JPH04195808A - Thin film magnetic head and its manufacturing method - Google Patents

Thin film magnetic head and its manufacturing method

Info

Publication number
JPH04195808A
JPH04195808A JP32272890A JP32272890A JPH04195808A JP H04195808 A JPH04195808 A JP H04195808A JP 32272890 A JP32272890 A JP 32272890A JP 32272890 A JP32272890 A JP 32272890A JP H04195808 A JPH04195808 A JP H04195808A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic core
film
thin film
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32272890A
Other languages
Japanese (ja)
Inventor
Yuiko Shimizu
清水 結子
Hisashi Katahashi
片橋 久
Masaya Yasukochi
正也 安河内
Yoshitsugu Miura
義從 三浦
Takeshi Miura
三浦 岳史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32272890A priority Critical patent/JPH04195808A/en
Publication of JPH04195808A publication Critical patent/JPH04195808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To prevent deteriorating of characteristics of thin films by layering the films formed by using at least one kind of a nonmagnetic element out of constitutive elements of a magnetic core into at least either are of a space between a nonmagnetic substrate and a lower magnetic core or a space between protective films provided on an upper magnetic core and on the lower magnetic core. CONSTITUTION:A sintered body of manganese dioxide and nickel oxide is used for the substrate 4, and after inverse-sputtering on the substrate 4, Zr of a nonmagnetic element is formed as a base film 63 by sputtering. Film formation is performed on the lower magnetic core 1 with a target of Co83Nb12Zr5 by using Ar gas for a sputting gas. After the film is formed, heat treatment in magnetic field is given, and afterward, unnecessary parts are removed, and a magnetic gap 61 and a coil 5 are layered via an interlayer insulating layer 62, and then an upper magnetic film 2 is formed. The protective film 7 is formed after the heat treatment in magnetic field by impressing the magnetic field in the track widthwise direction, and after processing and assembly production processes, the thin film magnetic head is obtained. By this method, sticking force of the films is promoted, and the cores are prevented from falling off during processing work and sliding operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜磁気ヘッドに関わり、特に媒体摺接形式
の自己録再型の磁気記録方式に好適な薄膜磁気ヘッドに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film magnetic head, and more particularly to a thin film magnetic head suitable for a self-recording/reproducing magnetic recording system of a medium sliding contact type.

〔従来の技術〕[Conventional technology]

従来、窒化Co系非晶質合金についてはMR89−19
のような単層膜の他、応用磁気学会誌12.299−3
04 (1988)等に示されるような組成変調窒化膜
等が知られている。非晶質磁性膜の中では高い飽和磁束
密度、(Co系でBs1.OT〜1.4TF e系で1
.3T〜1.6T以上)良好な軟磁気特性を有し、かつ
高い耐熱性(600℃程度)を有するということで画期
的な材料として注目を浴びている。
Conventionally, MR89-19 was used for Co nitride-based amorphous alloys.
In addition to single-layer films such as
04 (1988) and the like are known. High saturation magnetic flux density in amorphous magnetic films (Bs1.OT~1.4TF for Co-based, 1 for e-based)
.. It is attracting attention as an innovative material because it has good soft magnetic properties (3T to 1.6T or more) and high heat resistance (about 600°C).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術によると、ガラス、セラミックス等の非磁
性基板上に形成した場合、従来のCo系非晶質膜と比べ
付着力が弱いという問題がある。
According to the above-mentioned conventional technology, when formed on a non-magnetic substrate such as glass or ceramics, there is a problem that the adhesion force is weaker than that of a conventional Co-based amorphous film.

第3図に示すように薄膜磁気ヘッドで摺動方向8をトラ
ック幅に対し垂直方向とするシステムの場合、ギャップ
長加工等、加工中にも磁性膜を剥離する方向に応力が加
えられることになる。
As shown in Figure 3, in the case of a system in which the sliding direction 8 of a thin-film magnetic head is perpendicular to the track width, stress is applied in the direction of peeling off the magnetic film during machining such as gap length machining. Become.

特に膜形成後、切削加工を施して膜が剥離した場合、ギ
ャップ長加工及び摺動中に磁気コアの一部が脱落する(
第4図b)ことがおこり歩留まりを著しく低下させる。
In particular, if the film is peeled off by cutting after film formation, part of the magnetic core will fall off during gap lengthening and sliding (
FIG. 4b) occurs, resulting in a significant decrease in yield.

本発明の目的は、膜の付着力を向上させ、加工及び摺動
中のコアの脱落を防止して歩留まりを向上することにあ
る。
An object of the present invention is to improve the adhesion of the film, prevent the core from falling off during processing and sliding, and improve the yield.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、金属コア材の形成速度を適当
に選択すること、コア材と基板はたは保護膜との間に非
磁性金属膜を形成して、適当な温度で熱処理を施すこと
によりコア材の付着力を高めること、の2つの方法を採
用する。
In order to achieve the above objective, the formation speed of the metal core material should be appropriately selected, a non-magnetic metal film should be formed between the core material and the substrate or the protective film, and heat treatment should be performed at an appropriate temperature. Two methods are adopted: increasing the adhesion of the core material.

〔作用〕[Effect]

薄膜の付着力は、膜の内部応力の大小、基板との結合力
の強弱により、影響をうける。
The adhesion of a thin film is affected by the internal stress of the film and the strength of its bond with the substrate.

本発明の手段では、■膜の内部応力軽減に膜の形成速度
選択を、■基板との結合力向」二には下地膜の種類を選
択することとした。
In the means of the present invention, (1) the film formation rate is selected to reduce the internal stress of the film, (2) the bonding force with the substrate is selected, and (2) the type of underlying film is selected.

■膜の形成速度に対する磁気特性を第6図に示す。形成
方法はCoNbZrのターゲットを用い、Arをスパッ
タリングガスに用い、Nを20%導入した場合である。
(2) Magnetic characteristics relative to film formation rate are shown in FIG. The formation method uses a CoNbZr target, uses Ar as a sputtering gas, and introduces 20% N.

形成速度を200〜800人/minまで変化させた場
合、a)異方性磁界及びb)保磁力の大きさはある速度
以上で増大してくる。これは膜内へのガスの巻き込みが
増加するためと考えられる。
When the formation speed is varied from 200 to 800 persons/min, the magnitudes of a) anisotropic magnetic field and b) coercive force increase above a certain speed. This is thought to be due to an increase in gas entrainment into the film.

一方、形成速度が低い膜については、膜形成後熱処理を
施すと、剥離する現象が多発する。
On the other hand, when a film with a low formation rate is subjected to heat treatment after film formation, peeling often occurs.

従ってコア材形成時には適当な形成速度を選択する必要
があると考えられる。ガス圧を0.2〜0.5にした場
合、同様の結果が得られた。
Therefore, it is considered necessary to select an appropriate forming speed when forming the core material. Similar results were obtained when the gas pressure was varied from 0.2 to 0.5.

■膜と基板を下地膜を介して付着させる場合、1つは下
地膜と基板、他方、膜と下地膜の結合力が問題となる。
(2) When attaching a film and a substrate via a base film, one problem is the bonding force between the base film and the substrate, and the other is the bonding strength between the film and the base film.

通常、摺動型の磁気ヘッドに用いられる基板は結晶化ガ
ラスもしくは金属酸化物焼結体等が用いられる。下地膜
は、前記基板との付着力の他、非磁性体であること、熱
処理による相互拡散によっても磁気コア材の劣化をおこ
さないこと、等の条件を満たす必要がある。
Usually, the substrate used in a sliding type magnetic head is made of crystallized glass, metal oxide sintered body, or the like. In addition to adhesion to the substrate, the base film must satisfy conditions such as being a non-magnetic material and not causing deterioration of the magnetic core material due to mutual diffusion caused by heat treatment.

〔実施例〕〔Example〕

〈実施例の1〉 以下、本発明の一実施例を第7図により説明する。 <Example 1> An embodiment of the present invention will be described below with reference to FIG.

基板4には酸化マンガンと酸化ニッケルの焼結体を用い
る。基板は鏡面加工を施したもので、下部磁気コア形成
用の加工を施した後、洗浄する。
For the substrate 4, a sintered body of manganese oxide and nickel oxide is used. The substrate is mirror-finished and is cleaned after being processed to form the lower magnetic core.

基板に逆スパツタを施した後、Zrを下地膜63として
Zr1μmをスパッタリングにより形成する。
After performing reverse sputtering on the substrate, a 1 μm thick layer of Zr is formed by sputtering using Zr as a base film 63.

下部磁気コア】は、Co、、Nb、、Z r、をターゲ
ットとし、B、P、2xlO’torr、スパッタリン
グガス圧2x 10  ”t o r rとし、Arガ
スをスパッタリングガ2、に用い、N2ガス20%を導
入してスパッタリングにより膜形成を行った。
The lower magnetic core targets Co, Nb, Zr, B, P, 2xlO'torr, sputtering gas pressure of 2x10''torr, Ar gas is used for sputtering gas 2, N2 A film was formed by sputtering with 20% gas introduced.

形成速度は前述した範囲より選択し、)・ラック幅に平
行に磁場を印加して600℃でlnm/secとした。
The formation speed was selected from the above-mentioned range, and was 1 nm/sec at 600° C. by applying a magnetic field parallel to the rack width.

膜形成後、磁場中熱処理を施したのち、不要部分を除去
し、磁気ギャップ61.コイル5を層間絶縁層62を介
して積層し、上部磁性膜2を形成する。トラック幅方向
に磁場を印加して500℃で磁場中熱処理後保護膜7を
形成、加工及び組み立ての工程を経てWII膜磁気ヘッ
ドを得る。
After the film is formed, heat treatment is performed in a magnetic field, unnecessary portions are removed, and the magnetic gap 61. The coils 5 are stacked with an interlayer insulating layer 62 in between to form the upper magnetic film 2. After heat treatment in a magnetic field at 500° C. by applying a magnetic field in the track width direction, a protective film 7 is formed, and a WII film magnetic head is obtained through processing and assembly steps.

保護膜7にはMgO8iOxより成るフォルステライト
を用いたが下部コア1と同様に下地膜63を形成したも
のと形成しなかったものの2種について歩留りを求めた
が」J離の発生する確率はいずれも低かったため、この
材料については下地膜は不要と考えられる。
Forsterite made of MgO8iOx was used for the protective film 7, and as with the lower core 1, the yield was determined for two types, one with and without the base film 63. Since the resistance was low, it is considered that a base film is not necessary for this material.

以上の方法により作成した磁気ヘッドの歩留りを膜形成
速度のがさい場合と比較した例を第5図に示す。0.3
〜0.6nm/seeで形成した従来の場合、チップカ
ット後の磁性膜剥離率は0.6と高かったのに対し1.
nm/secで形成した場合では、剥離率0.2以下と
低く、歩留りが向上できる。またヘッド再生出力も従来
例に対し、はぼ同等となっており、下地膜を形成するこ
とによる磁気特性劣化はみられなかった。
FIG. 5 shows an example in which the yield of a magnetic head produced by the above method is compared with that of a magnetic head produced at a slow film formation rate. 0.3
In the conventional case where the magnetic film was formed at ~0.6 nm/see, the peeling rate of the magnetic film after chip cutting was as high as 0.6, whereas it was 1.
When formed at a rate of nm/sec, the peeling rate is as low as 0.2 or less, and the yield can be improved. In addition, the head reproduction output was almost the same as that of the conventional example, and no deterioration in magnetic properties was observed due to the formation of the underlayer.

〈実施例2〉 実施例の1の他にコア材料、或いは下地膜を変えて作成
した例について表1に示す。
<Example 2> Table 1 shows examples in which the core material or base film was changed in addition to Example 1.

出力のOは0.5db以上向上△現状と同等×劣化を示
し、剥離の欄の○は剥1IIl(30%未満)△は一部
剥離(30%以上50%未満)×は研摩による磁性膜剥
離率50%以上を示す。下地膜を表18本発明の実施例 Crに変えたものが出力劣化している。これは熱処理温
度500℃以上と高いためCrが磁性膜中へ拡散しコア
磁気特性が劣化したと考えられる。
Output O improved by 0.5 db or more △ Same as the current situation × Indicates deterioration, ○ in the peeling column indicates peeling 1IIl (less than 30%) △ indicates partial peeling (30% or more and less than 50%) × indicates magnetic film due to polishing Shows a peeling rate of 50% or more. The output deteriorated when the base film was changed to Example Cr of the present invention in Table 18. This is thought to be due to the high heat treatment temperature of 500° C. or higher, which caused Cr to diffuse into the magnetic film and deteriorate the core magnetic properties.

コア材組成を適当に選択することにより特性改善をはか
ることができる。
Characteristics can be improved by appropriately selecting the core material composition.

〔発明の効果〕〔Effect of the invention〕

本発明により作成したヘッドの不良率は従来の0.5以
上から、0.2程度まで改善された。
The defective rate of the head produced according to the present invention was improved from 0.5 or more in the conventional case to about 0.2.

さらに、下部磁性膜埋込み溝内の凹凸が下地膜形成によ
り緩やかになり、膜の特性劣化を防止すこともできた。
Furthermore, the unevenness in the lower magnetic film embedding groove became gentler due to the formation of the base film, making it possible to prevent deterioration of film characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による薄膜磁気ヘッド−実施例の摺動面
の正面図、第2図は本発明による薄膜磁気ヘッドの一実
施例の断面図、第3図は従来例による薄膜磁気ヘッドの
摺動面の正面図、第4図はコア脱落の過程−例を示す図
1、第5図は本発明の一実施例と従来例により発生した
、磁性膜剥離による不良発生率の比較図、第6図はスパ
ッタリングガス中の窒素分圧0.2の場合の磁気特性の
形成速度依存性を示す図、第7図は本発明による一実施
例の製造工程を示す図である。 】・・・下部磁気コア、 2・・・上部磁気コア、 4・・・基板、 5・コイル、 61・・磁気ギャップ、 62・・層間絶縁層、 63・・磁気コア下地膜、 7 ・保護膜、 1−一一下部基匝気コ了、 2−・−,1:、郁に長久
コア、4−4−#反75°′−コイル7−裸纜挾、  
  g7−譜代も一、プ、 乙?・−1笥絶撤屑63−
・−下地膜 第4図 α)oJ削カロ工イ麦。 纂 5 図 形成遠度(”A、、o) 寓 6 図 fつ或速度(nm/5ec) (b) 0 0.20.4θ乙 o、El /、o 1.2t、
41.6  f、8形成速渡(憩A。C) Φ62 V2
FIG. 1 is a front view of a sliding surface of a thin film magnetic head according to an embodiment of the present invention, FIG. 2 is a sectional view of an embodiment of a thin film magnetic head according to the present invention, and FIG. 3 is a front view of a sliding surface of an embodiment of a thin film magnetic head according to the present invention. FIG. 4 is a front view of the sliding surface, FIG. 4 is a diagram showing an example of the process of core falling off, FIG. FIG. 6 is a diagram showing the dependence of magnetic properties on the formation rate when the nitrogen partial pressure in the sputtering gas is 0.2, and FIG. 7 is a diagram showing the manufacturing process of an embodiment according to the present invention. ]...Lower magnetic core, 2...Upper magnetic core, 4...Substrate, 5.Coil, 61...Magnetic gap, 62...Interlayer insulating layer, 63...Magnetic core underlayer, 7.Protection Membrane, 1-11 lower base, 2-・-, 1:, long core, 4-4-# anti-75°'-coil 7-naked wire,
g7-Fudai moichi, pu, otsu?・-1 Demolition debris 63-
- Base film Fig. 4 α) OJ milled rice. Essay 5 Diagram formation distance ("A,, o) Example 6 Diagram f speed (nm/5ec) (b) 0 0.20.4θ o, El /, o 1.2t,
41.6 f, 8 formation speed crossing (rest A.C) Φ62 V2

Claims (1)

【特許請求の範囲】 1、下部磁気コア、コイルおよびその周囲の非磁性絶縁
層と、前記下部磁気コアとリアコア接続部で接し、磁気
ギャップ材を介して磁気回路を構成す上部磁気コアを積
層し、該上部あるいは下部磁気コアの少なくとも一方が
Co系非晶質合金で構成されて成る薄膜磁気ヘッドにお
いて、前記非磁性基板と前記下部磁気コアの間あるいは
前記上部磁気コアと該上部磁気コア上に設けた保護膜と
の間の少なくとも一方に、磁気コアの構成元素のうち非
磁性元素の少なくとも1種類を用いて形成した薄膜を積
層することを特徴とする薄膜磁気ヘッド。 2、請求項1において、前記磁気コアの構成元素のうち
非磁性元素を用いて構成した前記薄膜は、Zr、Nb、
Ta、Moのうち少なくとも1種類であることを特徴と
する薄膜磁気ヘッド。 3、請求項2において前記Co系非晶質材料の窒化物の
形成速度は0.7〜1.4nm/secとし、全スパッ
タリングガス圧に対する窒素ガス分圧比が0.5以下で
あることを特徴とする薄膜磁気ヘッドの製造方法。 4、請求項1の磁気ヘッドの熱処理方法として、トラッ
ク幅方向に10kOe以上の磁界を印加して500℃以
上で熱処理を施すことを特徴とした薄膜磁気ヘッドの製
造方法。
[Claims] 1. A lower magnetic core, a coil, a non-magnetic insulating layer around the coil, and an upper magnetic core that contacts the lower magnetic core at a rear core connection portion and forms a magnetic circuit via a magnetic gap material. In a thin film magnetic head in which at least one of the upper magnetic core and the lower magnetic core is made of a Co-based amorphous alloy, there is a magnetic field between the non-magnetic substrate and the lower magnetic core or between the upper magnetic core and the upper magnetic core. A thin film magnetic head characterized in that a thin film formed using at least one type of non-magnetic element among the constituent elements of the magnetic core is laminated on at least one side between the protective film provided on the magnetic core and a protective film provided on the magnetic core. 2. In claim 1, the thin film made of non-magnetic elements among the constituent elements of the magnetic core is Zr, Nb,
A thin film magnetic head characterized by being made of at least one of Ta and Mo. 3. In claim 2, the nitride formation rate of the Co-based amorphous material is 0.7 to 1.4 nm/sec, and the nitrogen gas partial pressure ratio to the total sputtering gas pressure is 0.5 or less. A method for manufacturing a thin film magnetic head. 4. A method for producing a thin film magnetic head according to claim 1, wherein the heat treatment is performed at a temperature of 500° C. or higher by applying a magnetic field of 10 kOe or more in the track width direction.
JP32272890A 1990-11-28 1990-11-28 Thin film magnetic head and its manufacturing method Pending JPH04195808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32272890A JPH04195808A (en) 1990-11-28 1990-11-28 Thin film magnetic head and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32272890A JPH04195808A (en) 1990-11-28 1990-11-28 Thin film magnetic head and its manufacturing method

Publications (1)

Publication Number Publication Date
JPH04195808A true JPH04195808A (en) 1992-07-15

Family

ID=18146960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32272890A Pending JPH04195808A (en) 1990-11-28 1990-11-28 Thin film magnetic head and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH04195808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590745B1 (en) 1999-01-26 2003-07-08 Tdk Corporation Magnetic head, method of manufacturing same, and magnetic disk apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590745B1 (en) 1999-01-26 2003-07-08 Tdk Corporation Magnetic head, method of manufacturing same, and magnetic disk apparatus

Similar Documents

Publication Publication Date Title
JPH02502232A (en) Laminated sendust metal-in-gap video head
US5585984A (en) Magnetic head
JPH06318516A (en) Soft magnetic multilayer film and magnetic head using same
JPH04195808A (en) Thin film magnetic head and its manufacturing method
JPS6129105A (en) Magnetic alloy thin film
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JPH05275235A (en) Magneto-optical record medium and its manufacture
JP2720363B2 (en) Manufacturing method of magnetic recording medium
JPH0254405A (en) Magnetic head
JPH07326017A (en) Magnetic head, its production and magnetic recording and reproducing device using the same
JPH053121A (en) Magnetic member
JPH0229905A (en) Production of magnetic head
JPH03168909A (en) Production of magnetic head
JPH0237510A (en) Magnetic head
JPS60242511A (en) Manufacture of magnetic head
JPH01276607A (en) Ferromagnetic thin film and magnetic head using same
JPH03209607A (en) Mig type magnetic head
JPH0254409A (en) Magnetic head
JPH08167110A (en) Magnetic head and its production
JPS63173215A (en) Magnetic head
JPH08167104A (en) Production of magnetic head
JPH0319107A (en) Magnetic head
JPH0254406A (en) Magnetic head
JPH04341908A (en) Composite magnetic head
JPH04366404A (en) Magnetic head and its manufacture