the heat exchanger, and therefore the heat source water, which is discharged cooling water, is at a high temperature, and therefore high temperature hot water for space heating is obtained from the condenser. In this gap, the temperature of the cooling water discharged from the condenser is raised to below the regulation value for the temperature difference between the inlet and outlet of the cooling water, so the temperature at the inlet and outlet of the cooling water discharged to the outside area via the outlet cooling water piping. The difference can be kept below the regulatory value.

夏季冷房を行なうときには復水器からの排出冷却水を蒸
発器に導く冷却水配管や混入冷却水配管に冷却水や冷水
の通流を遮断して復水器とヒートポンプとを切離すこと
により、ヒートポンプを作動して冷房用の冷水が得られ
る。
When performing summer cooling, the condenser and heat pump are separated by cutting off the flow of cooling water or cold water to the cooling water piping that leads the discharged cooling water from the condenser to the evaporator or the mixed cooling water piping. The heat pump is operated to obtain cold water for air conditioning.

なお、上記Il房を行なう場合、暖房負荷に対応して、
蒸発器に供給する復水器からの排出冷却水量は第3の流
量調整弁によりiII整される。また、万一復水器から
の排出冷却水を冷却水の入ロ1出ロ温度差の規制値以上
に昇温させた場合には、1発器から排出される冷水を混
入冷却水配管を経て排出冷却水に混合させることにより
、復水器に流入する入口冷却水と外域に排出される排出
冷却水との入口1・出口温度差は規制値以下に抑えるこ
とがてきる。
In addition, when performing the above-mentioned Il room, corresponding to the heating load,
The amount of cooling water discharged from the condenser to be supplied to the evaporator is regulated by the third flow rate regulating valve. In addition, in the event that the temperature of the cooling water discharged from the condenser rises above the regulation value for the temperature difference between the input and output of cooling water, mix the cold water discharged from the first generator and disconnect the cooling water piping. By mixing it with the discharged cooling water, the temperature difference between the inlet 1 and the outlet between the inlet cooling water flowing into the condenser and the discharged cooling water discharged to the outside can be suppressed to below the regulation value.

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例によるタービン復水器排熱利用
の吸収冷凍機を使用したヒートポンプの系統図である。
FIG. 1 is a system diagram of a heat pump using an absorption refrigerator that utilizes waste heat from a turbine condenser according to an embodiment of the present invention.

なお第1図及び後述する第2図において第3図と同一部
品には同じ符号を付し、その説明を省略する。第1図に
おいて複水タービン20は復水器21を備え、発tl’
22が接続されている。復水タービン20は蒸気が供給
される革気供給系24を介してごみ焼却炉ボイラ23に
接続されている。吸収冷凍1110の再生器3の伝熱管
13は復水タービン20からの抽気蒸気が流れる抽気蒸
気配管25に接続されている。
In FIG. 1 and FIG. 2, which will be described later, the same parts as those in FIG. 3 are given the same reference numerals, and their explanations will be omitted. In FIG. 1, a double water turbine 20 is equipped with a condenser 21 and has a
22 are connected. The condensing turbine 20 is connected to a waste incinerator boiler 23 via a steam supply system 24 to which steam is supplied. The heat exchanger tube 13 of the regenerator 3 of the absorption refrigeration unit 1110 is connected to an extracted steam pipe 25 through which extracted steam from the condensing turbine 20 flows.

復水!1i21は下水処理水からなる冷却水が通流する
伝熱管26を内蔵し、この伝熱管26には冷却水を伝熱
管26に送水する冷却水ポンプ27を備える入口冷却水
配管28と、伝熱管26から冷却水を熱交換器30に送
水する中間冷却水配管33とが接続されている。
Condensing! 1i21 has a built-in heat transfer tube 26 through which cooling water made of treated sewage water flows, and this heat transfer tube 26 has an inlet cooling water pipe 28 equipped with a cooling water pump 27 that sends cooling water to the heat transfer tube 26, and a heat transfer tube 26. 26 to an intermediate cooling water pipe 33 that sends cooling water to the heat exchanger 30.

熱交換器30は伝熱管32を内蔵し、伝熱管32の一方
の端部は中間冷却水配管33に接続し、伝熱管32の他
方の端部には出口冷却水配管29が接続して設けられて
いる。なお、入口冷却水配管28と出口冷却水配管29
とに接続して第1の流量調整弁35を備えた第1のバイ
パス冷却水配管36と、中間冷却水配管33と出口冷却
水配管29とに接続して第2の流量調整弁37とを備え
た第2のバイパス冷却水配管38とが設けられている。
The heat exchanger 30 includes a heat transfer tube 32, one end of the heat transfer tube 32 is connected to an intermediate cooling water pipe 33, and the other end of the heat transfer tube 32 is connected to an outlet cooling water pipe 29. It is being In addition, the inlet cooling water pipe 28 and the outlet cooling water pipe 29
A first bypass cooling water pipe 36 is connected to the first bypass cooling water pipe 36 and has a first flow rate adjustment valve 35, and a second flow rate adjustment valve 37 is connected to the intermediate cooling water pipe 33 and the outlet cooling water pipe 29. A second bypass cooling water pipe 38 is provided.

また、熱交換器30には冷・温水槽40からの下水処理
水と混合不能の上水を主体とした熱源水をポンプ41に
より熱交換器30に送水する熱源水入口配管42と熱交
換器30にて熱交換して昇温した熱源水を吸収冷凍11
10の蒸発器1の伝熱管8に供給する熱源水出口配管4
3が接続して設けられている。また熱交換器30をバイ
パスして熱源水入口配管42と熱源水出口配管43とに
接続し、弁44を備えるバイパス熱源水配管45が設け
られている。
The heat exchanger 30 also includes a heat source water inlet pipe 42 and a heat exchanger for sending heat source water, which is mainly clean water that cannot be mixed with treated sewage water from a cold/hot water tank 40, to the heat exchanger 30 by a pump 41. The heat source water heated by heat exchange in step 30 is absorbed and frozen 11
Heat source water outlet piping 4 that supplies heat exchanger tubes 8 of 10 evaporators 1
3 are connected. Further, a bypass heat source water pipe 45 is provided which bypasses the heat exchanger 30 and connects to the heat source water inlet pipe 42 and the heat source water outlet pipe 43 and includes a valve 44 .

蒸発器1の伝熱管8には、これから排出さる冷水を冷・
温水槽40に送水する冷水排出配管46が接続されてい
る。なお、47は吸収器2の伝熱管9に接続する冷却水
入口配管、48は凝縮器4の伝熱管14に接続する温水
出口配管である。
The heat transfer tube 8 of the evaporator 1 is used to cool and cool the cold water that will be discharged.
A cold water discharge pipe 46 that supplies water to the hot water tank 40 is connected. Note that 47 is a cooling water inlet pipe connected to the heat exchanger tube 9 of the absorber 2, and 48 is a hot water outlet pipe connected to the heat exchanger tube 14 of the condenser 4.

50は夏季蒸発器1から排出される冷水をプロセスに供
給する冷水供給配管、51はプロセスにて冷房により昇
温した温水を冷・温水槽40に戻す温水戻り配管である
。なお、吸収器2の伝熱管9に接続された冷却水入口配
管47.凝1M14の伝熱管14に接続された温水出口
配管4Bは、夏季蒸発器1から冷水を得るための冷却水
が流入、流出する配管となる。
50 is a cold water supply pipe that supplies the cold water discharged from the summer evaporator 1 to the process, and 51 is a hot water return pipe that returns hot water heated by cooling in the process to the cold/hot water tank 40. Note that the cooling water inlet pipe 47 connected to the heat transfer tube 9 of the absorber 2. The hot water outlet pipe 4B connected to the heat transfer tube 14 of the condenser 1M14 becomes a pipe through which cooling water for obtaining cold water from the summer evaporator 1 flows in and out.

このような構成により、冬季暖房を行なう作用について
説明する。弁44.第1の流量調整弁35、第2の流量
調整弁37を閉にしてボイラ23を運転し、ボイラ23
にて発生した蒸気を復水タービン20に供給して復水タ
ービンを駆動して発電機22にて発電し、電力を負荷に
供給する。復水タービン20の排気蒸気は復水器21に
導かれる。この際復水タービン20の抽気蒸気は抽気蒸
気配管25を経て再生器3の伝熱管13を流れ、再生器
3内の溶液を前述のように加熱する。
The operation of performing winter heating with such a configuration will be explained. Valve 44. The boiler 23 is operated with the first flow rate adjustment valve 35 and the second flow rate adjustment valve 37 closed.
The steam generated in is supplied to the condensing turbine 20 to drive the condensing turbine, the generator 22 generates electricity, and supplies electric power to the load. Exhaust steam from the condensing turbine 20 is guided to the condenser 21. At this time, the extracted steam from the condensing turbine 20 flows through the extracted steam pipe 25 and the heat transfer tube 13 of the regenerator 3, and heats the solution in the regenerator 3 as described above.

復水器21に導かれた復水タービン20の排気蒸気は、
冷却水ポンプ27により入口冷却水配管28を経て復水
器21の伝熱管26を流れる冷却水により冷却凝縮して
復水となる。この際冷却水は排気蒸気の覆水時の凝縮熱
を除去して高温となり、中間冷却水配管33を経て熱交
換器30の伝熱管32に通流する。
The exhaust steam of the condensing turbine 20 led to the condenser 21 is
The cooling water flowing through the heat transfer tubes 26 of the condenser 21 via the inlet cooling water pipe 28 by the cooling water pump 27 is used to cool and condense the water into condensate. At this time, the cooling water removes the heat of condensation when the exhaust steam is covered with water, becomes high in temperature, and flows through the intermediate cooling water pipe 33 to the heat transfer tube 32 of the heat exchanger 30.

一方、冷・温水槽40からの上水を主体とした熱源水は
ポンプ41により熱源水入口配管42を経て熱交換器3
0に流入し、伝熱管32を流れて復水器21から排出さ
れる高温の排出冷却水と熱交換して昇温しで熱源水出口
配管43を経て蒸発器1の伝熱管8に流れる。そして蒸
発器1の前述の作用により冷却されて冷水となりで冷水
排出配管46を経て冷・温水槽40に流入する。
On the other hand, heat source water mainly consisting of tap water from the cold/hot water tank 40 is passed through the heat source water inlet pipe 42 by a pump 41 to the heat exchanger 3.
0, flows through the heat transfer tube 32, exchanges heat with the high temperature discharged cooling water discharged from the condenser 21, raises the temperature, and flows into the heat transfer tube 8 of the evaporator 1 via the heat source water outlet pipe 43. The water is then cooled by the above-described action of the evaporator 1 and flows into the cold/hot water tank 40 via the cold water discharge pipe 46.

熱交換!S30にて熱交換により冷却された復水器21
から排出された排出冷却水は低温となり、出口冷却水配
管29を経て外域に排出される。
Heat exchange! Condenser 21 cooled by heat exchange in S30
The discharged cooling water discharged from the cooling water becomes low temperature and is discharged to the outside area through the outlet cooling water pipe 29.

一方暖房すべきプロセスから戻され、冷却水入口配管4
7を経て吸収器2に流入する低温の冷却水は吸収器2.
H縮器4の伝熱管9.14を流れて前述の作用により高
温となって温水出口配管48を経て暖房すべきプロセス
に供給される。
On the other hand, the cooling water inlet pipe 4 is returned from the process to be heated.
The low-temperature cooling water flowing into the absorber 2 via the absorber 2.
The water flows through the heat exchanger tubes 9.14 of the H-condenser 4, reaches a high temperature due to the above-mentioned action, and is supplied to the process to be heated via the hot water outlet pipe 48.

なお、冬季暖房時各機器を流れる冷却水や熱源水等の温
度の一例をあげれば次の通りである。14℃の入口冷却
水が復水器21の伝熱管26を流れた後、24℃の冷却
水となって熱交換器30の伝熱管26に流入し、伝熱管
26で熱交換した出口冷却水は19℃となって熱交換器
30から外域に排出される。
An example of the temperature of cooling water, heat source water, etc. flowing through each device during winter heating is as follows. After the 14°C inlet cooling water flows through the heat exchanger tubes 26 of the condenser 21, it becomes 24°C cooling water and flows into the heat exchanger tubes 26 of the heat exchanger 30, and the outlet cooling water undergoes heat exchange with the heat exchanger tubes 26. becomes 19° C. and is discharged from the heat exchanger 30 to the outside area.

一方、冷・温水槽40からの15℃の熱源水は熱交換器
30にて昇温しで21℃となって蒸発器1に流入し、蒸
発器lにて低温となって15℃の冷水となって冷・温水
槽に戻る。また、暖房すべきプロセスの戻りの約40℃
の冷却水は吸収器2.凝縮器4にて昇温しで約50℃の
温水となって暖房すべきプロセスに供給される。
On the other hand, the 15°C heat source water from the cold/hot water tank 40 is heated to 21°C in the heat exchanger 30 and flows into the evaporator 1, where it is cooled to a low temperature in the evaporator 1 and becomes 15°C cold water. and returns to the cold/hot water tank. Also, the heating process should return about 40℃
The cooling water is absorbed by absorber 2. The temperature of the water is raised in the condenser 4 to become hot water of approximately 50° C., which is then supplied to the process to be heated.

ここで復水器21に流入する入口冷却水と熱交換JI3
0から外域に排出される出口冷却水との入口。
Here, the inlet cooling water flowing into the condenser 21 and heat exchange JI3
Inlet with outlet cooling water discharged from 0 to the outside area.

出口温度差は(19−15) t −4℃となり、規制
値7より小さい。
The outlet temperature difference is (19-15)t-4°C, which is smaller than the regulation value 7.

なお、熱交換器30の負荷が変る場合には第2のバイパ
ス冷却水配管38の第2の流量調整弁37の開度を調整
して熱交換器3oに流入させる冷却水量を調整する。
Note that when the load on the heat exchanger 30 changes, the opening degree of the second flow rate regulating valve 37 of the second bypass cooling water pipe 38 is adjusted to adjust the amount of cooling water flowing into the heat exchanger 3o.

また、復水器21の入口冷却水の温度が低いときには、
第1のバイパス冷却水配管36の第1の流量調整弁35
の開度を調整して熱交換器3oがら排出される高温の出
口冷却水の一部を混合して入口冷却水の温度調整をする
ことができる。
Moreover, when the temperature of the inlet cooling water of the condenser 21 is low,
First flow rate adjustment valve 35 of first bypass cooling water pipe 36
The temperature of the inlet cooling water can be adjusted by adjusting the opening degree of the heat exchanger 3o and mixing a portion of the high temperature outlet cooling water discharged from the heat exchanger 3o.

上記においては復水器の冷却水の出口温度を一旦10℃
程度上昇して熱交換器に流入させ、熱交換器にて熱交換
して冷却水の温度を低下させているが、この対応は復水
器の計画において冷却水の年間平均温度又は最高温度等
でその伝熱面積を計画することにより容易に達成できる
In the above case, the outlet temperature of the cooling water of the condenser is set to 10℃.
The temperature of the cooling water increases and flows into the heat exchanger, which exchanges heat with the temperature of the cooling water. This can be easily achieved by planning the heat transfer area.

つぎに夏季冷房を行なうときの吸収冷凍機の作用につい
て説明する。この場合には熱交換器3oを作動させずに
、熱交換器3oをバイパスするバイパス熱源水配管45
を弁44を開にして使用する。すなわち冷房すべきプロ
セスの高温の戻り温水を温水戻り配管51を経て冷・温
水140に送水し、この槽からバイパス熱源水配管45
を経て蒸発器1の伝熱管8に送水し、一方冷却水入口配
管47を経て冷却水を吸収器2.凝縮器4の伝熱管8.
14に通流させて温水出口配管48を経て排出すること
により、前述の作用により蒸発器1がらは冷却された低
温の冷水が排出されて冷水排出配管46を経て冷・温水
槽40に流入し、この楢がら冷房すべきプロセスに冷水
供給配管50を経て冷房用としで供給される。
Next, the function of the absorption refrigerator when performing summer cooling will be explained. In this case, the bypass heat source water pipe 45 bypasses the heat exchanger 3o without operating the heat exchanger 3o.
is used with valve 44 open. That is, high-temperature return hot water from the process to be cooled is sent to the cold/hot water 140 via the hot water return piping 51, and from this tank to the bypass heat source water piping 45.
The water is sent to the heat transfer tube 8 of the evaporator 1 through the cooling water inlet pipe 47, and the cooling water is sent to the absorber 2 through the cooling water inlet pipe 47. Heat exchanger tube 8 of condenser 4.
14 and discharged through the hot water outlet pipe 48, the low-temperature cold water that has been cooled from the evaporator 1 is discharged from the evaporator 1 by the above-mentioned action and flows into the cold/hot water tank 40 through the cold water discharge pipe 46. This oak is supplied to the process to be cooled through a cold water supply pipe 50 for cooling purposes.

この場合蒸発器1から得られる冷水の温度は7℃である
In this case, the temperature of the cold water obtained from the evaporator 1 is 7°C.

第2図は蒸発器1を通流する熱源水と復水器21を通流
する冷却水との水質、清浄度等が同程度であるため、熱
源水と冷却水とが混合可能な場合のタービン復水5II
P熱利用のヒートポンプの系統図である。第2図におい
て第1図の熱交換器30を取餘き、中間冷却水配管33
を、冷・温水槽40から熱源水を蒸発IIに送出する弁
58を備えた熱源水入口配管57に弁52を備えて合流
し、弁52の上流側の中間冷却水配管33から分岐して
第3の流量調整弁53を備えて冷却水を外域に排出する
出口冷却水配管54を設け、さらに熱源水入口配管57
から分岐して蒸発器1から排出される冷水を出口冷却水
配管54に導く混入冷却水配管55を第4の流量調整弁
56を値えて設けた他は第1図と同じである。
Figure 2 shows a case where the heat source water flowing through the evaporator 1 and the cooling water flowing through the condenser 21 can be mixed, because the water quality and cleanliness are the same. Turbine condensate 5II
It is a system diagram of a heat pump using P heat. In FIG. 2, the heat exchanger 30 in FIG. 1 is replaced, and the intermediate cooling water pipe 33 is
is connected to a heat source water inlet pipe 57 equipped with a valve 58 for sending heat source water from the cold/hot water tank 40 to the evaporator II, with a valve 52, and branched from the intermediate cooling water pipe 33 on the upstream side of the valve 52. An outlet cooling water pipe 54 is provided which is equipped with a third flow rate regulating valve 53 and discharges the cooling water to the outside area, and a heat source water inlet pipe 57 is provided.
It is the same as in FIG. 1 except that a mixed cooling water pipe 55 which branches off from the evaporator 1 and guides the cold water discharged from the evaporator 1 to an outlet cooling water pipe 54 is provided with a fourth flow rate regulating valve 56.

このような構成により冬季暖房を行なうときには弁52
を開、弁58を閉、ポンプ41を停止して復水器21か
ら排出される高温の排出冷却水を中間冷却水配管33か
ら熱源水入口配管57を経て熱源水として蒸発!S1に
送水することにより、前述のように高温の温水を凝縮器
4から取出すことができる。
With such a configuration, when performing winter heating, the valve 52
is opened, the valve 58 is closed, the pump 41 is stopped, and the high temperature discharged cooling water discharged from the condenser 21 is evaporated as heat source water from the intermediate cooling water pipe 33 through the heat source water inlet pipe 57! By sending water to S1, high-temperature hot water can be taken out from the condenser 4 as described above.

なおIn2の流量調整弁53の開度!I整によりIll
負負荷対応した排出冷却水量を蒸発器1に送水できる。
In addition, the opening degree of the flow rate adjustment valve 53 of In2! Ill by I adjustment
The amount of discharged cooling water corresponding to the negative load can be sent to the evaporator 1.

上記において復水器21からの排出冷却水は前述のよう
に熱交換器を経ずに直接蒸発器1に送水されるので、蒸
発器1には熱交換による熱損失のない高温の排出冷却水
が熱源水となる。したがって排出冷却水の温度は、復水
器を通流する冷却水の入口、出口温度差の規制値以下に
しても高温の温水をit縮器4から取出すことができる
。したがって出口冷却水配管54から外域に排出される
排出冷却水と入口冷却水配管28を流れて復水!I21
に流入する入口冷却水との入口、出口温度差は規制値以
下になる。
In the above, since the discharged cooling water from the condenser 21 is directly sent to the evaporator 1 without passing through the heat exchanger as described above, the evaporator 1 is supplied with high-temperature discharged cooling water without heat loss due to heat exchange. becomes the heat source water. Therefore, high-temperature hot water can be taken out from the IT condenser 4 even if the temperature of the discharged cooling water is lower than the regulation value of the temperature difference between the inlet and outlet of the cooling water flowing through the condenser. Therefore, the discharged cooling water discharged from the outlet cooling water pipe 54 to the outside area flows through the inlet cooling water pipe 28 and condenses! I21
The temperature difference between the inlet cooling water and the outlet temperature will be below the regulation value.

なお、万一熱源水としての排出冷却水の温度が低いため
、凝縮器4から高温の温水が得られず、このため、冷却
水の入口、出口温度差を規制値以上にして排出冷却水の
温度をより高温にするときには、ポンプ41を駆動して
冷・温水1140内の蒸発器1から排出された冷水を混
入冷却水配管55を経て第4の流量lI整弁56により
その流量をMillて出口冷却水配管54を流れる排出
冷却水に混合してその温度を下げ、冷却水の入口、出口
温度差を規制値以下にする。
In addition, in the unlikely event that the temperature of the discharged cooling water as a heat source water is low, high-temperature hot water cannot be obtained from the condenser 4, and for this reason, the temperature difference between the inlet and outlet of the cooling water is set to exceed the regulation value and the temperature of the discharged cooling water is lowered. To make the temperature higher, the pump 41 is driven to mix the cold water discharged from the evaporator 1 into the cold/hot water 1140, pass through the cooling water pipe 55, and set the flow rate to a mill by the fourth flow rate adjustment valve 56. It is mixed with the discharged cooling water flowing through the outlet cooling water pipe 54 to lower its temperature, and the temperature difference between the inlet and outlet of the cooling water is made below the regulation value.

夏季冷房するときには吸収冷凍1110を中間冷却水配
管33と熱源水入口配管57との弁52.第4の流量調
整弁56を閉にして復水器21から離して作動させ、弁
58を開、ポンプ41を駆動することにより、前述のよ
うにして蒸発器1から冷水が得られる。
During summer cooling, the absorption refrigeration unit 1110 is connected to the valve 52 between the intermediate cooling water pipe 33 and the heat source water inlet pipe 57. By closing the fourth flow regulating valve 56 and operating it away from the condenser 21, opening the valve 58 and driving the pump 41, cold water is obtained from the evaporator 1 as described above.

本実施例てはヒートポンプとして吸収冷凍機を使用して
いるが、−膜圧縮機を備える圧縮冷凍機を使用しても前
述と同じ効果が得られる。
Although an absorption refrigerator is used as the heat pump in this embodiment, the same effect as described above can be obtained even if a compression refrigerator equipped with a membrane compressor is used.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば復水タ
ービンの復水器から排出される排出冷却水の温度を流入
する入口冷却水の温度より十分高くし、この高温の排出
冷却水の排熱をヒートポンプに利用する際、蒸発器を流
れる熱源水と復水器を流れる冷却水とが水質、清浄度等
が異なるため混合できない場合には復水器からの排出冷
却水を熱交換器に通流し、この熱交換器にて熱源水を加
熱した&蒸発器に通流することにより、凝縮器からは高
温の温水を取出すことができるとともに、複水器からの
排出冷却水は熱交換器にての熱源水との熱交換により低
温となり、このため復水器を通流した後熱交換器を流れ
て外域に排出される冷却水の入口、出口温度差は規制値
以下にすることができる。
As is clear from the above description, according to the present invention, the temperature of the exhaust cooling water discharged from the condenser of the condensing turbine is made sufficiently higher than the temperature of the inlet cooling water flowing in, and the high temperature exhaust cooling water is When exhaust heat is used in a heat pump, if the heat source water flowing through the evaporator and the cooling water flowing through the condenser cannot be mixed because they have different water quality, cleanliness, etc., the cooling water discharged from the condenser is transferred to the heat exchanger. The heat source water is heated in this heat exchanger and passed through the evaporator, allowing high-temperature hot water to be taken out from the condenser, and the cooling water discharged from the double water device to be heat exchanged. The temperature difference between the inlet and outlet of the cooling water that flows through the condenser, flows through the heat exchanger, and is discharged to the outside area must be kept below the regulation value. I can do it.

また、蒸発器を流れる熱源水と復水器を流れる冷却水と
が水質、清浄度等が同程度のため混合が可能の場合、復
水器からの排出冷却水を熱源水として使用することによ
り、冷却水の入口、出口温度差を規制値以下にしても熱
交換器を使用しないので、熱源水は高温となり、このた
めヒートポンプから暖房用の高温の温水を、取出すこと
ができるとともに外域に排出する冷却水の入口、出口温
度差は規制値以下に抑えることができる。
In addition, if the heat source water flowing through the evaporator and the cooling water flowing through the condenser are of similar quality and cleanliness and can be mixed, it is possible to use the cooling water discharged from the condenser as the heat source water. Even if the temperature difference between the inlet and outlet of the cooling water is below the regulation value, no heat exchanger is used, so the heat source water becomes high temperature. Therefore, high-temperature hot water for heating can be taken out from the heat pump and discharged to the outside area. The temperature difference between the inlet and outlet of the cooling water can be kept below the regulation value.

また、熱源水と冷却水とが混合不能の場合、第1のバイ
パス冷却水配管を設けたことにより、復水器の入口冷却
水の温度を熱交換器から排出される冷却水の一部を第1
のバイパス冷却水配管を経て混合することができるので
、復水器の冷却水の入口温度を調整でき、また第2のバ
イパス冷却水配管により復水器の出口冷却水の一部を熱
交換器をバイパスさせることにより、熱交換器の負荷に
対応する冷却水量を熱交換器に送水でき、第2のバイパ
ス冷却水配管を流れる排出冷却水は熱交換器から排出さ
れる低温の冷却水と混合することにより、外域に排出さ
れる冷却水の入口、出口温度差を規制値以下にするとと
もにヒートポンプから高温の温水が得られる。
In addition, when heat source water and cooling water cannot be mixed, by providing the first bypass cooling water piping, the temperature of the cooling water at the inlet of the condenser can be adjusted by controlling a portion of the cooling water discharged from the heat exchanger. 1st
Since the cooling water can be mixed through the second bypass cooling water pipe, the inlet temperature of the condenser cooling water can be adjusted, and the second bypass cooling water pipe allows a part of the condenser outlet cooling water to be mixed into the heat exchanger. By bypassing the heat exchanger, the amount of cooling water corresponding to the load on the heat exchanger can be sent to the heat exchanger, and the discharged cooling water flowing through the second bypass cooling water pipe is mixed with the low-temperature cooling water discharged from the heat exchanger. By doing so, the temperature difference between the inlet and outlet of the cooling water discharged to the outside area can be kept below the regulation value, and high-temperature hot water can be obtained from the heat pump.

また、熱源水と冷却水との混合可能の場合、出口冷却水
配管には第3の流量調整弁を設けたことにより、暖房負
荷に対応する熱源水として使用する冷却水量を第3の流
量1g!!!弁により調整でき、また蒸発器から排出さ
れる低温の冷水を出口冷却水配管に導く混入冷却水配管
を設けたことにより、万一復水器からの排出冷却水の温
度が入口冷却水の温度より入口、出口温度差の規制値以
上昇温しても、混入冷却水配管から冷水を排出冷却水に
混合できるので、外域に排出される冷却水の入口。
In addition, when heat source water and cooling water can be mixed, a third flow rate adjustment valve is installed in the outlet cooling water pipe, so that the amount of cooling water used as heat source water corresponding to the heating load can be adjusted to a third flow rate of 1 g. ! ! ! This can be adjusted using a valve, and by installing a mixed cooling water pipe that guides the low-temperature cold water discharged from the evaporator to the outlet cooling water pipe, in the unlikely event that the temperature of the discharged cooling water from the condenser is lower than the temperature of the inlet cooling water. Even if the temperature rises above the regulated value for the temperature difference between the inlet and outlet, the chilled water can be mixed with the discharged cooling water from the mixed cooling water piping, so the inlet of the cooling water is discharged to the outside area.

出口温度差は焼製値以下に抑えることができる。The outlet temperature difference can be suppressed to below the firing value.

なお、1紀のように複水器の冷却水の排熱を利用しない
場合には復水器の冷却水の入口温度にもよるが、冷却水
の入口出口温度差を規制値以下にするには二段圧縮機を
備えた冷凍機を使用することになって動力を消費するが
、本発明によるものには前記冷凍機より動力の消費が少
なくなるという効果もある。
In addition, when the exhaust heat of the cooling water of the double water unit is not used as in the 1st generation, it depends on the inlet temperature of the cooling water of the condenser, but in order to keep the temperature difference between the inlet and outlet of the cooling water below the regulation value. Although this uses a refrigerator equipped with a two-stage compressor, which consumes power, the refrigerator according to the present invention also has the effect of consuming less power than the refrigerator described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による蒸発器を流れる熱源水と
復水器を流れる冷却水との混合不能の場合のタービン復
水器排熱利用のヒートポンプの系統図、f、2図は本発
明の実施例による蒸発器を流れる熱源水と復水器を流れ
る冷却水との混合可能の場合のタービン復水器排熱利用
のヒートポンプの系統図、第3図はヒートポンプとして
使用する吸収冷凍機の原理図である。 1:蒸発器、2:吸収器、3:再住器、4#縮器、10
:吸収冷凍機、20:復水タービン、21:復水器、3
0:熱交換器、33:中間冷却水配管、35:第1の流
量調整弁 36:第1のバイパス冷却水配管、37:第
2の流量調整弁、38:第2のバイパス冷却水配管、4
5:バイパス熱源水配管、53:第3の流量調整弁、5
5:混入冷却水配管、56:第4の流量調整弁。
Figure 1 is a system diagram of a heat pump that uses waste heat from a turbine condenser in the case where heat source water flowing through an evaporator and cooling water flowing through a condenser cannot be mixed according to an embodiment of the present invention; A system diagram of a heat pump using waste heat from a turbine condenser in a case where the heat source water flowing through the evaporator and the cooling water flowing through the condenser can be mixed according to an embodiment of the invention, and FIG. 3 is an absorption chiller used as a heat pump. FIG. 1: Evaporator, 2: Absorber, 3: Rehabitor, 4# Compressor, 10
: Absorption refrigerator, 20: Condensing turbine, 21: Condenser, 3
0: heat exchanger, 33: intermediate cooling water piping, 35: first flow rate adjustment valve 36: first bypass cooling water piping, 37: second flow rate adjustment valve, 38: second bypass cooling water piping, 4
5: Bypass heat source water piping, 53: Third flow rate adjustment valve, 5
5: Mixed cooling water piping, 56: Fourth flow rate adjustment valve.

Claims (1)

【特許請求の範囲】 1)熱源水が通流する蒸発器を有するヒートポンプと、
熱源水と水質、清浄度等が異なるため熱源水に混合不能
な冷却水が通流する復水タービンの復水器と、蒸発器の
前段に設けられ、復水器から冷却水の入口、出口温度差
を大きくして排出される排出冷却水と熱交換して熱源水
を加熱する熱交換器と、この熱交換器をバイパスして熱
源水を蒸発器に送水するバイパス熱源水配管とを備えた
ことを特徴とするタービン復水器排熱利用のヒートポン
プ。 2)熱源水が通流する蒸発器を有するヒートポンプと、
熱源水と水質、清浄度等が同程度のため熱源水に混合可
能な冷却水が通流する復水タービンの復水器と、この復
水器から冷却水の入口、出口温度差を大きくして排出さ
れる排出冷却水を取出して熱源水として蒸発器に導く冷
却水配管とを備えたことを特徴とするタービン復水器排
熱利用のヒートポンプ。 3)請求項1記載のタービン復水器排熱利用のヒートポ
ンプにおいて、復水器に通流する冷却水の入口冷却水配
管と復水器から排出後熱交換器を通流する前記冷却水の
出口冷却水配管とに接続され、第1の流量調整弁を備え
る第1のバイパス冷却水配管と、復水器の冷却水出口と
熱交換器の冷却水入口とに接続する中間冷却水配管と前
記出口冷却水配管とに接続され、第2の流量調整弁を備
える第2のバイパス冷却水配管とを設けたことを特徴と
するタービン復水器排熱利用のヒートポンプ。 4)請求項2記載のタービン復水器排熱利用のヒートポ
ンプにおいて、前記復水器から排出される排出冷却水を
外域に排出する出口冷却水配管に設けられる第3の流量
調整弁と、蒸発器から排出される冷水を第3の流量調整
弁の下流の出口冷却水配管に導く第4の流量調整弁を備
えた混入冷却水配管とを設けたことを特徴とするタービ
ン復水器排熱利用のヒートポンプ。
[Claims] 1) A heat pump having an evaporator through which heat source water flows;
The condenser of the condensation turbine, through which the cooling water that cannot be mixed with the heat source water because the water quality and cleanliness are different from the heat source water, flows through the condenser, and the inlet and outlet of the cooling water from the condenser, which is installed before the evaporator. Equipped with a heat exchanger that heats the heat source water by exchanging heat with discharged cooling water that increases the temperature difference, and a bypass heat source water pipe that bypasses this heat exchanger and sends the heat source water to the evaporator. A heat pump that uses waste heat from a turbine condenser. 2) a heat pump having an evaporator through which heat source water flows;
The condenser of the condensing turbine, through which cooling water flows that can be mixed with the heat source water because the water quality and cleanliness are similar to the heat source water, and the temperature difference between the inlet and outlet of the cooling water from this condenser are increased. A heat pump that utilizes waste heat from a turbine condenser, characterized in that it is equipped with a cooling water pipe that takes out the discharged cooling water discharged from the engine and leads it to an evaporator as heat source water. 3) In the heat pump that utilizes waste heat from a turbine condenser according to claim 1, the inlet cooling water piping for the cooling water flowing into the condenser and the cooling water flowing through the heat exchanger after being discharged from the condenser. a first bypass cooling water pipe connected to the outlet cooling water pipe and provided with a first flow rate regulating valve; and an intermediate cooling water pipe connected to the cooling water outlet of the condenser and the cooling water inlet of the heat exchanger. A heat pump utilizing waste heat from a turbine condenser, characterized in that a second bypass cooling water pipe is connected to the outlet cooling water pipe and includes a second flow rate regulating valve. 4) The heat pump that utilizes waste heat from a turbine condenser according to claim 2, further comprising: a third flow rate regulating valve provided in an outlet cooling water pipe for discharging the exhaust cooling water discharged from the condenser to an outside area; A turbine condenser waste heat system characterized by being provided with a mixed cooling water pipe equipped with a fourth flow rate regulating valve that guides the cold water discharged from the vessel to the outlet cooling water pipe downstream of the third flow rate regulating valve. Utilize heat pump.
JP2326624A 1990-11-28 1990-11-28 Heat pump utilizing waste heat of turbine condenser Pending JPH04198673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2326624A JPH04198673A (en) 1990-11-28 1990-11-28 Heat pump utilizing waste heat of turbine condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2326624A JPH04198673A (en) 1990-11-28 1990-11-28 Heat pump utilizing waste heat of turbine condenser

Publications (1)

Publication Number Publication Date
JPH04198673A true JPH04198673A (en) 1992-07-20

Family

ID=18189880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2326624A Pending JPH04198673A (en) 1990-11-28 1990-11-28 Heat pump utilizing waste heat of turbine condenser

Country Status (1)

Country Link
JP (1) JPH04198673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169539A (en) * 2010-02-19 2011-09-01 Mitsubishi Heavy Ind Ltd Heat use system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169539A (en) * 2010-02-19 2011-09-01 Mitsubishi Heavy Ind Ltd Heat use system

Similar Documents

Publication Publication Date Title
US4070870A (en) Heat pump assisted solar powered absorption system
JP4471992B2 (en) Multi-source heat pump steam / hot water generator
JP2005315127A (en) Gas turbine
JP2004301344A (en) Ammonia absorption heat pump
JP2000121196A (en) Cooling/heating system utilizing waste heat
JPH04198673A (en) Heat pump utilizing waste heat of turbine condenser
JP3851764B2 (en) Absorption refrigerator
KR20140002134A (en) High efficiency hybrid cooling/heating water apparatus with absorption type
JP2004060987A (en) Exhaust heat absorption refrigerator
KR100512827B1 (en) Absorption type refrigerator
JP4079570B2 (en) Control method of absorption refrigerator
JP3578207B2 (en) Steam heating type double effect absorption refrigerator / cooler / heater, power generation / cooling / heating / hot water supply system using the same, and system control method thereof
JPH11337214A (en) Absorption cold/hot water device and operation thereof
JPS5812507B2 (en) Hybrid type absorption heat pump
JPH05280825A (en) Absorption heat pump
JP2000088391A (en) Absorption refrigerating machine
KR100877024B1 (en) Apparatus for supplying warm water during cooling mode in absorption water cooler and heater
JPH11257778A (en) Absorption type cold heat generator
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
JPS6148064B2 (en)
JP3811632B2 (en) Waste heat input type absorption refrigerator
JP2000055505A (en) Combined heat transfer device
JPH08121900A (en) Absorption type refrigerating machine using engine exhaust heat
JP2000146355A (en) Composite heat transfer system
JPS6022253B2 (en) absorption refrigerator