JPH04194555A - Multiroom air-conditioner - Google Patents

Multiroom air-conditioner

Info

Publication number
JPH04194555A
JPH04194555A JP32310990A JP32310990A JPH04194555A JP H04194555 A JPH04194555 A JP H04194555A JP 32310990 A JP32310990 A JP 32310990A JP 32310990 A JP32310990 A JP 32310990A JP H04194555 A JPH04194555 A JP H04194555A
Authority
JP
Japan
Prior art keywords
degree
supercooling
liquid
heat exchange
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32310990A
Other languages
Japanese (ja)
Inventor
Nobuhiro Nakagawa
信博 中川
Hiroshi Kitayama
浩 北山
Akihiro Kino
章宏 城野
Ryuzo Fujimoto
藤本 龍三
Takayuki Takatani
隆幸 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP32310990A priority Critical patent/JPH04194555A/en
Publication of JPH04194555A publication Critical patent/JPH04194555A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To keep cooling-capacity proper, by a method wherein in the time of cooling, a mean value for the degree of subcooling in each indoor machine is compared with the degree thereof preset, the amount of the heat-exchange of a liquid pipe for a gas pipe is regulated by a regulating means for the amount thereof, and the degree thereof is controlled at a specified value. CONSTITUTION:In the time of cooling, a high temperature gas with high pressure compressed by a compressor 3 is turned into a liquid refrigerant with the high pressure by a heat- exchanger 5 on the side of an outdoor machine, and the liquid refrigerant passes an expansion valve 6 on the side thereof, and its flow is divided into a bypass 11a and the liquid pipe 11. After the liquid refrigerant passing a liquid-to-gas heat-exchanger 14 is cooled with a gaseous refrigerant in a gas pipe 12a on the side of suction, it again joins in the liquid pipe 11 and flows into indoor machines 2a, 2b. The pressure of the liquid refrigerant is reduced by expansion valves 8a, 8b on the side of indoor machines and the heat-exchange of the liquid refrigerant for the indoor air is done by heat-exchangers 9a, 9b on the indoor side, so that the liquid refrigerant is turned into a low temp. gas with low pressure, and the gaseous refrigerant returns to the compressor 3 through a gas pipe 12. For the control of the degree of subcooling, time degree of subcooling of the liquid refrigerant is detected by detectors 20a, 20b and a mean value is calculated in an operation circuit 21. In a deciding circuit 22, the mean value is compared with the degree thereof preset, a regulating valve 13 is regulated by a regulator 23, a refrigerant flow rate in the heat-exchanger 14 is regulated, and the degree of subcooling is controlled at a specified value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多室形空気調和機に関し、特に過冷却度の制
御装置を設けた多室形空気調和機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a multi-chamber air conditioner, and more particularly to a multi-chamber air conditioner equipped with a supercooling degree control device.

(従来の技術) 近年、ビルの高層化が進むにつれて、室内機と大きな高
低差をつけた室外機が設置される場合が多くなってきた
。この種の従来の多室形空気調和 ・機について、冷凍
・第61巻第708号(昭和61年IO月号)P、10
38〜1045に示されている多室形空気調和機を例と
して、第4図の構成図により説明する。
(Prior Art) In recent years, as buildings become taller, outdoor units are often installed with a large difference in height from indoor units. Regarding this type of conventional multi-room air conditioner/machine, Refrigeration, Vol. 61, No. 708 (IO issue, 1986), P. 10
The multi-chamber air conditioners shown in numbers 38 to 1045 will be explained using the configuration diagram in FIG. 4 as an example.

同図において、多室形空気調和機は、−階等に設置され
た、破線で描いた室外機1と、多層階等のそれぞれの室
内に設置された、これも破線で描いた複数の室内機2a
および2bとから構成される。
In the figure, the multi-room air conditioner includes an outdoor unit 1 installed on the - floor, etc., drawn by a broken line, and a plurality of indoor units, also drawn with broken lines, installed in each room of the multi-story floor, etc. Machine 2a
and 2b.

さらに、上記の室外機lは、圧縮機3.四方弁4゜室外
機側熱交換器5.室外機側膨張弁6および室外機側ファ
ン7から、室内機2hおよび2bは、それぞれ室内機側
膨張弁8aおよび8b、室内機側熱交換器9aおよび9
b、室内機側ファンloaおよびfobから構成されて
いる。
Furthermore, the above outdoor unit l has a compressor 3. Four-way valve 4° outdoor unit side heat exchanger 5. From the outdoor unit side expansion valve 6 and the outdoor unit side fan 7, the indoor units 2h and 2b are connected to the indoor unit side expansion valves 8a and 8b, and the indoor unit side heat exchangers 9a and 9, respectively.
b. It consists of an indoor unit side fan loa and fob.

そして上記室外機1と室内機2aおよび2bは、上記の
室外機側および室内機側の膨張弁6および8aと8bを
接続する液管1]と、上記の室内機側熱交換器9aおよ
び9b、四方弁4および室外機側熱交換器5を介して、
室内機側および室外機側の膨張弁8aと8bおよび6を
接続し、さらに、上記の四方弁4と圧縮機3を接続する
ガス管12とで冷媒回路を構成している9 上記のように構成された多室形空気調和機の動作につい
て説明する。
The outdoor unit 1 and the indoor units 2a and 2b are connected to the liquid pipes 1 which connect the expansion valves 6, 8a and 8b on the outdoor unit side and the indoor unit side, and the indoor unit side heat exchangers 9a and 9b. , via the four-way valve 4 and the outdoor unit side heat exchanger 5,
A refrigerant circuit 9 is constructed by connecting the expansion valves 8a, 8b, and 6 on the indoor unit side and the outdoor unit side, and further comprising the gas pipe 12 connecting the four-way valve 4 and the compressor 3. The operation of the configured multi-room air conditioner will be explained.

まず、冷房について説明すると、圧縮機3で圧縮された
高温高圧ガス冷媒は、四方弁4で分岐して室外機側熱交
換器5で凝縮し高圧の液冷媒となり、室外機側膨張弁6
および液管11を通り室内機側膨張弁8aおよび8bで
減圧され、室内機側熱交換器9aおよび9bで室内空気
と熱交換して蒸発し低温低圧ガスとなり、圧縮機3にも
どる。その際、冷気が室内機側ファン10aおよびlo
bによって、室内に吹き呂されて冷房する。
First, to explain about air conditioning, the high-temperature, high-pressure gas refrigerant compressed by the compressor 3 is branched at the four-way valve 4, condensed in the outdoor unit side heat exchanger 5, becomes high-pressure liquid refrigerant, and is turned into a high-pressure liquid refrigerant by the outdoor unit side expansion valve 6.
The liquid passes through the liquid pipe 11 and is depressurized by the indoor unit side expansion valves 8a and 8b, and is evaporated by exchanging heat with indoor air in the indoor unit side heat exchangers 9a and 9b to become a low-temperature, low-pressure gas, and returns to the compressor 3. At that time, the cold air is
By b, the room is bathed and cooled.

次に、暖房時について説明すると、圧縮機3で圧縮され
た高温高圧ガスは、四方弁4およびガス管12を通って
室内機側熱交換器9aおよび9bで室内空気と熱交換し
て凝縮し高圧の液冷媒となり、室内機側膨張弁8aおよ
び8bを介してMt:lに入り、室外機側膨張弁6で減
圧され、室外機側熱交換器5で蒸発して低温低圧カスと
なり、圧縮機3に戻る。
Next, during heating, the high-temperature, high-pressure gas compressed by the compressor 3 passes through the four-way valve 4 and gas pipe 12, exchanges heat with indoor air in the indoor unit heat exchangers 9a and 9b, and condenses. It becomes a high-pressure liquid refrigerant, enters Mt:l via the indoor unit side expansion valves 8a and 8b, is depressurized by the outdoor unit side expansion valve 6, evaporates in the outdoor unit side heat exchanger 5, becomes a low-temperature low-pressure scum, and is compressed. Return to machine 3.

(発明が解決しようとする課題) しかしながら、上記の構成では、例えば、室外機lが地
上に、室内機2aおよび2bが8階や9階に設置される
ように、高低差が大きい場合には、冷房時に液管11内
の液冷媒は圧力水頭分だけ圧力が降下し、過冷却度かと
れなくなり、室内機側膨張弁8aおよび8bの上流側で
フラッシュカスが発生して冷房能力が低下するという問
題があった。
(Problem to be Solved by the Invention) However, in the above configuration, when there is a large height difference, for example, the outdoor unit 1 is installed on the ground and the indoor units 2a and 2b are installed on the 8th or 9th floor. During cooling, the pressure of the liquid refrigerant in the liquid pipe 11 drops by the pressure head, and the degree of supercooling is no longer achieved, flash scum is generated upstream of the indoor unit expansion valves 8a and 8b, and the cooling capacity is reduced. There was a problem.

また、高低差の度合いによって液冷媒の圧力降下量が異
なるため、例えば、室内機2aおよび2bを1階に設置
した場合と9階に設置した場合では過冷却度が異なり、
同じ容量の室内機2aおよび2bでも冷房能力が異なる
という問題もあった。
In addition, since the amount of pressure drop of the liquid refrigerant differs depending on the degree of height difference, for example, the degree of supercooling will be different when the indoor units 2a and 2b are installed on the 1st floor and when they are installed on the 9th floor.
There was also a problem that the indoor units 2a and 2b of the same capacity had different cooling capacities.

本発明は上記の問題を解決するもので、長配管時や室外
機1と室内機2aおよび2bに高低差がある場合にも、
冷房運転時の過冷却度を一定に制御し、適正な冷房能力
を維持することができる多室形空気調和機を提供するも
のである。
The present invention solves the above problems, and even when there is a long pipe or there is a height difference between the outdoor unit 1 and the indoor units 2a and 2b,
The present invention provides a multi-room air conditioner that can maintain an appropriate cooling capacity by controlling the degree of subcooling to a constant level during cooling operation.

(課題を解決するための手段) 上記の課題を解決するため、本発明は、上記の室内機2
aおよび2bには、室内機側膨張弁8aおよび8b近傍
の液管11に、液冷媒の過冷却度を検呂する過冷却度検
出手段を、また、上記の室外機1には、室外機側膨張弁
6近傍の液管11に、暖房時に流入しないように逆止弁
を設けたバイパスを形成し、バイパスの液冷媒の流量を
調整する調節弁および上記の圧縮機3の吸入側ガス管と
の熱交換装置を備えた熱交換量可変熱交換機構と、上記
の過冷却度検出手段の出力信号を基に、平均過冷却を算
呂する過冷却度演算回路、演算結果と設定過冷却度とを
比較し、その大小を判定する過冷却度判定回路およびそ
の判定結果から上記の調節弁を調整する調節弁調整手段
からなる熱交換量制御装置を、それぞれ設けるものであ
る。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides the above indoor unit 2.
In a and 2b, a degree of supercooling detection means for checking the degree of supercooling of the liquid refrigerant is installed in the liquid pipe 11 near the indoor unit side expansion valves 8a and 8b, and in the outdoor unit 1, A bypass is formed in the liquid pipe 11 near the side expansion valve 6 with a check valve to prevent it from flowing in during heating, and a control valve that adjusts the flow rate of the liquid refrigerant in the bypass and the suction side gas pipe of the compressor 3 are provided. A heat exchange variable heat exchange mechanism equipped with a heat exchange device, a supercooling degree calculation circuit that calculates the average supercooling based on the output signal of the above-mentioned supercooling degree detection means, and a calculation result and setting supercooling. A heat exchange amount control device is provided, which includes a supercooling degree determining circuit that compares the supercooling degree with the supercooling degree and determines the magnitude thereof, and a regulating valve adjusting means that adjusts the aforementioned regulating valve based on the determination result.

(作 用) 上記の構成により、冷房時に過冷却度検出手段で各室内
機2aおよび2bの過冷却度の平均値と予め定めた設定
過冷却度とを比較して過冷却度の大小を判定し、この判
定を基に熱交換量調節手段で液管とガス管との熱交換量
を調節して、過冷却度を一定に制御するので、長配管時
や室外機と室内機に高低差がある場合にも、適正な冷房
能力を維持することが可能となる。
(Function) With the above configuration, during cooling, the degree of subcooling is determined by comparing the average value of the degree of subcooling of each indoor unit 2a and 2b with a predetermined set degree of supercooling using the degree of subcooling detection means. Based on this determination, the heat exchange amount adjustment means adjusts the amount of heat exchange between the liquid pipe and the gas pipe to control the degree of supercooling to a constant level. Even if there is a problem, it is possible to maintain an appropriate cooling capacity.

(実施例) 本発明の一実施例を第1図ないし第3図により説明する
(Example) An example of the present invention will be described with reference to FIGS. 1 to 3.

第1図は、本発明による多室形空気調和機の構成図で、
第4図に示した従来例と異なる点は、室外機1に、室外
機側膨張弁6近傍の液管11にバイパスllaを設け、
その分岐点間にバイパスllaの液冷媒の流量を調節す
る調節弁13を、またバイパスLlaの中央部に圧縮機
3の吸込み側カス管12aとの液ガス熱交換器14を、
さらに暖房時にバイパス11aに液冷媒が流入しないよ
うにその出口側に逆止弁15を備えた熱交換量可変熱交
換装置16を設けた点と、室内機2aおよび2bにはそ
れぞれ、室内機側膨張弁8aおよび8b近傍の液管に液
冷媒の圧力と温度を測定する圧力センサ17aおよび1
7bおよびサーミスタ18aおよび18bと、その8力
から過冷却度を算出する過冷却交換用マイコン+9aお
よび19bとからなる過冷却度検出装置20a、 20
bを設けた点と、さらに、室外機lの中に、上記の過冷
却度検出装置20aおよび20bの8力から各室内機2
aおよび2bの過冷却度の平均値を算出する過冷却度演
算回路21と、予め設定して置いた過冷却度と上記の平
均値とを比較して過冷却度を判定する過冷却度判定回路
22と、その判定結果に基づいて上記の熱交換量可変熱
交換装置16の調節弁13を駆動する調節弁調整装置2
3からなる熱交換量制御装置24を設けた点である。そ
の他は従来例と変りがないので、同じ構成部品には同一
符号を付してその説明を省略する。
FIG. 1 is a block diagram of a multi-room air conditioner according to the present invention.
The difference from the conventional example shown in FIG. 4 is that the outdoor unit 1 is provided with a bypass lla in the liquid pipe 11 near the outdoor unit expansion valve 6;
A control valve 13 for adjusting the flow rate of the liquid refrigerant in the bypass Lla is provided between the branch points, and a liquid gas heat exchanger 14 with the suction side waste pipe 12a of the compressor 3 is provided in the center of the bypass Lla.
Furthermore, in order to prevent liquid refrigerant from flowing into the bypass 11a during heating, a heat exchange variable heat exchange device 16 equipped with a check valve 15 on the outlet side is provided, and indoor units 2a and 2b are provided with a heat exchanger 16 on the indoor unit side. Pressure sensors 17a and 1 measure the pressure and temperature of the liquid refrigerant in the liquid pipes near the expansion valves 8a and 8b.
7b, thermistors 18a and 18b, and a supercooling replacement microcomputer +9a and 19b that calculates the degree of supercooling from the 8 forces.
In addition, in addition to the fact that
A supercooling degree calculation circuit 21 that calculates the average value of the supercooling degrees of a and 2b, and a supercooling degree judgment that determines the supercooling degree by comparing a preset supercooling degree with the above average value. circuit 22, and a control valve adjustment device 2 that drives the control valve 13 of the variable heat exchange amount heat exchange device 16 based on the determination result thereof.
This is because a heat exchange amount control device 24 consisting of three components is provided. Since the rest is the same as the conventional example, the same components are given the same reference numerals and their explanations will be omitted.

なお、上記の調節弁13には、電動膨張弁を使用し、液
ガス熱交換器14には、第2図に示すように、二重管構
造とし、内管にガス冷媒を矢印Aの方向に流し、その周
囲の外管に矢印Bで示すように逆方向に液冷媒を流して
、液冷媒とガス冷媒との熱交換を行った。
In addition, an electric expansion valve is used for the above-mentioned control valve 13, and the liquid-gas heat exchanger 14 has a double pipe structure as shown in FIG. The liquid refrigerant was allowed to flow in the opposite direction as shown by arrow B through the surrounding outer tube, thereby exchanging heat between the liquid refrigerant and the gas refrigerant.

以上のように構成された多室形空気調和機の動作を説明
する。
The operation of the multi-room air conditioner configured as above will be explained.

まず、冷房時について説明すると、冷媒の流れは、圧縮
機3で圧縮された高温高圧ガスが四方弁4を介して室外
機側熱交換器5で凝縮されて高圧の液冷媒となり、室外
機側膨張弁6を通った後、上記の液ガス熱交換器14の
設けられたバイパス11aと調節弁13に設けられた液
管11とに分流される。このとき、前記液ガス熱交換器
14を通過する液冷媒は、吸込み側ガス管12a内のガ
ス冷媒と熱交換して冷却された後、逆止弁■5を通過し
て再び液管11と合流し、室内機2aおよび2bに流れ
込む。
First, during cooling, the refrigerant flow is such that high-temperature, high-pressure gas compressed by the compressor 3 passes through the four-way valve 4 and is condensed in the outdoor unit side heat exchanger 5 to become a high-pressure liquid refrigerant. After passing through the expansion valve 6, the liquid is divided into a bypass 11a provided with the liquid-gas heat exchanger 14 and a liquid pipe 11 provided in the control valve 13. At this time, the liquid refrigerant passing through the liquid gas heat exchanger 14 is cooled by exchanging heat with the gas refrigerant in the suction side gas pipe 12a, and then passes through the check valve 5 and enters the liquid pipe 11 again. The water merges and flows into the indoor units 2a and 2b.

室内機側膨張弁8aおよび8bで減圧され、冷ガス冷媒
となった後、室内機側熱交換器9aおよび9bで室内空
気と熱交換して低温低圧ガスとなり、ガス管12を通っ
て圧縮機3に戻る。
After being depressurized by the indoor unit side expansion valves 8a and 8b and becoming a cold gas refrigerant, it exchanges heat with indoor air in the indoor unit side heat exchangers 9a and 9b to become a low-temperature, low-pressure gas, which passes through the gas pipe 12 to the compressor. Return to 3.

このときの過冷却度制御について、第3図のフローチャ
ートを用いて説明する。
The supercooling degree control at this time will be explained using the flowchart of FIG. 3.

まず、冷房運転か否かを判断(ステップ25)シて、冷
房であれば過冷却度検出装置20aおよび20bによっ
て、液冷媒の過冷却度 室内機(2a)の過冷却度−T 、 (deg)室内機
(2b)の過冷却度= T 2(deg)を検出した後
(ステップ26)、過冷却度演算回路21で上記の過冷
却度T、、 T、の平均値Tを代表過冷却度として を算出する(ステップ27)。過冷却度判定回路22は
、代表過冷却度Tと設定過冷却度TBとを比較しくステ
ップ28) T<TB すなわちr N OJならば調節弁調整装置23で調節
弁13を絞って上記液ガス熱交換器14へ流入する冷媒
流量を増加させる(ステップ29)。
First, it is determined whether or not it is cooling operation (step 25), and if it is cooling, the subcooling degree detection devices 20a and 20b detect the subcooling degree of the liquid refrigerant indoor unit (2a) -T, (deg ) After detecting the degree of supercooling = T 2 (deg) of the indoor unit (2b) (step 26), the degree of supercooling calculation circuit 21 calculates the average value T of the degrees of supercooling T, T, as a representative supercooling. The degree is calculated (step 27). The degree of supercooling determination circuit 22 compares the representative degree of supercooling T and the set degree of supercooling TB. If T<TB, that is, r N OJ, the control valve adjustment device 23 throttles the control valve 13 to control the liquid gas. The flow rate of refrigerant flowing into the heat exchanger 14 is increased (step 29).

また、設定過冷却度T8と比較(ステップ28)シた結
果が T≧TB すなわちrYEs」ならば、丘記の過冷却度判定回路2
2で再び代表過冷却度Tと設定過冷却度T。
Also, if the result of comparison with the set supercooling degree T8 (step 28) is T≧TB, that is, rYEs, then the supercooling degree determination circuit 2
2, the representative supercooling degree T and the set supercooling degree T.

との比較(ステップ30)を行い。(Step 30).

T=TB すなわちrYESJならば、代表過冷却度が設定値と同
じということであり、前記調節弁13の開度は変えない
。比較の結果が T8#TB すなわちrNOJならば代表過冷却度が設定値よリ大き
いということであり、調節弁調整装置23を作動させ、
調節弁13を開いて(ステップ31)前記液ガス熱交換
器14へ流入する冷媒流量を減少させる。
If T=TB, that is, rYESJ, it means that the representative degree of supercooling is the same as the set value, and the opening degree of the control valve 13 is not changed. If the comparison result is T8#TB, that is, rNOJ, it means that the representative supercooling degree is larger than the set value, and the control valve adjustment device 23 is activated.
The control valve 13 is opened (step 31) to reduce the flow rate of refrigerant flowing into the liquid-gas heat exchanger 14.

以上のステップ25からステップ31を繰り返すことに
より、液ガス熱交換器14の冷媒流量を調節して過冷却
度を一定に制御する。
By repeating steps 25 to 31 above, the refrigerant flow rate of the liquid-gas heat exchanger 14 is adjusted to control the degree of supercooling to be constant.

次に、暖房運転時について説明すると、室外機側熱交換
器5より室内機側熱交換器9aおよび9bの能力の方が
大きいので、もともと過冷却度が20〜30degと大
きく、液ガス熱交換器14に冷媒を循環させる必要がな
いので、逆止弁15によって液冷媒が液ガス熱交換器1
4に流入しないようにしており、第3図のフローチャー
トに示すように、冷房か否かの判断で(ステップ25)
、暖房すなわちrNOJならば、調節弁13を全開にす
る(ステップ32)。
Next, to explain the heating operation, since the capacity of the indoor unit heat exchangers 9a and 9b is greater than that of the outdoor unit side heat exchanger 5, the degree of subcooling is originally as high as 20 to 30 degrees, and the liquid gas heat exchange Since there is no need to circulate the refrigerant through the heat exchanger 14, the check valve 15 allows the liquid refrigerant to flow through the liquid-gas heat exchanger 1.
4, and as shown in the flowchart in Figure 3, it is determined whether or not to cool the air (step 25).
, heating, i.e., rNOJ, the control valve 13 is fully opened (step 32).

なお、暖房時の動作は従来例と変わりがないので、その
説明を省略する、 上記実施例によれば、冷房時には各室内機2aおよび2
bの過冷却度を検呂して、長配管時や室外機1と室内機
2aおよび2bに高低差がある場合にも過冷却度を一定
に制御して適正な冷房能力を維持することができる。
Note that the operation during heating is the same as in the conventional example, so the explanation thereof will be omitted.According to the above embodiment, during cooling, each indoor unit 2a and 2
By checking the degree of supercooling of b, it is possible to maintain an appropriate cooling capacity by controlling the degree of supercooling to a constant level even when the pipe is long or there is a difference in height between the outdoor unit 1 and the indoor units 2a and 2b. can.

また、暖房時には逆止弁I5で液ガス熱交換器14への
液冷媒流入を防ぎ、調節弁13を全開にすることにより
、高圧圧力の低下を防止して暖房能力を維持する。
Furthermore, during heating, the check valve I5 prevents liquid refrigerant from flowing into the liquid-gas heat exchanger 14, and the control valve 13 is fully opened, thereby preventing a drop in high pressure and maintaining the heating capacity.

なお、本実施例では、液管11のバイパスllaと吸込
み側ガス管+2aとの熱交換量の調節を調節弁13の操
作による冷媒流量制御で対応したが、複数本の液ガス熱
交換器14を設け、その本数切換え制御で対応しても同
等の効果が得られるのは言うまでもない。
In this embodiment, the amount of heat exchange between the bypass lla of the liquid pipe 11 and the suction side gas pipe +2a is adjusted by controlling the refrigerant flow rate by operating the control valve 13. It goes without saying that the same effect can be obtained by providing a number of filters and controlling the number of switches.

(発明の効果) 以上説明したように、本発明によれば、冷房時に、室内
機側膨張弁上流近傍で検出した液冷媒の過冷却度と、設
定過冷却度とを比較し、これが常に設定過冷却度を維持
するように、室外機側膨張弁下流近傍に形成したバイパ
スの流量を調整し、バイパスと圧縮機吸込み側ガス管の
間に設けだ液ガス熱交換器の熱交換量を制御できるので
、室外機と室内機の高低差が大きい場合、あるいは長配
管の場合にも、適正な冷房性能の維持が可能となる。
(Effects of the Invention) As explained above, according to the present invention, during cooling, the degree of subcooling of the liquid refrigerant detected near the upstream of the expansion valve on the indoor unit side is compared with the set degree of supercooling, and this is always set. To maintain the degree of supercooling, the flow rate of the bypass formed near the downstream of the expansion valve on the outdoor unit side is adjusted, and the heat exchange amount of the liquid gas heat exchanger installed between the bypass and the gas pipe on the suction side of the compressor is controlled. This makes it possible to maintain appropriate cooling performance even when there is a large height difference between the outdoor unit and the indoor unit or when there is long piping.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による多室形空気調和機の構成図、第2
図はその要部拡大断面図、第3図は過冷却度制御のため
のプログラムを示すフローチャート、第4図は従来の多
室形空気調和機の構成図である。 1 ・・・室外機、 2a、2b・・・室内機、3 ・
・・圧縮機、 4 ・・ 四方弁、 5 ・・室外機側
熱交換器、 6 ・・・室外機側膨張弁、 7 ・・・
室外機側ファン、8a、8b・・ 室内機側膨張弁、 
9’a、 9b・・・室内機側熱交換器、loa、 1
0b・・・室外機側ファン、11・・ 液管、lla・
・・バイパス。 12  ・ ガス管、12a・・吸込み側ガス管、13
  ・・調節弁、i4・・・液ガス熱交換器、15・・
・逆止弁、16・・・熱交換量可変熱交換装置、17a
、 17b −圧力センサ、18a。 18b ・・・サーミスタ、19a、 19b  ・・
過冷却交換用マイコン、20a、 20b・・・過冷却
度検品装置、21・・・過冷却度演算回路、22・・・
過冷却度判定回路、23・・・調節弁調整装置、24・
・・熱交換量制御装置。
Fig. 1 is a block diagram of a multi-room air conditioner according to the present invention;
3 is a flowchart showing a program for supercooling degree control, and FIG. 4 is a configuration diagram of a conventional multi-room air conditioner. 1...Outdoor unit, 2a, 2b...Indoor unit, 3.
... Compressor, 4 ... Four-way valve, 5 ... Outdoor unit side heat exchanger, 6 ... Outdoor unit side expansion valve, 7 ...
Outdoor unit side fan, 8a, 8b... Indoor unit side expansion valve,
9'a, 9b... Indoor unit side heat exchanger, loa, 1
0b...Outdoor unit side fan, 11...Liquid pipe, lla...
··bypass. 12 ・ Gas pipe, 12a...Suction side gas pipe, 13
...Control valve, i4...Liquid gas heat exchanger, 15...
・Check valve, 16...Variable heat exchange amount heat exchange device, 17a
, 17b - pressure sensor, 18a. 18b...Thermistor, 19a, 19b...
Supercooling replacement microcomputer, 20a, 20b...Supercooling degree inspection device, 21... Supercooling degree calculation circuit, 22...
Supercooling degree determination circuit, 23... control valve adjustment device, 24.
...Heat exchange amount control device.

Claims (1)

【特許請求の範囲】[Claims] 室外機には圧縮機、四方弁、熱交換器および膨張弁を、
複数の室内機には熱交換器および膨張弁をそれぞれに装
備し、両者を液管およびガス管で接続して環状の冷媒回
路を構成した多室形空気調和機において、上記室内機に
は、膨張弁近傍の液管に過冷却度を検出する過冷却度検
出手段を、また、上記の室外機には、膨張弁近傍液管に
バイパスを設け、このバイパスと圧縮機の吸込み側ガス
管とで熱交換を行う熱交換量可変液ガス熱交換機構と、
上記の過冷却度検出手段からの出力信号を基に平均過冷
却度を過冷却度演算手段で算出し、算出された平均過冷
却度と設定過冷却度とを比較して過冷却度の大小を過冷
却度判定手段で判定し、その判定結果を基に上記の熱交
換量可変液ガス熱交換機構の熱交換量を調節する熱交換
量調節手段を設けたことを特徴とする多室形空気調和機
The outdoor unit includes a compressor, four-way valve, heat exchanger, and expansion valve.
In a multi-room air conditioner in which a plurality of indoor units are each equipped with a heat exchanger and an expansion valve, and both are connected via liquid pipes and gas pipes to form a ring-shaped refrigerant circuit, the above-mentioned indoor units include: A degree of supercooling detection means for detecting the degree of supercooling is provided in the liquid pipe near the expansion valve, and a bypass is provided in the liquid pipe near the expansion valve in the above outdoor unit, and this bypass is connected to the gas pipe on the suction side of the compressor. A variable heat exchange amount liquid gas heat exchange mechanism that performs heat exchange,
The average degree of supercooling is calculated by the degree of supercooling calculation means based on the output signal from the degree of supercooling detection means, and the calculated average degree of supercooling is compared with the set degree of supercooling to determine the degree of supercooling. A multi-chamber type, characterized in that it is provided with a heat exchange amount adjusting means for determining the amount of heat exchange by a supercooling degree determining means and adjusting the heat exchange amount of the variable heat exchange amount liquid gas heat exchange mechanism based on the determination result. Air conditioner.
JP32310990A 1990-11-28 1990-11-28 Multiroom air-conditioner Pending JPH04194555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32310990A JPH04194555A (en) 1990-11-28 1990-11-28 Multiroom air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32310990A JPH04194555A (en) 1990-11-28 1990-11-28 Multiroom air-conditioner

Publications (1)

Publication Number Publication Date
JPH04194555A true JPH04194555A (en) 1992-07-14

Family

ID=18151182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32310990A Pending JPH04194555A (en) 1990-11-28 1990-11-28 Multiroom air-conditioner

Country Status (1)

Country Link
JP (1) JPH04194555A (en)

Similar Documents

Publication Publication Date Title
JP4762797B2 (en) Multi-type air conditioning system
JPH03282164A (en) Air conditioner
WO2016158938A1 (en) Air conditioner
JP2008064439A (en) Air conditioner
AU2014387521B2 (en) Heat source side unit and air-conditioning apparatus
JP2019086251A (en) Control device of multi-type air conditioning device, multi-type air conditioning device, control method of multi-type air conditioning device, and control program of multi-type air conditioning device
JP6479181B2 (en) Air conditioner
WO2018221052A1 (en) Control device, multi-split air conditioning system provided with same, and control method, and control program
JP2557577B2 (en) Air conditioner
JP5881339B2 (en) Air conditioner
JP7138790B2 (en) refrigeration cycle equipment
JP3729552B2 (en) Air conditioner
KR101152936B1 (en) A multi air conditioner system and a pipe connection searching method of the multi air conditioner system
KR20120114997A (en) Air conditoner
JP5245575B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP3627101B2 (en) Air conditioner
WO2018037496A1 (en) Air conditioning device
KR101227477B1 (en) Air conditioner having volume variableness type condenser and method of control thereof
JP3384150B2 (en) Multi-room air conditioner and operation method thereof
CN114151935A (en) Air conditioning system
JP2893844B2 (en) Air conditioner
JP4391188B2 (en) Air conditioner
JPH08136078A (en) Multi-room cooling and heating device
JPH04194555A (en) Multiroom air-conditioner
KR20090107310A (en) Air conditioner