JPH04198453A - Hard alloy - Google Patents

Hard alloy

Info

Publication number
JPH04198453A
JPH04198453A JP33324390A JP33324390A JPH04198453A JP H04198453 A JPH04198453 A JP H04198453A JP 33324390 A JP33324390 A JP 33324390A JP 33324390 A JP33324390 A JP 33324390A JP H04198453 A JPH04198453 A JP H04198453A
Authority
JP
Japan
Prior art keywords
hard alloy
hard
alloy
phase
binding phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33324390A
Other languages
Japanese (ja)
Inventor
Masao Maruyama
丸山 正男
Yoshinori Shirane
白根 美則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP33324390A priority Critical patent/JPH04198453A/en
Publication of JPH04198453A publication Critical patent/JPH04198453A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sintered hard alloy excellent in wear resistance, hardness, and machinability by constituting this alloy of a hard phase consisting of carbides, etc., of group IVa, Va, and VIa metal elements and having specific grain size and a specific amount of binding phase consisting of iron group metals. CONSTITUTION:In a hard alloy which consists of a hard phase consisting of the carbide, nitride, and carbonitride of group IVa, Va, and VIa metal elements of the periodic table of elements and having <=1mu grain size and a binding phase consisting of one or more kinds among iron group metals, the content of the above binding phase is regulated to <=2% by weight. The above hard alloy can be obtained, e.g. by mixing the powder of the above hard phase and the powder of the binding phase at the prescribed proportion by means of a ball mill, compacting the resulting powder mixture, performing presintering at about 1300-1600 deg.C, and further exerting sintering by means of hot isostatic pressing. In this hard alloy, the existence rate of the binding phase metal in the hard alloy is regulated to 0.2-2% and magnetization characteristics are provided, and further, Vickers hardness and deflectivity are regulated to >=1800kg/mm<2> and >=80kg/mm<2>, respectively. By this method, the hard alloy excellent in wear resistance, hardness, and machinability as tool alloy can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は高圧水流ノズル用、切削、摺動、線引ダイス
等の工具用として切削特性、耐摩耗性にすぐれた超硬合
金、サーメット、セラミック等の硬質合金に関するもの
である。
[Detailed Description of the Invention] <Industrial Field of Application> The present invention is directed to the use of cemented carbide, cermet, It relates to hard alloys such as ceramics.

〈従来の技術とその課題〉 従来から、耐摩耗性がよく切削特性にすぐれる工具用硬
質合金がIVa 、Va、VIa族金属元素の炭化物、
窒化物などからなる硬質相と鉄族金属の結合相とから得
られていることは周知である。
<Conventional technology and its problems> Conventionally, hard alloys for tools that have good wear resistance and excellent cutting properties are carbides of group IVa, Va, and VIa metal elements,
It is well known that it is obtained from a hard phase made of nitride or the like and a binder phase of iron group metal.

しかしながら、これまでの硬質合金における結合相とし
ての鉄族金属の使用量は殆んどが2〜20重量%である
。これは2重量%以下では得られる硬質合金の耐衝撃性
、靭性等の実用特性が価値のないものとして認識されて
いた。
However, the amount of iron group metal used as a binder phase in hard alloys to date is mostly 2 to 20% by weight. It has been recognized that if the amount is less than 2% by weight, the resulting hard alloy has no practical properties such as impact resistance and toughness.

また、20重量%以上では高温硬度が低下して好ましく
ないとの認識であった。
Furthermore, it was recognized that if it exceeds 20% by weight, the high-temperature hardness decreases, which is undesirable.

さらに、この発明のようにIVa 、Va、 VIa族
金属元素の炭化物、窒化物、炭窒化物よりなる粒径1 
(L以下の硬質相を用い、結合相として2重量%以下の
鉄族金属よりなる硬質合金は、耐摩耗性、特に耐摩擦摩
耗、耐切削摩耗に限界があって、高圧水流ノズル用、切
削工具用の硬度合金としては好ましくなかった。
Furthermore, as in the present invention, grain size 1 made of carbides, nitrides, and carbonitrides of IVa, Va, and VIa group metal elements.
(Hard alloys that use a hard phase of less than It was not desirable as a hardness alloy for tools.

〈課題を解決するための手段〉 この発明は上記に鑑みて、結合相の鉄族金属量を2重量
%以下として、しかも耐摩擦摩耗、耐切削摩耗などにす
ぐれた硬質合金を得るべ(検討の結果得られたものであ
る。
<Means for Solving the Problems> In view of the above, the present invention aims to obtain a hard alloy with excellent frictional wear resistance, cutting wear resistance, etc. by reducing the amount of iron group metal in the binder phase to 2% by weight or less. This is the result obtained.

即ち、この発明は元素の周期律表IVa族、Va族、V
Ia族金属元素の炭化物、窒化物、炭窒化物よりなる粒
径1μ以下の硬質相と鉄族金属の1種または2種以上の
結合相とからなり、該結合相含量が2重量%以下である
ことを特徴とする硬質合金を提供することを目的とする
ものである。
That is, the present invention applies to group IVa, group Va, and V of the periodic table of elements.
Consisting of a hard phase with a grain size of 1μ or less consisting of carbides, nitrides, and carbonitrides of group Ia metal elements and a binder phase of one or more iron group metals, the binder phase content being 2% by weight or less. It is an object of the present invention to provide a hard alloy characterized by certain characteristics.

〈作用) この発明は上記したように硬質相として、元素の周期律
表IVa族、Va族、VIa族金属元素の炭化物、窒化
物、炭窒化物の1種以上であって粒径1μ以下のものを
用い、かつ鉄族金属からなる結合相の量を2重量%以下
とすることによって硬質合金製造の際の焼結性を向上さ
せ、これによって得られた硬質合金中の結合金属の存在
率が0.2〜2%の磁化特性を有する硬質合金であって
、硬度があり、かつ加工しやすいことを特徴とするもの
である。
<Function> As described above, the present invention uses as a hard phase one or more carbides, nitrides, and carbonitrides of metal elements of Groups IVa, Va, and VIa of the Periodic Table of Elements and having a particle size of 1 μm or less. The sinterability during production of a hard alloy is improved by using a ferrous alloy and the amount of a binder phase made of an iron group metal is 2% by weight or less, and the abundance ratio of the binder metal in the resulting hard alloy is improved. It is a hard alloy having a magnetization characteristic of 0.2 to 2%, and is characterized by being hard and easy to process.

この発明の硬質合金の製法の一例について説明すると、
元素の周期律表IVa族、Va族、VIa族金属元素の
炭化物、窒化物、炭窒化物の1種以上からなる硬質相を
構成する粒径1μ以下の原料粉末と結合相としての2重
量%以下の鉄族金属粉末とを湿式混合し、この混合物を
成形し、1300〜1600°Cで予備焼結したのち、
さらに液相出現温度より低い温度以上の温度で50kg
/cm2以上の高圧不活性ガス雰囲気中で熱間静水圧プ
レス焼結することによって得られるのである。
An example of the method for manufacturing the hard alloy of this invention will be explained as follows.
Raw material powder with a particle size of 1 μ or less constituting a hard phase consisting of one or more of carbides, nitrides, and carbonitrides of metal elements of Groups IVa, Va, and VIa of the Periodic Table of the Elements, and 2% by weight as a binder phase. After wet mixing the following iron group metal powders, molding this mixture, and pre-sintering at 1300 to 1600°C,
Furthermore, at a temperature lower than the liquid phase appearance temperature or higher, 50 kg
It is obtained by hot isostatic press sintering in a high pressure inert gas atmosphere of /cm2 or higher.

この発明で良好な硬質合金を得るには硬質相素材粉末の
粒径も大きな要因であり、その粒径としては1μ以下が
適当である。
In order to obtain a good hard alloy in this invention, the particle size of the hard phase material powder is also a major factor, and the particle size is suitably 1 μm or less.

これは1μ以上では得られた硬質合金の硬度が不十分で
あると共に、細かい方が均一な分散が可能となって靭性
も向上するためである。
This is because the hardness of the obtained hard alloy is insufficient if it is 1μ or more, and the finer the particle size, the more uniform dispersion becomes possible and the toughness is improved.

また、硬質相素材としてはIVa族、Va族、VIa族
金属元素の炭化物、窒化物、炭窒化物の1種以上の粉末
を用いるが、これは予め固溶処理したものが好ましい。
Further, as the hard phase material, one or more powders of carbides, nitrides, and carbonitrides of metal elements of IVa group, Va group, and VIa group are used, but it is preferable that the powder is previously subjected to solid solution treatment.

この発明は硬質相と結合相の原料粉末をボールミルで湿
式混合した混合粉を用い、予備焼結し、その後熱間静水
圧プレスにて焼結するが、この予備焼結と熱間静水圧プ
レス焼結は予備焼結する同一炉内で条件を設定して連続
的に行なう方がプレス焼結の際の圧力を低くすることが
でき好ましい。
This invention uses a mixed powder obtained by wet-mixing raw material powders for a hard phase and a binder phase in a ball mill, pre-sintering the powder, and then sintering it in a hot isostatic press. It is preferable to perform the sintering continuously under the same conditions in the same furnace as the preliminary sintering because the pressure during press sintering can be lowered.

予備焼結の条件は真空雰囲気中で1300〜1600℃
X Ihrが適当であり、熱間静水圧プレスによる焼結
はアルゴン等の不活性ガス雰囲気中80kg/cm2以
上の圧力下、1300〜1600℃X1hrが適当であ
る。
Pre-sintering conditions are 1300-1600℃ in a vacuum atmosphere.
X Ihr is suitable, and sintering by hot isostatic pressing is suitably carried out at 1300 to 1600° C. for 1 hr under a pressure of 80 kg/cm 2 or higher in an inert gas atmosphere such as argon.

〈実施例〉 以下、この発明を実施例により詳細に説明する。<Example> Hereinafter, this invention will be explained in detail with reference to Examples.

第1表に示す3種の配合組成のものをそれぞれ湿式ボー
ルミルにて8時間混合して原料粉を作成した。
Raw material powders were prepared by mixing each of the three compositions shown in Table 1 in a wet ball mill for 8 hours.

これらの原料粉をそれぞれ用いて真空下1400℃で1
時間の予備焼結を行ない、引続き同一炉内でアルゴンガ
ス雰囲気下、80kg/cm2の圧力で1400℃、1
時間の熱間静水圧プレスによる焼結を連続して行ない、
硬質合金を得た。
Using each of these raw material powders at 1400℃ under vacuum
Pre-sintering was carried out for 1 hour, and then in the same furnace under an argon gas atmosphere at a pressure of 80 kg/cm2 at 1400℃ for 1 hour.
Continuously sintered by hot isostatic pressing for hours,
A hard alloy was obtained.

得られた硬質合金について硬度、抗折力、切削耐摩耗性
、飽和磁気量などを測定したところ第2表の結果を得た
The hardness, transverse rupture strength, cutting wear resistance, saturation magnetism, etc. of the obtained hard alloy were measured, and the results shown in Table 2 were obtained.

さらにこの硬質合金にて作成した高圧水流ノズルの寿命
指数も第2表に示した。
Furthermore, the life index of the high-pressure water nozzle made of this hard alloy is also shown in Table 2.

高圧水流ノズルの寿命指数は使用当初のノズル径に対し
て2倍径に達した時までの使用時間で示した。
The life index of a high-pressure water nozzle is expressed as the usage time until the nozzle diameter reaches twice the initial nozzle diameter.

また、切削耐摩耗性指数は逃げ面摩耗が0.3mmに達
した時の時間で示した。
Further, the cutting wear resistance index was expressed as the time when the flank wear reached 0.3 mm.

第  1  表 第  2  表 〈発明の効果〉 以上説明したように、この発明の硬質合金は結合相とし
ての鉄族金属量が2重量%以下の少量でありながら、高
圧水流ノズル用、切削、摺動、線引きダイス等の工具用
合金として耐摩耗性、硬度、切削特性にすぐれているこ
とが認められた。
Table 1 Table 2 <Effects of the Invention> As explained above, the hard alloy of the present invention has a small amount of iron group metal as a binder phase of 2% by weight or less, but is suitable for use in high-pressure water nozzles, cutting, and sliding. It has been recognized that this alloy has excellent wear resistance, hardness, and cutting properties as an alloy for tools such as dynamic and wire drawing dies.

Claims (3)

【特許請求の範囲】[Claims] (1)元素の周期律表IVa族、Va族、VIa族金属元素
の炭化物、窒化物、炭窒化物よりなる粒径1μ以下の硬
質相と鉄族金属の1種または2種以上の結合相とからな
り、該結合相含量が2重量%以下であることを特徴とす
る硬質合金。
(1) A hard phase with a grain size of 1μ or less consisting of carbides, nitrides, and carbonitrides of metal elements of Groups IVa, Va, and VIa of the Periodic Table of Elements, and one or more binder phases of iron group metals. A hard alloy characterized in that the content of the binder phase is 2% by weight or less.
(2)得られた硬質合金中の結合相金属の存在率が0.
2〜2%で磁化特性を有することを特徴とする請求項(
1)記載の硬質合金。
(2) The abundance ratio of the binder phase metal in the obtained hard alloy is 0.
Claim (
1) The hard alloy described.
(3)得られた硬質合金がビッカース硬度1800kg
/mm^2で、抗折力80kg/mm^2以上であるこ
とを特徴とする請求項(1)記載の硬質合金。
(3) The hard alloy obtained has a Vickers hardness of 1800 kg.
2. The hard alloy according to claim 1, wherein the hard alloy has a transverse rupture strength of 80 kg/mm^2 or more.
JP33324390A 1990-11-28 1990-11-28 Hard alloy Pending JPH04198453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33324390A JPH04198453A (en) 1990-11-28 1990-11-28 Hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33324390A JPH04198453A (en) 1990-11-28 1990-11-28 Hard alloy

Publications (1)

Publication Number Publication Date
JPH04198453A true JPH04198453A (en) 1992-07-17

Family

ID=18263928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33324390A Pending JPH04198453A (en) 1990-11-28 1990-11-28 Hard alloy

Country Status (1)

Country Link
JP (1) JPH04198453A (en)

Similar Documents

Publication Publication Date Title
CN101255512B (en) Boron-containing titanium carbide nitride based metal ceramic cutter material and preparation technique thereof
AU633665B2 (en) Mixed sintered metal materials based on borides, nitrides and iron binder metals
CN107619980B (en) A kind of ultra-fine grain cobalt-free hard alloy and preparation method thereof
US4948425A (en) Titanium carbo-nitride and chromium carbide-based ceramics containing metals
JP2006111947A (en) Ultra-fine particle of cermet
JPH04198453A (en) Hard alloy
JP2735152B2 (en) Titanium nitride sintered body using aluminum as assistant and method for producing the same
KR0178578B1 (en) Method for manufacturing cementer carbides sintered body
JP3232599B2 (en) High hardness cemented carbide
KR100396009B1 (en) High hardness titanium carbonitride based cermets and manufacturing method thereof
JPH0118137B2 (en)
AU645721B2 (en) Process for manufacturing ceramic-metal composites
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide
JP3735397B2 (en) Titanium nitride sintered body and method for producing the same
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JPH0681071A (en) Titanium carbonitride base cermet excellent in toughness
JPH0530881B2 (en)
JPH0891936A (en) Sintered material of boron nitride of cubic system
JPH04198437A (en) Manufacture of hard alloy
CN115747599A (en) high-Cr-content coarse-grain hard alloy and preparation method and application thereof
JP5211445B2 (en) Fine cermet
JPS6119593B2 (en)
CN118653078A (en) Rare earth metal ceramic and preparation method thereof
JP3366696B2 (en) Manufacturing method of high strength cermet
JPS6056781B2 (en) Cermets for cutting tools and hot working tools