JPH04198437A - Manufacture of hard alloy - Google Patents

Manufacture of hard alloy

Info

Publication number
JPH04198437A
JPH04198437A JP2333244A JP33324490A JPH04198437A JP H04198437 A JPH04198437 A JP H04198437A JP 2333244 A JP2333244 A JP 2333244A JP 33324490 A JP33324490 A JP 33324490A JP H04198437 A JPH04198437 A JP H04198437A
Authority
JP
Japan
Prior art keywords
hard
phase
hard alloy
raw material
hot isostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2333244A
Other languages
Japanese (ja)
Inventor
Masao Maruyama
丸山 正男
Yoshinori Shirane
白根 美則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2333244A priority Critical patent/JPH04198437A/en
Publication of JPH04198437A publication Critical patent/JPH04198437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the wear resistance and cuttability in a hard alloy while the amt. of iron group metals in a bonding phase is reduced by subjecting raw material mixed powder to compacting and preliminary sintering and thereafter executing hot isostatic pressing in the atmosphere of a high pressure inert gas at the temp. lower than the liquid phase appearing one or above. CONSTITUTION:Raw material mixed powder constituted of a hard phase constituted of one or more kinds among the carbides, nitrides and carbon nitrides of Na, Va and VI a group metallic elements and <=2wt.% iron group metallic bonding phase is compacted. This green compact is subjected to preliminary sintering at 1300 to 1600 deg.C and is furthermore sintered by hot isostatic pressing in the atmosphere of a high pressure inert gas of >=50kg/cm<2> at the temp. lower than the liquid phase appearing one or below. In this way, a hard alloy excellent in wear resistance and cuttability as an alloy for high pressure water-jet pumps and for tools such as cutting, sliding and wire drawing dies can be obtd.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は高圧水流ノズル用、切削、摺動、線引きダイ
ス等の工具用として切削特性、耐摩耗性にすぐれた超硬
合金、サーメット、セラミック等の硬質合金の製造法に
関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to high-pressure water nozzles, cutting, sliding, wire drawing dies, and other tools such as cemented carbide, cermet, and ceramic that have excellent cutting properties and wear resistance. This relates to a method of manufacturing hard alloys such as.

〈従来の技術とその課題〉 従来から、耐摩耗性がよく切削特性にすぐれる工具用硬
質合金がIVa 、 Va、VIa族金属元素の炭化物
、窒化物などからなる硬質相と鉄族金属の結合相とから
得られていることは周知である。
<Conventional technology and its issues> Conventionally, hard alloys for tools with good wear resistance and excellent cutting properties have been produced by combining a hard phase consisting of carbides, nitrides, etc. of group IVa, Va, and VIa metal elements with iron group metals. It is well known that it is obtained from the phase.

しかしながら、これまでの硬質合金における結合相とし
ての鉄族金属の使用量は殆んどが2〜20重量%である
。これは2重量%以下では得られる硬質合金の耐衝撃性
、靭性等の実用特性が価値のないものとして認識されて
いた。
However, the amount of iron group metal used as a binder phase in hard alloys to date is mostly 2 to 20% by weight. It has been recognized that if the amount is less than 2% by weight, the resulting hard alloy has no practical properties such as impact resistance and toughness.

また、20重量%以上では高温硬度が低下して好ましく
ないとの認識であった。
Furthermore, it was recognized that if it exceeds 20% by weight, the high-temperature hardness decreases, which is undesirable.

さらに、この発明のようにIVa 、 Va、VIa族
金属元素の炭化物、窒化物、炭窒化物よりなる粒径1μ
以下の硬質相を用い、結合相として2重量%以下の鉄族
金属を用いて真空焼結、常圧又は減圧下で焼結して得た
硬質合金では液相量が少ない組成であるため焼結性が悪
く、良好な密度(巣)、組織が得られないことから、耐
摩耗性、特に耐摩擦摩耗、耐切削摩耗に限界があって、
高圧水流ノズル用、切削工具用の硬質合金としては好ま
しくなかった。
Furthermore, as in the present invention, grain size of 1μ made of carbides, nitrides, and carbonitrides of IVa, Va, and VIa group metal elements.
Hard alloys obtained by vacuum sintering or sintering under normal pressure or reduced pressure using the following hard phases and 2% by weight or less of iron group metal as the binder phase have a composition with a small amount of liquid phase. Because it has poor cohesion and cannot obtain good density (nests) and structure, there is a limit to its wear resistance, especially frictional wear resistance and cutting wear resistance.
It was not preferred as a hard alloy for high-pressure water nozzles or cutting tools.

〈課題を解決するための手段〉 この発明は上記に鑑みて、結合相の鉄族金属量を2重量
%以下として、しかも耐摩擦摩耗、耐切削摩耗などにす
ぐれた硬質合金を得るべく検討の結果得られたものであ
る。
<Means for Solving the Problems> In view of the above, the present invention is based on studies to obtain a hard alloy with an iron group metal content of the binder phase of 2% by weight or less and excellent resistance to frictional wear and cutting wear. This is the result obtained.

即ち、この発明は元素の周期律表IVa族、Va族、V
Ia族金属元素の炭化物、窒化物、炭窒化物の1種以上
からなる硬質相を主成分とし、該硬質相と2重量%以下
の鉄族金属結合相からなる硬質合金の製造に際し、硬質
相と結合相を構成する原料混合粉末を成形し、1300
〜1600℃で予備焼結したのち、さらに液相出現温度
より低い温度以上の温度で50kg/cm2以上の高圧
不活性ガス雰囲気中にて熱間静水圧プレス焼結すること
を特徴とする硬質合金の製造法を提供するものである。
That is, the present invention applies to group IVa, group Va, and V of the periodic table of elements.
When producing a hard alloy that has a hard phase mainly composed of one or more of carbides, nitrides, and carbonitrides of group Ia metal elements, and that consists of the hard phase and 2% by weight or less of an iron group metal binder phase, the hard phase The raw material mixed powder constituting the binder phase was molded and heated at 1300
A hard alloy characterized by preliminary sintering at ~1600°C and then hot isostatic press sintering in a high-pressure inert gas atmosphere of 50 kg/cm2 or more at a temperature lower than the liquid phase appearance temperature or higher. The present invention provides a method for manufacturing.

〈作用〉 この発明はIVa族、Va族、VIa族金属元素の炭化
物、窒化物、炭窒化物の1種以上からなる硬質相を構成
する粉末に対して2重量%以下という少量の結合相とし
ての鉄族金属粉末を用いるといつ液相量が少ない組成で
ありながら、予備焼結後に高温で高圧力をかけて熱間静
水圧加熱によって焼結を促進させることによって従来の
真空や常圧焼結によっては得ることのできない、耐摩耗
特性にすぐれた硬質合金を得ることができるのである。
<Operation> The present invention uses a small amount of binder phase of 2% by weight or less based on the powder constituting the hard phase consisting of one or more of carbides, nitrides, and carbonitrides of metal elements of group IVa, group Va, and group VIa. Although the iron group metal powder has a composition with a small amount of liquid phase, it is possible to accelerate sintering by hot isostatic pressure heating at high temperature and high pressure after preliminary sintering, making it possible to avoid conventional vacuum or normal pressure sintering. It is possible to obtain a hard alloy with excellent wear resistance, which cannot be obtained by other methods.

この発明で良好な硬質合金を得るには硬質相素材粉末の
粒径も大きな要因であり、その粒径としては1μ以下が
適当である。
In order to obtain a good hard alloy in this invention, the particle size of the hard phase material powder is also a major factor, and the particle size is suitably 1 μm or less.

これは1μ以上では得られた硬質合金の硬度が不十分で
あると共に、細かい方が均一な分散が可能となって靭性
も向上するためである。
This is because the hardness of the obtained hard alloy is insufficient if it is 1μ or more, and the finer the particle size, the more uniform dispersion becomes possible and the toughness is improved.

また、硬質相素材としてはIVa族、Va族、VIa族
金属元素の炭化物、窒化物、炭窒化物の1種以上の粉末
を用いるが、これは予め固溶処理したものが好ましい。
Further, as the hard phase material, one or more powders of carbides, nitrides, and carbonitrides of metal elements of IVa group, Va group, and VIa group are used, but it is preferable that the powder is previously subjected to solid solution treatment.

この発明は硬質相と結合相の原料粉末をボールミルで湿
式混合した混合粉を用い、予備焼結し、その後熱間静水
圧プレスにて焼結するが、この予備焼結と熱間静水圧プ
レス焼結は予備焼結する同一炉内で条件を設定して連続
的に行なう方がプレス焼結の際の圧力を低くすることが
でき好ましい。
This invention uses a mixed powder obtained by wet-mixing raw material powders for a hard phase and a binder phase in a ball mill, pre-sintering the powder, and then sintering it in a hot isostatic press. It is preferable to perform the sintering continuously under the same conditions in the same furnace as the preliminary sintering because the pressure during press sintering can be lowered.

予備焼結の条件は真空雰囲気中で1300〜1600℃
X lhrが適当であり、熱間静水圧プレスによる焼結
はアルゴン等の不活性ガス雰囲気中80kg/cm2以
上の圧力下、1300〜1600℃X1hrが適当であ
る。
Pre-sintering conditions are 1300-1600℃ in a vacuum atmosphere.
For sintering by hot isostatic pressing, it is appropriate to perform sintering by hot isostatic pressing at 1300 to 1600° C. for 1 hr under a pressure of 80 kg/cm 2 or higher in an atmosphere of an inert gas such as argon.

〈実施例〉 以下、この発明を実施例により詳細に説明する。<Example> Hereinafter, this invention will be explained in detail with reference to Examples.

実施例1 平均粒径0.5μのWe 93.7重量%、平均粒径1
μのMo5.5重量%、Go 0.4重量%、VCo、
4重量%を湿式ボールミルで8時間混合して原料粉を作
成した。
Example 1 93.7% by weight of We with average particle size of 0.5μ, average particle size of 1
μ Mo5.5% by weight, Go 0.4% by weight, VCo,
A raw material powder was prepared by mixing 4% by weight in a wet ball mill for 8 hours.

この原料粉を用いて真空下1400℃で1時間の予備焼
結を行なった。
Using this raw material powder, preliminary sintering was performed at 1400° C. for 1 hour under vacuum.

次いで、この焼結体をアルゴンガス中 1000kg/cm2.1320℃で1時間の熱間静水
圧プレスにて焼結を行なって硬質合金を得た。
Next, this sintered body was sintered by hot isostatic pressing in argon gas at 1000 kg/cm2 at 1320° C. for 1 hour to obtain a hard alloy.

実施例2 実施例1と同じ原料粉を用い、まず真空下1400℃で
1時間の予備焼結を行ない、引続き同一炉内でアルゴン
ガス雰囲気下、80kg/cm2の圧力で1400℃、
1時間の熱間静水圧プレスによる焼結を連続して行ない
、硬質合金を得た。
Example 2 Using the same raw material powder as in Example 1, preliminary sintering was first performed at 1400°C under vacuum for 1 hour, and then in the same furnace under an argon gas atmosphere at 1400°C under a pressure of 80 kg/cm2.
Sintering was performed continuously by hot isostatic pressing for 1 hour to obtain a hard alloy.

これら実施例1及び2で得られた硬質合金について密度
、硬度、抗折力などを測定したところ第1表の結果を得
た。
When the density, hardness, transverse rupture strength, etc. of the hard alloys obtained in Examples 1 and 2 were measured, the results shown in Table 1 were obtained.

尚、比較例として、同じ原料粉を用いて真空下1450
℃X1hrの焼結を行なって得た硬質合金を測定した。
In addition, as a comparative example, using the same raw material powder, 1450
A hard alloy obtained by sintering at a temperature of 1 hr was measured.

その結果、この発明の方法による硬質合金がすぐれてい
ることが認められた。
As a result, it was found that the hard alloy produced by the method of the present invention was superior.

第  1  表 〈発明の効果〉 以上説明したように、この発明によれば結合相としての
鉄族金属量が2重量%以下の少量でありながら、高圧水
流ノズル用、切削、摺動、線引きダイス等の工具用合金
として耐摩耗性、硬度切削特性にすぐれた硬質合金が得
られることが認められた。
Table 1 <Effects of the Invention> As explained above, according to the present invention, although the amount of iron group metal as a binder phase is as small as 2% by weight or less, it can be used for cutting, sliding, and wire drawing dies for high-pressure water jet nozzles. It was recognized that a hard alloy with excellent wear resistance, hardness and cutting properties can be obtained as an alloy for tools such as.

Claims (3)

【特許請求の範囲】[Claims] (1)元素の周期律表IVa族、Va族、VIa族金属元素
の炭化物、窒化物、炭窒化物の1種以上からなる硬質相
を主成分とし、該硬質相と2重量%以下の鉄族金属結合
相からなる硬質合金の製造に際し、硬質相と結合相を構
成する原料混合粉末を成形し、1300〜1600℃で
予備焼結したのち、さらに液相出現温度より低い温度以
上の温度で50kg/cm^2以上の高圧不活性ガス雰
囲気中にて熱間静水圧プレス焼結することを特徴とする
硬質合金の製造法。
(1) The main component is a hard phase consisting of one or more of carbides, nitrides, and carbonitrides of metal elements of Groups IVa, Va, and VIa of the Periodic Table of the Elements, and the hard phase and 2% by weight or less of iron When producing a hard alloy consisting of a group metal binder phase, the raw material mixed powder constituting the hard phase and the binder phase is molded, pre-sintered at 1300 to 1600°C, and then further sintered at a temperature lower than the liquid phase appearance temperature or higher. A method for producing a hard alloy, comprising hot isostatic press sintering in a high-pressure inert gas atmosphere of 50 kg/cm^2 or more.
(2)硬質相としてIVa族、Va族、VIa族金属元素の
炭化物、窒化物、炭窒化物の化合物を予め固溶処理した
粉末を用いることを特徴とする請求項(1)記載の硬質
合金の製造法。
(2) The hard alloy according to claim (1), characterized in that the hard phase is a powder treated in advance with a solid solution treatment of a compound of a carbide, nitride, or carbonitride of a group IVa, Va, or VIa metal element. manufacturing method.
(3)硬質相の粉末が粒径1μ以下であることを特徴と
する請求項(1)または(2)記載の硬質合金の製造法
(3) The method for producing a hard alloy according to claim (1) or (2), wherein the hard phase powder has a particle size of 1 μm or less.
JP2333244A 1990-11-28 1990-11-28 Manufacture of hard alloy Pending JPH04198437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2333244A JPH04198437A (en) 1990-11-28 1990-11-28 Manufacture of hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2333244A JPH04198437A (en) 1990-11-28 1990-11-28 Manufacture of hard alloy

Publications (1)

Publication Number Publication Date
JPH04198437A true JPH04198437A (en) 1992-07-17

Family

ID=18263940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2333244A Pending JPH04198437A (en) 1990-11-28 1990-11-28 Manufacture of hard alloy

Country Status (1)

Country Link
JP (1) JPH04198437A (en)

Similar Documents

Publication Publication Date Title
CN108823478A (en) Ultra-fine high-entropy alloy Binder Phase cermet and preparation method thereof
JP4403286B2 (en) Cemented carbide tool material and manufacturing method thereof
JPH05209247A (en) Cermet alloy and its production
JP2008504467A5 (en)
CN109576545B (en) Ti (C, N) -based metal ceramic with mixed crystal structure and preparation method thereof
CN108642361B (en) High-strength high-hardness ceramic material and production process thereof
CN110592426B (en) High-hardness high-temperature-resistant TiC + TiB reinforced titanium-based composite material generated by solid-phase in-situ reaction and preparation method thereof
JP2668955B2 (en) Double boride-based sintered body and method for producing the same
JP3837332B2 (en) In-situ powder metallurgy manufacturing method for wear-resistant composite materials
US5008071A (en) Method for producing improved tungsten nickel iron alloys
JPH04198437A (en) Manufacture of hard alloy
JP3102167B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JP2735152B2 (en) Titanium nitride sintered body using aluminum as assistant and method for producing the same
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide
JP3111709B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JPS63199843A (en) Composite molded body of molybdenum or its alloy and zirconia and its production
JPS59563B2 (en) Manufacturing method of diamond sintered body
CN115233023B (en) Method for preparing hard alloy and hard alloy
AU645721B2 (en) Process for manufacturing ceramic-metal composites
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
JPH0681071A (en) Titanium carbonitride base cermet excellent in toughness
JPS647141B2 (en)
JPH04198453A (en) Hard alloy
JP3292950B2 (en) Molybdenum nitride powder and method for producing the same
CN115747599A (en) high-Cr-content coarse-grain hard alloy and preparation method and application thereof