JPH04196538A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04196538A
JPH04196538A JP32811090A JP32811090A JPH04196538A JP H04196538 A JPH04196538 A JP H04196538A JP 32811090 A JP32811090 A JP 32811090A JP 32811090 A JP32811090 A JP 32811090A JP H04196538 A JPH04196538 A JP H04196538A
Authority
JP
Japan
Prior art keywords
layer
etching
film
insulating film
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32811090A
Other languages
Japanese (ja)
Other versions
JP3213844B2 (en
Inventor
Izumi Kobayashi
小林 いずみ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP32811090A priority Critical patent/JP3213844B2/en
Publication of JPH04196538A publication Critical patent/JPH04196538A/en
Application granted granted Critical
Publication of JP3213844B2 publication Critical patent/JP3213844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the increase of resistance occurring by excessive over- etching of a wiring layer, and failures occurring by disconnection of poly silicon, by forming a first conducting film under a third conducting film of the part which is exposed by etching a third insulating film while a third photo resist is used as a mask. CONSTITUTION:A gate electrode 103, a wiring layer 104 of a first poly silicon layer, and a PAD part 105 turning to a contact bottom part of a second poly silicon layer are formed by anisotropic etching. After a silicon oxide layer 106 turning to a gate oxide film is formed by thermal oxidation, etching is performed by photolithography using a positive resist layer, thereby eliminating a contact part between the poly silicon wiring layer 104 of the first layer and the poly silicon layer of the second layer, and a part turning to the contact bottom part of the second poly silicon wiring layer. After a silicon oxide film 108 is formed on the whole surface by a CVD method, anisotropic etching is performed by photolithography using a photo resist layer 109. After aluminum is formed on the whole surface, a pattern is formed by etching, and an aluminum wiring layer 110 is formed.

Description

【発明の詳細な説明】 [産業上の利用分野] コンタクトホールを形成する半導体装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a semiconductor device that forms contact holes.

[従来の技術] 半導体装置の微細化、高集積化にともない、MO8型ト
ランジスタも微細化されてきているが2次元ブレーナ技
術ではセル面積を小さくしていくのに限界がある。そこ
で考えられたのが、3次元集積回路である。この3次元
集積回路は2次元ブレーナ技術に比べて利点は多い。特
にMOSメモリーへの応用面からみた場合に重要なのは
高密度、高集積およびアルファ線によるソフトエラーの
少ないことである。この3次元集積回路の1つとしてト
ランジスタのソース、ドレイン、チャンネル領域を薄膜
ポリシリコン層で形成するTFT (Thin  Fi
lm  Transistor)がある。このTPTの
製造方法を第2図を用いて説明する。
[Prior Art] With the miniaturization and higher integration of semiconductor devices, MO8 type transistors have also been miniaturized, but there is a limit to the ability to reduce the cell area using two-dimensional brainer technology. This led to the idea of three-dimensional integrated circuits. This three-dimensional integrated circuit has many advantages over two-dimensional brainer technology. Particularly important from the viewpoint of application to MOS memory are high density, high integration, and low soft errors caused by alpha rays. One of these three-dimensional integrated circuits is a TFT (Thin Fi
lm Transistor). The method for manufacturing this TPT will be explained using FIG. 2.

まず、半導体基板201にCVD法によりシリコン酸化
膜202を形成後、CVD法によりポリシリコン膜を形
成、フォトリソグラフィによりポジレジストを用いてエ
ツチングによりゲート電極203を形成する。(第2図
(a))次にゲート酸化膜204を形成後、LPCVD
法により低温でアモルファスシリコン膜を形成、ランプ
アニールを加えることによりシリコンの結晶化を行ない
ポリシリコン膜205を形成、フォトレジストをマスク
にP型不純物であるBF2”をイオン注入してP十不純
物層206を形成する。(第2図(b))さらにフォト
リソグラフィによりポジレジストを用いてエツチングに
よりパターンを形成後、CVD法により全面にシリコン
酸化膜207を形成後、写真蝕刻法によりコンタクトホ
ールを形成、全面アルミスパッタ後、フォトリソグラフ
ィによりポジレジスト層を用いてパターンを形成後エツ
チングによりアルミ配線パターン208を形成する。
First, a silicon oxide film 202 is formed on a semiconductor substrate 201 by the CVD method, a polysilicon film is formed by the CVD method, and a gate electrode 203 is formed by etching using a positive resist by photolithography. (FIG. 2(a)) Next, after forming the gate oxide film 204, LPCVD
An amorphous silicon film is formed at a low temperature using a method, and lamp annealing is applied to crystallize the silicon to form a polysilicon film 205. P-type impurity BF2'' is ion-implanted using a photoresist as a mask to form a P-type impurity layer. 206 (FIG. 2(b)) After forming a pattern by photolithography and etching using a positive resist, a silicon oxide film 207 is formed on the entire surface by CVD, and a contact hole is formed by photolithography. After aluminum sputtering on the entire surface, a pattern is formed using a positive resist layer by photolithography, and then an aluminum wiring pattern 208 is formed by etching.

[発明が解決しようとする課題] SRAMの大きな特徴の1つとしてバッテリーバックア
ップが可能なくらい低い待機時電流であることがあげら
れる。しかしメモリー容量が増えるにしたかつ待機時電
流を低く抑えることが難しくなってきている。そこで登
場したのが従来技術で述べたTPTであるがさらに待機
時電流を低く抑えるのにアモルファスシリコンに熱をか
けて再結晶化したソース・ドレイン・チャンネル部分と
なるポリシリコン層の薄膜化が有効となってくる。 (
SDM  1980−19  CentralRsea
rch  Laboratory、Hitachi、L
 td−j) ところでこのTPTにおいてもエツチング残りによるコ
ンタクト不良防止のためソース・ドレインのコンタクト
を形成する際、オーバーエッチをかけている。ところが
ソース・ドレイン・チャンネル部のポリシリコン層は先
の理由で薄膜化されているため(通常1000八以下)
コンタクトエツチングにおいてコンタクト部分のポリシ
リコン膜の局所的な薄膜化による抵抗の増加、さらには
断線の心配がある。  そこで本発明はこのような問題
点を解決するものでその目的とするところは、ソース・
ドレインのコンタクトエツチングのとき、ポリシリコン
族のオーバーエッチによる薄膜化による抵抗の増大やポ
リシリコン断線による故障を防くことにある。
[Problems to be Solved by the Invention] One of the major features of SRAM is that the standby current is low enough to allow battery backup. However, as memory capacity increases, it is becoming difficult to keep the standby current low. This is where the TPT described in the conventional technology appeared, but in order to further reduce the standby current, it is effective to thin the polysilicon layer that forms the source, drain, and channel parts by applying heat to amorphous silicon and recrystallizing it. It becomes. (
SDM 1980-19 CentralRsea
rch Laboratory, Hitachi, L.
td-j) By the way, in this TPT as well, over-etching is applied when forming source/drain contacts in order to prevent contact failure due to etching residue. However, because the polysilicon layer in the source, drain, and channel portions is made thinner (usually less than 1000%) for the reason mentioned above.
In contact etching, there is a risk of an increase in resistance due to local thinning of the polysilicon film at the contact portion, and furthermore, a risk of wire breakage. The present invention is intended to solve these problems, and its purpose is to
During drain contact etching, the purpose is to prevent an increase in resistance due to thinning of the polysilicon group due to overetching and to prevent failures due to polysilicon wire breakage.

[課題を解決するための手段] 本発明半導体装置は、半導体基板上に形成された第一の
絶縁膜、前記第一の絶縁膜上に形成された第一導電膜、
所定の第一のパターンで形成された第一のフォトレジス
ト、前記第一のフォトレジストをマスクとしてエツチン
グにより形成されたパターン、前記第一導電膜上に形成
された第二の絶縁膜、一部が除去された前記第二の絶縁
膜、前記第二絶縁膜上と露出した前記第一導電膜上に形
成された第二導電膜、所定の第二のパターンで形成され
た第二のフォトレジスト、前記第二のフォトレジストを
マスクにエツチングにより形成されたパターン、前記第
二の導電膜と前記第二導電膜のエツチングにより露出し
た第二絶縁膜上に形成された第三の絶縁膜、前記第三の
絶縁膜上に所定の第三のパターンで形成された第三のフ
ォトレジスト、前記第三のフォトレジストをマスクとし
て、エツチングにより部分的に除去された前記第三の絶
縁膜からなる半導体装置において、第三のフォトレジス
トをマスクに第三の絶縁膜をエツチングすることにより
露出する部分の第三の導電膜の下部に第一導電膜が形成
されていることを特徴とする。
[Means for Solving the Problems] The semiconductor device of the present invention includes a first insulating film formed on a semiconductor substrate, a first conductive film formed on the first insulating film,
A first photoresist formed in a predetermined first pattern, a pattern formed by etching using the first photoresist as a mask, and a part of a second insulating film formed on the first conductive film. the second insulating film from which has been removed, a second conductive film formed on the second insulating film and the exposed first conductive film, and a second photoresist formed in a predetermined second pattern. , a pattern formed by etching using the second photoresist as a mask; a third insulating film formed on the second conductive film and the second insulating film exposed by etching the second conductive film; a third photoresist formed in a predetermined third pattern on a third insulating film; and a semiconductor made of the third insulating film partially removed by etching using the third photoresist as a mask. The device is characterized in that the first conductive film is formed under the third conductive film in the exposed portion by etching the third insulating film using the third photoresist as a mask.

[実施例] 以下、本発明について実施例に基づき詳細に説明する。[Example] Hereinafter, the present invention will be described in detail based on examples.

第1図は本発明の実施例を工程順に示す図である。10
1は半導体基板、102.106.1゜8はシリコン酸
化膜、103はポリシリコン膜からなるゲート電極、1
04はポリシリコン層配線部、105はポリシリコンに
よるPAD部、109はポジレジスト、107はBF2
°を打ち込んだP型ポリシリコン、110はアルミ配線
層である。
FIG. 1 is a diagram showing an embodiment of the present invention in the order of steps. 10
1 is a semiconductor substrate, 102.106.1°8 is a silicon oxide film, 103 is a gate electrode made of a polysilicon film, 1
04 is a polysilicon layer wiring part, 105 is a polysilicon PAD part, 109 is a positive resist, 107 is BF2
110 is an aluminum wiring layer.

まず、半導体基板101の全面にCVD法によりポリシ
リコン酸化膜102を3000〜5000人形成した後
、LPCVD法によりモノシラン雰囲気中、600〜6
40℃でポリシリコン膜を2000〜3000A形成、
全面にP型不純物であるBF2+をドーズ量lXl0I
−エネルギー35kevでイオン注入した後、フォトリ
ソグラフィによりポジレジスト層を用いてパターンを形
成後異方性エツチングによりa図のごとくゲート電極1
03、ポリシリコン1層目の配線層104、ポリシリコ
ン2層目コンタクト下部となるPAD部105を形成す
る。次にゲート酸化膜となるシリコン酸化膜106を熱
酸化により200〜300人形成した後、フォトリソグ
ラフィによりポジレジスト層を用いてエツチングにより
1層目のポリシリコン配線層104と2層目のポリシリ
コン層の接触部と2層目ポリシリコン配線層コンタクト
底部となる部分を除去する。(b図)次にLPCVD法
によりモノシラン雰囲気中、520℃でアモルファスシ
リコン300〜700人形成したところヘランブアニー
ル1000〜1200℃、20〜60秒を加えることに
よりポリシリコン膜を形成、さらにフォトリソグラフィ
によりポジレジスト層106を用いてパターンを形成し
た後、P型不純物であるBF2°をドーズ量1〜5×1
015、エネルギー35kevでイオン注入する(0図
)。次に全面にCVD法によりシリコン酸化膜108を
3000〜5000A形成後、フォトリソグラフィによ
りポジレジスト層109を用いて(d図)異方性エツチ
ングを行なう。(e図)その後f図のごとく、全面にア
ルミを500o〜10000A形成後、エツチングによ
りパターンを形成し、アルミ配線層を形成する。
First, a polysilicon oxide film 102 of 3,000 to 5,000 layers is formed on the entire surface of a semiconductor substrate 101 by the CVD method, and then a polysilicon oxide film of 600 to 5,000 layers is formed by the LPCVD method in a monosilane atmosphere.
Form a polysilicon film of 2000-3000A at 40℃,
A dose of BF2+, which is a P-type impurity, is applied to the entire surface.
- After ion implantation with an energy of 35 keV, a pattern is formed using a positive resist layer by photolithography, and then anisotropic etching is performed to form the gate electrode 1 as shown in figure a.
03. A wiring layer 104 of the first polysilicon layer and a PAD section 105 which will be the lower part of the contact of the second polysilicon layer are formed. Next, 200 to 300 silicon oxide films 106, which will become gate oxide films, are formed by thermal oxidation, and then the first polysilicon wiring layer 104 and the second polysilicon layer are etched using a positive resist layer by photolithography. The contact portion of the layer and the portion that will become the contact bottom of the second polysilicon wiring layer are removed. (Figure b) Next, 300 to 700 layers of amorphous silicon were formed using the LPCVD method at 520°C in a monosilane atmosphere, and then a polysilicon film was formed by adding Helambu annealing at 1000 to 1200°C for 20 to 60 seconds, and then photolithography. After forming a pattern using a positive resist layer 106, a P-type impurity BF2° is added at a dose of 1 to 5×1.
015, ion implantation is performed at an energy of 35 keV (Figure 0). Next, after forming a silicon oxide film 108 of 3000 to 5000 Å on the entire surface by CVD, anisotropic etching is performed using a positive resist layer 109 by photolithography (Fig. d). (Fig. e) Thereafter, as shown in Fig. f, aluminum is formed on the entire surface with a thickness of 500 to 10,000 Å, and a pattern is formed by etching to form an aluminum wiring layer.

本実施例によれば、コンタクトエッチの時、コンタクト
エッチングされるポリシリコンの部分は底部にポリシリ
コン1層目によってPAD部分が形成されているためコ
ンタクトエツチングの時ポリシリコン2層目のコンタク
ト部分が薄膜化したり断線する心配はない。
According to this embodiment, when contact etching is performed, the polysilicon portion to be contact etched has a PAD portion formed at the bottom by the first layer of polysilicon, so that the contact portion of the second layer of polysilicon is formed during contact etching. There is no need to worry about the film becoming thin or breaking.

[発明の効果] 本発明によれば、ポリシリコン層にコンタクト接触のた
めコンタクトエツチングを行なう際、ソース・トレイン
部のポリシリコン膜厚が薄くても、配線層の過度のオー
バーエッチによるポリシリコンの薄膜化による抵抗の増
大やポリシリコンの断線による故障は防げる。
[Effects of the Invention] According to the present invention, when contact etching is performed on a polysilicon layer for contact contact, even if the polysilicon film thickness in the source/train portion is thin, the polysilicon layer is not etched due to excessive overetching of the wiring layer. Failures due to increased resistance due to thinner films and disconnections in polysilicon can be prevented.

従って本発明により高信頼性の半導体装置を提供できる
効果がある。
Therefore, the present invention has the effect of providing a highly reliable semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は、本発明の半導体装置の製造方
法の一実施例を示す工程順断面図。 第2図(a)〜(C)は、従来例による半導体装置の製
造方法。 101.102・・・半導体基板 102.106,108,202,204.207  
 ・・・シリコン酸化膜 103.203・・・ポリシリコン膜からなるゲート電
極 104    ・・・ポリシリコン層配線部105  
  ・・・ポリシリコンによるPAD部 109    ・・・ポジレジスト層 107.206・・・BF2”を打ち込んだP型ポリシ
リコン 110.208・・・アルミ配線層 205    ・・・ポリシリコン層 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 齢木喜三部(他1名)’J’lLl力
 (α) う() +  1y、<(・) イロ’A  (c) 愉11ソI  (、() 愉1)凹 (已) 潴1図 (j)
FIGS. 1(a) to 1(f) are step-by-step cross-sectional views showing an embodiment of the method for manufacturing a semiconductor device of the present invention. FIGS. 2(a) to 2(C) show a conventional method for manufacturing a semiconductor device. 101.102...Semiconductor substrate 102.106, 108, 202, 204.207
...Silicon oxide film 103.203...Gate electrode 104 made of polysilicon film ...Polysilicon layer wiring section 105
...PAD section 109 made of polysilicon ...Positive resist layer 107.206 ...P-type polysilicon implanted with BF2'' 110.208 ...Aluminum wiring layer 205 ...Polysilicon layer and above Applicant Seiko Epson Co., Ltd. Agent Patent Attorney Yoshizobe Ogi (and 1 other person) 'J'lLl force (α) U() + 1y, <(・) Iro'A (c) Pleasure 11 SoI (, () Pleasure 1) Concave (已) 潴1 figure (j)

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に形成された第一の絶縁膜、前記第一の絶
縁膜上に形成された第一導電膜、所定の第一のパターン
で形成された第一のフォトレジスト、前記第一のフォト
レジストをマスクとしてエッチングにより形成されたパ
ターン、前記第一導電膜上に形成された第二の絶縁膜、
一部が除去された前記第二の絶縁膜、前記第二絶縁膜上
と露出した前記第一導電膜上に形成された第二導電膜、
所定の第二のパターンで形成された第二のフォトレジス
ト、前記第二のフォトレジストをマスクにエッチングに
より形成されたパターン、前記第二の導電膜と前記第二
導電膜のエッチングにより露出した第二絶縁膜上に形成
された第三の絶縁膜、前記第三の絶縁膜上に所定の第三
のパターンで形成された第三のフォトレジスト、前記第
三のフォトレジストをマスクとして、エッチングにより
部分的に除去された前記第三の絶縁膜からなる半導体装
置において、第三のフォトレジストをマスクに第三の絶
縁膜をエッチングすることにより露出する部分の第三の
導電膜の下部に第一導電膜が形成されていることを特徴
とする半導体装置。
a first insulating film formed on a semiconductor substrate, a first conductive film formed on the first insulating film, a first photoresist formed in a predetermined first pattern, and the first photoresist. a pattern formed by etching using a resist as a mask; a second insulating film formed on the first conductive film;
the second insulating film from which a portion has been removed; a second conductive film formed on the second insulating film and the exposed first conductive film;
a second photoresist formed in a predetermined second pattern; a pattern formed by etching using the second photoresist as a mask; and a second conductive film exposed by etching the second conductive film. A third insulating film formed on the second insulating film, a third photoresist formed in a predetermined third pattern on the third insulating film, and etching using the third photoresist as a mask. In the semiconductor device comprising the third insulating film that has been partially removed, the third insulating film is etched using the third photoresist as a mask, so that the first insulating film is etched under the exposed portion of the third conductive film. A semiconductor device characterized in that a conductive film is formed.
JP32811090A 1990-11-28 1990-11-28 Method for manufacturing thin film transistor Expired - Fee Related JP3213844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32811090A JP3213844B2 (en) 1990-11-28 1990-11-28 Method for manufacturing thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32811090A JP3213844B2 (en) 1990-11-28 1990-11-28 Method for manufacturing thin film transistor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000134573A Division JP2000332019A (en) 2000-01-01 2000-05-08 Thin-film transistor

Publications (2)

Publication Number Publication Date
JPH04196538A true JPH04196538A (en) 1992-07-16
JP3213844B2 JP3213844B2 (en) 2001-10-02

Family

ID=18206607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32811090A Expired - Fee Related JP3213844B2 (en) 1990-11-28 1990-11-28 Method for manufacturing thin film transistor

Country Status (1)

Country Link
JP (1) JP3213844B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018101791A (en) * 2007-12-21 2018-06-28 株式会社半導体エネルギー研究所 Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018101791A (en) * 2007-12-21 2018-06-28 株式会社半導体エネルギー研究所 Semiconductor device

Also Published As

Publication number Publication date
JP3213844B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
JPS63299251A (en) Manufacture of semiconductor device
JP2568316B2 (en) Method for manufacturing semiconductor memory
JPH0433142B2 (en)
JPH1070281A (en) Semiconductor device and fabrication thereof
JP4375821B2 (en) Semiconductor device and manufacturing method thereof
JP3955416B2 (en) Self-aligned contact manufacturing method
JPH03171663A (en) Semiconductor memory device and manufacture thereof
KR0139772B1 (en) Semiconductor integrated circuit device and its manufacture
JP2645807B2 (en) Method for manufacturing thin film transistor
JPH03218626A (en) Wiring contact structure of semiconductor device and manufacture thereof
JPH06101547B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
JP2614016B2 (en) Method for manufacturing semiconductor device
JP3153911B2 (en) Semiconductor device manufacturing method
JPH04196538A (en) Semiconductor device
JP3536469B2 (en) Method for manufacturing semiconductor device
JP2000332019A (en) Thin-film transistor
JPH11312741A (en) Semiconductor device and its manufacture
KR0176170B1 (en) Fabricating method of transistor using soi substrate
JP3116889B2 (en) Method for manufacturing semiconductor device
JP2771903B2 (en) High breakdown voltage MOS transistor and method of manufacturing the same, and semiconductor device and method of manufacturing the same
JPH05275697A (en) Semiconductor device
JPH10284438A (en) Semiconductor integrated circuit and its manufacture
KR930008076B1 (en) Method of fabricating for sram
JPH10303297A (en) Semiconductor device and its fabrication method
JPH04262574A (en) Semiconductor memory

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees