JPH04196441A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04196441A
JPH04196441A JP32807390A JP32807390A JPH04196441A JP H04196441 A JPH04196441 A JP H04196441A JP 32807390 A JP32807390 A JP 32807390A JP 32807390 A JP32807390 A JP 32807390A JP H04196441 A JPH04196441 A JP H04196441A
Authority
JP
Japan
Prior art keywords
melting point
high melting
point metal
polycrystalline silicon
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32807390A
Other languages
Japanese (ja)
Inventor
Yutaka Maruo
丸尾 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP32807390A priority Critical patent/JPH04196441A/en
Publication of JPH04196441A publication Critical patent/JPH04196441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent short circuits and current leaks by providing the edge of a polycrystalline silicon with a side wall and by sputtering a high melting point metal over the whole semiconductor substrate to react with Si and by etching the high melting point metal on the side wall under reaction of this metal with Si. CONSTITUTION:A side wall 107 is formed at the edge of a gate electrode, and P(phosphorus) or As(arsenic) ions 108 are implanted into an N-channel region, and B(boron) or BF2 ions into a P-channel region to form a source-drain high- doped diffusion layer 111. Thereafter, the whole silicon substrate is etched with the gases of SF6 and flon 114. After sputtering a high melting point metal Ti, Ti and Si are reacted by annealing so that the unreacted high melting point metal on an SiO2 is removed by wet etching. This process can prevent gate-source and gate-drain short circuits and current leaks.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、MO3型半導体装置の製造方法に関し、特に
、ゲート電極の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing an MO3 type semiconductor device, and particularly to a method of forming a gate electrode.

[従来の技術] 従来のゲート電極の側壁の形成方法は、半導体基板上に
、形成したゲート絶縁膜上に、多結晶性シリコンによる
ゲート電極を形成した後、ゲート電極のエッチ部分に側
壁を設け、ゲート、ソース、およびドレイン上にTi(
チタン)等のシリサイドを形成する。その後、側壁上の
未反応金属をウェットエッチにより、除去していた。
[Prior Art] A conventional method for forming sidewalls of a gate electrode is to form a gate electrode made of polycrystalline silicon on a gate insulating film formed on a semiconductor substrate, and then form a sidewall in an etched portion of the gate electrode. , Ti (
Forms silicide such as titanium). Thereafter, unreacted metal on the sidewalls was removed by wet etching.

[発明が解決しようとする課題] しかし、このよう、に、多結晶性シリコン膜に側壁を設
けた場合、前記側壁の輻は、多結晶性シリコン膜の膜厚
が4500人の時、約0,2μm程度であり、前記側壁
の頂点は、前記多結晶性シリコンの表面と同じか、もし
くは、それより低くなる。
[Problems to be Solved by the Invention] However, when a side wall is provided on a polycrystalline silicon film in this way, the convergence of the side wall is approximately 0 when the thickness of the polycrystalline silicon film is 4500 mm. , about 2 μm, and the apex of the sidewall is at the same level as or lower than the surface of the polycrystalline silicon.

そのため、高融点金属のTi(チタン)等をスパッタリ
ングし、熱処理によりシリサイドおよび、ポリサイドを
形成した後の未反応の高融点金属の除去は、充全ではな
く、高融点金属または高融点金属と5i02との反応物
などのパーティクルにより、ゲート・ソース間およびゲ
ート・ドレイン間の短絡が起こり易くなるという課題が
ある。
Therefore, after sputtering a high melting point metal such as Ti (titanium) and forming silicide and polycide through heat treatment, the removal of unreacted high melting point metal is not complete, and the high melting point metal or 5i02 There is a problem in that short circuits between the gate and the source and between the gate and the drain are likely to occur due to particles such as reactants.

そこで、本発明の目的は、このような課題を解決するも
ので、ゲート・ソース間およびゲート・トレイン間の短
絡および電流リークを防止することによって不良の起こ
り難い半導体装置の製造方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing a semiconductor device in which defects are less likely to occur by preventing short circuits and current leaks between the gate and the source and between the gate and the train. It is in.

[課題を解決するための手段] 本発明は、半導体基板上の素子形成領域上に形成された
ゲート紛縁膜上に、多結晶性シリコンを堆積する工程と
、MOSトランジスタのゲート電極となる領域を残すよ
うに前記多結晶性シリコンをエツチングする工程と前記
多結晶性シリコンのエッチ部分に側壁を設ける工程と、
前記多結晶性シリコンを再度エツチングする工程と、半
導体基板全面に高融点金属をスパッタリングする工程と
、熱処理により高融点金属とSi(シリコン)を反応さ
せる工程と、ウェットエツチングにより前記側壁上の高
融点金属をエツチングする工程とを含むことを特徴とす
る。
[Means for Solving the Problems] The present invention includes a step of depositing polycrystalline silicon on a gate insulating film formed on an element formation region on a semiconductor substrate, and a step of depositing polycrystalline silicon on a region that will become a gate electrode of a MOS transistor. a step of etching the polycrystalline silicon so as to leave a side wall; and a step of providing a sidewall in the etched portion of the polycrystalline silicon;
A step of etching the polycrystalline silicon again, a step of sputtering a high melting point metal over the entire surface of the semiconductor substrate, a step of reacting the high melting point metal with Si (silicon) by heat treatment, and a step of etching the high melting point metal on the side wall by wet etching. The method is characterized in that it includes a step of etching the metal.

゛[実施例] 第1図(A)〜(i)は、本発明の実施例に於ける半導
体基板の断面図であり、以下にゲート電極形成に関する
工程について詳細に説明する。
[Example] FIGS. 1A to 1I are cross-sectional views of a semiconductor substrate in an example of the present invention, and steps related to gate electrode formation will be described in detail below.

先ず、半導体基板101上にL OCOS 102を形
成し、活性化領域と非活性化領域を区分する。 (第1
図(a)) 次に、前記半導体基板を温度850℃の水蒸気酸化を2
0分間行い、膜厚200人のシリコン酸化膜103 、
を形成する。 (第1図(b))それから1、CVD法
により多結晶性シリコン1! 104を7000人の膜
マとなるように半導体基板上に堆積した後、N型不純物
イオンであるP(リン)イオン105を多結晶性シリコ
ン膜104中に拡散させる。 (第1図(C)) そして、写真食刻法により、多結晶性シリコン膜より成
るゲート電極の領域をバターニングし、多結晶性シリコ
ン膜をSF6とフロン114のガスにより100mTo
rrの圧力下で、エツチングを行う。 (第1図(d)
) 次に、ゲート電極近傍のソースとドレイン領域に低温度
不純物拡散層106を形成するために、Nチャネル領域
には、10110l2”〜10”cm−2の濃度のAs
(砒素)または、P(リン)イオン1゜5を注入しく第
1図(e))、同様にPチャネル領域には、1012c
nn−2〜10”cm−”の濃度のBF2イオンまたは
、B(ボロン)イオンを注入する。
First, a LOCOS 102 is formed on a semiconductor substrate 101, and an activated region and a non-activated region are divided. (1st
Figure (a)) Next, the semiconductor substrate was subjected to steam oxidation at a temperature of 850°C for 2 hours.
0 minutes, silicon oxide film 103 with a film thickness of 200,
form. (Figure 1(b)) Then 1. Polycrystalline silicon 1! by CVD method! After depositing P (phosphorous) ions 105, which are N-type impurity ions, on a semiconductor substrate to a thickness of 7000, P (phosphorous) ions 105 are diffused into the polycrystalline silicon film 104. (Fig. 1(C)) Then, the gate electrode region made of the polycrystalline silicon film is buttered by photolithography, and the polycrystalline silicon film is heated to 100 mTo with gases of SF6 and Freon 114.
Etching is carried out under a pressure of rr. (Figure 1(d)
) Next, in order to form a low-temperature impurity diffusion layer 106 in the source and drain regions near the gate electrode, As is added at a concentration of 10110l2" to 10"cm-2 in the N channel region.
(Arsenic) or P (phosphorus) ions of 1°5 are implanted (Fig. 1(e)).
BF2 ions or B (boron) ions are implanted at a concentration of nn-2 to 10 cm-.

それから、CVD法により側壁となる5i02膜を堆積
した後に、 トライエツチングを行い、ゲート電極エッ
チ部分に側壁107を形成する。、(第1図(f)) 次に、ソースとドレインの高濃度不純物拡散層111を
形成するために、Nチャネル領域には、1゜”c m−
2〜10 ”c m−2の種度のP(リン)または、A
s(砒素)イオン108の注入を行い(第1図(g))
、Pチャネル領域には、1015c m−2〜101 
* Cm−2の濃度のB(ボロン)または、BF2のイ
オン注入を行う。
Then, after depositing a 5i02 film which will become a sidewall by CVD, tri-etching is performed to form a sidewall 107 in the etched portion of the gate electrode. , (FIG. 1(f)) Next, in order to form the high concentration impurity diffusion layers 111 for the source and drain, a 1°" cm-
P (phosphorus) or A with a seed degree of 2 to 10” cm-2
Implantation of s (arsenic) ions 108 is performed (Figure 1 (g))
, 1015cm-2~101 in the P channel region
*Ion implantation of B (boron) or BF2 at a concentration of Cm-2 is performed.

そののち、シリコン基板全面をSF6とフロン114の
ガスにより100mTorrの圧力下で、エツチングを
行い、前記多結晶性シリコン膜を4000人程度0膜厚
とする。このとき、同時にエツチングされる側壁は、そ
の表面がわずかにエツチングされる程度である。
Thereafter, the entire surface of the silicon substrate is etched using gases of SF6 and Freon 114 under a pressure of 100 mTorr to reduce the thickness of the polycrystalline silicon film to about 4000 mTorr. At this time, the surface of the side wall that is etched at the same time is only slightly etched.

それから、高融点金属Ti(チタン)をスパッタリング
した後、700℃〜750℃のランプアニールを行いT
i(チタン)とSi(シリコン)とを反応させ、Ti−
5ilicideおよび、Ti−Po1ycideを形
成する。
Then, after sputtering high melting point metal Ti (titanium), lamp annealing is performed at 700°C to 750°C.
By reacting i (titanium) and Si (silicon), Ti-
5ilicide and Ti-Polycide are formed.

次に、アンモニア通水により、ウェットエッチを行い、
5i02上の未反応の高融点金属を除去する。
Next, perform wet etching by passing ammonia water,
Remove unreacted high melting point metal on 5i02.

(第1図(h)) そして、眉間膜を堆積した後は、通常のMOSトタラン
ジスタを形成する場合と同様の方法で形成する。(第1
図(i)) このように、形成された半導体装直動いては、ゲート電
極エッチ部分の5i02から成る側壁の頂上は、前記多
結晶性シリコンの表面より高く、前記側壁の輻も従来に
比較して広く、Ti(チタン)やTiと5i02との反
応物などから成るパーティクルによるゲート・ソース間
または、ゲート・ドレイン間の短絡を引き起こす為の経
路を形成し難い。
(FIG. 1(h)) After depositing the glabellar membrane, it is formed in the same manner as in the case of forming a normal MOS transistor. (1st
(Figure (i)) In this way, in the formed semiconductor device, the top of the sidewall made of 5i02 of the etched gate electrode portion is higher than the surface of the polycrystalline silicon, and the convergence of the sidewall is also compared to the conventional one. Therefore, it is difficult to form a path for causing a short circuit between the gate and the source or between the gate and the drain due to particles made of Ti (titanium) or a reaction product of Ti and 5i02.

[発明の効果] 以上、述べたように、本発明の半導体装置の製造方法に
よれば、MOSトランジスタのゲート・ソース間および
ゲート・ド、レイン間の短絡および、電流リークを防ぐ
ことができるため製品の歩留りは上がり、デバイスの信
頼性は、高くなるという効果を有する。
[Effects of the Invention] As described above, according to the method of manufacturing a semiconductor device of the present invention, it is possible to prevent short circuits between the gate and source, gate and drain of a MOS transistor, and current leakage. This has the effect of increasing product yield and device reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(1)は、本発明の半導体装置の製造方
法を示した断面図。 101 、、、、、、、  半導体基板102 、、、
、、、、  L OG O5103、、、、、、、シリ
コン酸化膜 104.113 、、、  多結晶性シリコン105.
108.、、  N型イオン 106.109 、、、  低濃度拡散層107.11
1 、、、  側壁 110 、、、、、、、  高温度拡散層112 、、
、、、、、、 T i −S i l i c i d
 e114 、、、、、、、、 T i −P o l
 i c i d e115 、、、、、、、、層間紛
縁膜 以上 8願人 セイコーエプソン株式会社 代理人 弁理士 鈴木喜三部(他1名)第1図(d) 第1図(e) 第1図(f)
FIGS. 1(a) to 1(1) are cross-sectional views showing a method of manufacturing a semiconductor device according to the present invention. 101 , , , , , Semiconductor substrate 102 , , ,
,,,,LOG O5103,,,,,,,Silicon oxide film 104.113,,,Polycrystalline silicon 105.
108. ,, N-type ion 106.109 ,,, Low concentration diffusion layer 107.11
1. Side wall 110. High temperature diffusion layer 112.
, , , , T i -S i l i c i d
e114 , , , , , T i -P o l
i c i d e115 , , , , , 8 or more applicants Seiko Epson Co., Ltd. Representative Patent attorney Kizobe Suzuki (and 1 other person) Figure 1 (d) Figure 1 (e) Figure 1 (f)

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上の素子形成領域上に形成されたゲート絶
縁膜上に、多結晶性シリコンを堆積する工程と、MOS
トランジスタのゲート電極となる領域を残すように前記
多結晶性シリコンをエッチングする工程と、前記多結晶
性シリコンのエッヂ部分に側壁を設ける工程と、前記多
結晶性シリコンを再度エッチングする工程と、半導体基
板全面に高融点金属をスパッタリングする工程と、熱処
理により前記高融点金属とSi(シリコン)を反応させ
る工程と、ウェットエッチングにより前記側壁上の前記
高融点金属をエッチングする工程とを含むことを特徴と
する半導体装置の製造方法。
A step of depositing polycrystalline silicon on a gate insulating film formed on an element formation region on a semiconductor substrate, and a step of depositing MOS
a step of etching the polycrystalline silicon so as to leave a region that will become a gate electrode of a transistor; a step of providing a side wall at an edge portion of the polycrystalline silicon; a step of etching the polycrystalline silicon again; It is characterized by comprising the steps of sputtering a high melting point metal onto the entire surface of the substrate, causing the high melting point metal to react with Si (silicon) by heat treatment, and etching the high melting point metal on the side wall by wet etching. A method for manufacturing a semiconductor device.
JP32807390A 1990-11-28 1990-11-28 Manufacture of semiconductor device Pending JPH04196441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32807390A JPH04196441A (en) 1990-11-28 1990-11-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32807390A JPH04196441A (en) 1990-11-28 1990-11-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04196441A true JPH04196441A (en) 1992-07-16

Family

ID=18206210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32807390A Pending JPH04196441A (en) 1990-11-28 1990-11-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04196441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222644A (en) * 1995-02-14 1996-08-30 Nec Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222644A (en) * 1995-02-14 1996-08-30 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US5747373A (en) Nitride-oxide sidewall spacer for salicide formation
US6365472B1 (en) Semiconductor device and method of manufacturing the same
US4272881A (en) Method for making a closed gate MOS transistor with self-aligned contacts with dual passivation layer
JP2003078137A (en) Method for forming elevated source/drain areas using polysilicon spacer
JPH07230969A (en) Manufacture of semiconductor integrated circuit
JPH04196441A (en) Manufacture of semiconductor device
JPH03227516A (en) Manufacture of semiconductor device
KR100685898B1 (en) method for manufacturing of semiconductor device
JP2570487B2 (en) Method for manufacturing semiconductor device
JP2950244B2 (en) Method for manufacturing semiconductor device
JPH07263690A (en) Semiconductor device having salicide structure and its manufacture
JP2944595B2 (en) Method for manufacturing metal oxide semiconductor transistor having p + polycrystalline silicon gate
JPH01189919A (en) Semiconductor device and manufacture thereof
JP3094914B2 (en) Method for manufacturing semiconductor device
JP2582337B2 (en) Method of manufacturing MOS transistor having source / drain regions and silicide with shallow junction
JPS6068655A (en) Manufacture of mos transistor
KR0167667B1 (en) Method of fabricating semiconductor
JPH04186844A (en) Manufacture of semiconductor device
JP4136393B2 (en) Manufacturing method of semiconductor device
JPH04196442A (en) Manufacture of semiconductor device
JPH05102074A (en) Mos transistor
JPS6379377A (en) Manufacture of mis-fet
JPS63253671A (en) Manufacture of semiconductor device
JP3108927B2 (en) Method for manufacturing semiconductor device
JPH0917999A (en) Semiconductor device manufacturing method