JPH0419284Y2 - - Google Patents

Info

Publication number
JPH0419284Y2
JPH0419284Y2 JP1985011392U JP1139285U JPH0419284Y2 JP H0419284 Y2 JPH0419284 Y2 JP H0419284Y2 JP 1985011392 U JP1985011392 U JP 1985011392U JP 1139285 U JP1139285 U JP 1139285U JP H0419284 Y2 JPH0419284 Y2 JP H0419284Y2
Authority
JP
Japan
Prior art keywords
water
preheater
feed water
feed
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985011392U
Other languages
Japanese (ja)
Other versions
JPS61128510U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985011392U priority Critical patent/JPH0419284Y2/ja
Publication of JPS61128510U publication Critical patent/JPS61128510U/ja
Application granted granted Critical
Publication of JPH0419284Y2 publication Critical patent/JPH0419284Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、排熱を回収してボイラへの給水を予
熱する給水予熱装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a feed water preheating device that recovers waste heat to preheat water to be fed to a boiler.

〔従来の技術〕[Conventional technology]

従来から、熱源を有するシステムにおいては、
排ガスからの熱回収を行うボイラ等を備え、さら
にこのボイラへの給水系に給水予熱器を配置する
ことが通常行われている。
Traditionally, in systems with a heat source,
It is common practice to include a boiler or the like for recovering heat from exhaust gas, and to further dispose a water supply preheater in the water supply system to the boiler.

このような給水予熱器はコークス乾式消化設備
にも適用され、ボイラ前の脱気器給水を予熱し、
熱回収量の向上並びに循環風量の低減に寄与して
いる。
This kind of feed water preheater is also applied to coke dry digestion equipment, preheating the deaerator feed water before the boiler,
This contributes to improving the amount of heat recovery and reducing the amount of circulating air.

このコークス乾式消化設備の給水予熱器では、
比較的低温(120〜170℃)の排ガスを常温の純水
で冷却しているため、排ガス中のSOx,Cl等によ
る低温腐食の他に、熱交換器のチユーブ表面への
結露によつてコークス微粉の付着を併発してい
た。
In the water preheater of this coke dry digestion equipment,
Because relatively low-temperature (120 to 170℃) exhaust gas is cooled with room-temperature pure water, in addition to low-temperature corrosion caused by SOx, Cl, etc. in the exhaust gas, coke is generated by condensation on the tube surface of the heat exchanger. This was accompanied by adhesion of fine powder.

このような問題を解消するものとして、特願昭
59−117059号公報に記載されているように、給水
予熱器の前後に水−水熱交換器を設け、出側の温
水にて入側の給水を加温することによつて、給水
予熱器内を流下する水を水露点温度以上に上昇さ
せるシステムとしたものがある。
As a solution to this problem, the
As described in Publication No. 59-117059, water-water heat exchangers are installed before and after the feed water preheater, and the feed water preheater is heated by heating the inlet side water with the hot water on the outlet side. There is a system that raises the water flowing down to a temperature above the water dew point.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

ここで、低温腐食の状況は伝熱管の温度条件に
より左右され、伝熱管表面温度の低い給水の入側
部分が熱交換後の出側部分よりも腐食量が大きい
点は従来設備から実証されている。
Here, the state of low-temperature corrosion depends on the temperature conditions of the heat exchanger tubes, and it has been demonstrated from conventional equipment that the amount of corrosion is greater on the input side of the feed water, where the surface temperature of the heat exchanger tubes is low, than on the outlet side after heat exchange. There is.

従つて、上記の改良されたシステムを採用すれ
ば伝熱管の寿命を大幅に延長でき、さらにダスト
付着の緩和が期待できる。
Therefore, if the above-mentioned improved system is adopted, the life of the heat exchanger tubes can be significantly extended, and furthermore, dust adhesion can be expected to be alleviated.

しかしながら、このシステムは給水予熱器自体
の加熱を排熱との熱交換のみによつて行う自己昇
温式であるため、十分に排熱により給水予熱器が
加熱された段階を経て定常運転に入つた後でなけ
れば効率的な給水予熱を達成できない。
However, since this system is a self-heating type that heats the feed water preheater itself only by heat exchange with waste heat, steady operation begins after the feed water preheater is sufficiently heated by waste heat. Efficient preheating of the feed water can only be achieved after the water has been drained.

従つて、予熱設備の稼動開始及び停止時の所謂
立上げ、立下げ時においては、給水温度を上昇さ
せるに必要な熱源がないので、短時間であつても
チユーブ表面温度が水露点温度以下となり、ダス
ト付着を生じてしまう。
Therefore, when the preheating equipment starts and stops operating, so-called startup and shutdown, there is no heat source necessary to raise the supply water temperature, so the tube surface temperature drops below the water dew point temperature even for a short time. , causing dust adhesion.

このダスト付着状況は運転中においても微粉間
も圧着により成長する傾向にあり、従来設備と同
様にガス側圧力損失の増大や冷却性能の劣化につ
ながり、また一定期間毎にダスト洗浄を必要とし
て保守点検を頻繁に行わねばならない。
This dust adhesion tends to grow during operation due to pressure bonding between fine particles, and as with conventional equipment, it leads to increased gas side pressure loss and deterioration of cooling performance, and requires dust cleaning at regular intervals for maintenance. Inspections must be carried out frequently.

また、このシステムでは、給水温度調整用とし
てバイパス管を設けていることから、冬期の水温
度低下時は給水予熱器への給水量が低下すること
により熱回収量も低減するという問題もある。
Additionally, since this system is equipped with a bypass pipe to adjust the temperature of the water supply, there is also the problem that when the water temperature drops in winter, the amount of water supplied to the water preheater decreases and the amount of heat recovered also decreases.

本考案の目的は、低温環境領域に設置される給
水予熱器において、立上げ、立下げ時に発生しや
すいチユーブへのダスト付着を防止し、水温低下
時においても熱回収量を向上させることにある。
The purpose of this invention is to prevent dust from adhering to the tubes of water preheaters installed in low-temperature environments, which is likely to occur during startup and shutdown, and to improve the amount of heat recovery even when the water temperature drops. .

〔問題点を解決するための手段及び作用〕[Means and actions for solving problems]

本考案は、給水タンクからボイラへの給水路
に、外部を排ガス通路で囲まれた給水予熱器と、
同給水予熱器の下流側に位置し加熱蒸気で給水を
脱気する脱気器とを備えた給水予熱装置におい
て、前記脱気器の下流と前記給水予熱器上流の給
水路を連絡して循環系を構成する循環流路を形成
し、同循環流路に循環ポンプと流量調節可能な脱
気水供給弁を配置し、前記給水予熱器への入側の
給水と同給水予熱器からの出側の給水とを熱交換
させる水対水熱交換器を給水予熱器の近傍へ設
け、同給水予熱器への入側で同水対水熱交換器の
上流側の給水路と同給水予熱器からの出側で同水
対水熱交換器の下流側の給水路とを連絡するバイ
パス管を設け、同バイパス管へ同給水予熱器への
入側で同水対水熱交換器の下流側の給水器へ取り
つけた計装温度計で検知した給水温度によりバイ
パス流量を調節可能にしたバイパス温度制御弁を
配置した構成として、給水予熱開始及び停止時や
水温度低下時に、脱気水を循環させ給水予熱器へ
の常温給水に合流して給水予熱器に流入する水を
昇温させるものである。
This invention includes a water preheater surrounded by an exhaust gas passage on the outside in the water supply waterway from the water tank to the boiler.
In a feed water preheating device equipped with a deaerator that is located downstream of the feed water preheater and deaerates the feed water with heated steam, circulation is carried out by connecting the feed water channel downstream of the deaerator and upstream of the feed water preheater. A circulation flow path that constitutes the system is formed, and a circulation pump and a deaerated water supply valve that can adjust the flow rate are arranged in the circulation flow path, and the water supply to the feed water preheater and the output from the feed water preheater are connected. A water-to-water heat exchanger that exchanges heat with the feed water on the side is installed near the feed water preheater, and on the inlet side to the feed water preheater, the water water heat exchanger and the feed water preheater A bypass pipe is provided to connect the water supply channel on the downstream side of the water-to-water heat exchanger on the outlet side, and a bypass pipe is provided to connect the water supply channel downstream of the water-to-water heat exchanger on the inlet side of the water-to-water heat exchanger to the bypass pipe. The system is equipped with a bypass temperature control valve that allows the bypass flow rate to be adjusted based on the temperature of the water supply detected by an instrumented thermometer attached to the water supply system, allowing deaerated water to be circulated when preheating the water supply starts and stops, or when the water temperature drops. This is to raise the temperature of the water that flows into the water supply preheater by joining the room temperature water supplied to the water supply preheater.

〔実施例〕〔Example〕

以下、図面に示す実施例に基づいて本考案を説
明する。
Hereinafter, the present invention will be explained based on embodiments shown in the drawings.

図は本考案に係るボイラ前の給水系統図で、常
温の純水を貯溜するタンク1、水−水熱交換器
2、排ガス流路20内に配置した給水予熱器3を
有した脱気器給水配管4、脱気器5、脱気器加熱
蒸気配管6及びボイラ給水配管7によつて構成さ
れている。
The figure is a water supply system diagram in front of the boiler according to the present invention, which includes a tank 1 for storing pure water at room temperature, a water-water heat exchanger 2, and a deaerator having a water supply preheater 3 placed in the exhaust gas flow path 20. It is composed of a water supply pipe 4, a deaerator 5, a deaerator heating steam pipe 6, and a boiler water supply pipe 7.

そして、ボイラ給水配管7を給水予熱器3より
上流側の脱気器給水配管4に接続し、ボイラ前の
給水路に循環系を構成する循環配管8を設けてい
る。
The boiler water supply pipe 7 is connected to the deaerator water supply pipe 4 on the upstream side of the water supply preheater 3, and a circulation pipe 8 constituting a circulation system is provided in the water supply waterway in front of the boiler.

ここで、給水予熱器3前後の水−水熱交換器2
及びバイパス管9へは、定常運転時において脱気
器5への加熱蒸気量を決定するボイラ給水量に応
じ、タンク1から脱気器給水ポンプ10によつて
矢印方向に給水される。
Here, the water-water heat exchanger 2 before and after the feed water preheater 3
Water is supplied from the tank 1 to the bypass pipe 9 in the direction of the arrow by the deaerator water pump 10 according to the boiler water supply amount which determines the amount of heated steam to the deaerator 5 during steady operation.

また、この給水流れにおいては、給水予熱器3
入口水温を規定温度(60℃)即ち水露点温度(約
50℃)以上に確保するため、脱気器給水配管4に
備えたバイパス温度制御弁11が種々の条件に見
合つた流量を給水予熱器3側に給水するようにバ
イパス量を調整する。
In addition, in this feed water flow, the feed water preheater 3
Set the inlet water temperature to the specified temperature (60℃), that is, the water dew point temperature (approx.
50° C.) or higher, the bypass temperature control valve 11 provided in the deaerator water supply pipe 4 adjusts the bypass amount so that a flow rate that meets various conditions is supplied to the water supply preheater 3 side.

上記構成のボイラ前給水予熱系において、立上
げ初期に当たつては循環配管8の流路を脱気水供
給管として機能し循環流量は電動ニードル弁14
の開閉によつて調整する。そして、コークス粉を
含んだ排ガスが給水予熱器3を通過する前に、加
熱蒸気を利用する脱気器5によつて脱気した後の
高温の脱気水を循環ポンプ12によつて給水予熱
器3側に循環させる。
In the pre-boiler feed water preheating system having the above configuration, at the initial stage of startup, the flow path of the circulation pipe 8 functions as a deaerated water supply pipe, and the circulation flow rate is controlled by the electric needle valve 14.
Adjust by opening and closing. Then, before the exhaust gas containing coke powder passes through the feed water preheater 3, the high temperature degassed water is degassed by the deaerator 5 that uses heated steam and is preheated by the circulation pump 12. Circulate to the vessel 3 side.

この高温脱気水の循環により、給水予熱器3へ
の給水入口温度を水露点以上に設定でき、従来設
備で問題となつていた低温腐食とダストの付着を
防止できる。
By circulating this high-temperature deaerated water, the temperature of the water supply inlet to the water supply preheater 3 can be set above the water dew point, and low-temperature corrosion and dust adhesion, which have been problems with conventional equipment, can be prevented.

そして、入熱源が徐々に増加してくると、脱気
器5への給水も増加するが、その一方水−水熱交
換器2によつて給水も昇温される。従つて、給水
温度の管理は給水予熱前の計装温度計13によつ
て行ない、脱気水循環流量は循環ポンプ12下流
の電動ニードル弁14によつて徐々に減少させ
る。
Then, as the heat input source gradually increases, the water supplied to the deaerator 5 also increases, but on the other hand, the temperature of the supplied water is also raised by the water-water heat exchanger 2. Therefore, the feed water temperature is controlled by the instrumented thermometer 13 before preheating the feed water, and the deaerated water circulation flow rate is gradually reduced by the electric needle valve 14 downstream of the circulation pump 12.

このような高温の脱気水の給水予熱器3側への
循環は、立下げ時についても同様な手順で行なう
ことによつて低温腐食とダストの付着を防止でき
る。
By circulating such high-temperature degassed water to the feed water preheater 3 side in the same manner at the time of shutdown, low-temperature corrosion and dust adhesion can be prevented.

尚、以上のように給水予熱器3への給水温度を
調整するシステムであるので、寒冷時等において
定常運転時に水温が低下するときはバイパス量を
増加する必要があり、給水予熱器3での熱回収量
が低減する。従つてこの場合も必要に応じ循環量
を調整し、バイパス量を減少させ熱回収量を増加
させる操作を行う。
As described above, the system adjusts the temperature of the water supplied to the feed water preheater 3, so when the water temperature drops during steady operation, such as in cold weather, it is necessary to increase the amount of bypass, and the The amount of heat recovery is reduced. Therefore, in this case as well, the circulation amount is adjusted as necessary to reduce the bypass amount and increase the heat recovery amount.

以上のように脱気水を給水予熱器3側に循環供
給できるので、立上げ、立下げ時の給水予熱器3
への給水の低温度に対し、105〜110℃の脱気水に
よつてこの給水を昇温し水露点温度から回避する
ことができる。
As described above, deaerated water can be circulated and supplied to the feed water preheater 3 side, so when starting up and shutting down the feed water preheater 3
In contrast to the low temperature of the water supply to the tank, deaerated water of 105-110°C can raise the temperature of this supply water to avoid the water dew point temperature.

更に、前記計装温度計とバイパス温度制御弁に
て次の制御を行うことにより、給水タンクから給
水予熱器へ供給される給水温度の影響をうけるこ
となく脱気器への給水温度の調整が可能であり、
脱気器への給水温度の上昇、例えば85℃以上によ
る脱気器での脱気効率の低下を防止できる。
Furthermore, by performing the following control using the instrumentation thermometer and the bypass temperature control valve, the temperature of the water supplied to the deaerator can be adjusted without being affected by the temperature of the water supplied from the water tank to the water preheater. It is possible and
It is possible to prevent a decrease in deaeration efficiency in the deaerator due to an increase in the temperature of water supplied to the deaerator, for example, 85°C or higher.

すなわち、 (1) 給水タンクからの給水温度が計装温度計に設
定した制御温度より低くなつた場合、給水タン
クからの給水量を一部をバイパス管へ流すこと
により、給水予熱器への給水温度を一定の制御
温度に制御する。
In other words, (1) When the temperature of the water supplied from the water tank becomes lower than the control temperature set on the instrument thermometer, part of the amount of water supplied from the water tank is diverted to the bypass pipe, thereby reducing the amount of water supplied to the water preheater. Control the temperature to a constant control temperature.

この場合、脱気器入口への給水温度は、定常
運転時、つまり給水予熱器への給水を一定の制
御温度で、全量流した場合の給水温度より低く
なる。
In this case, the temperature of the feed water to the deaerator inlet will be lower than the temperature of the feed water during steady operation, that is, when the entire amount of water is fed to the feed water preheater at a constant controlled temperature.

これは、給水量の一部をバイパス管へ流すた
め、給水予熱器への給水量が減少し、給水予熱
器での排ガスからの受熱量が減少することによ
るものである。
This is because a portion of the water supply flows into the bypass pipe, so the amount of water supplied to the water preheater decreases, and the amount of heat received from the exhaust gas at the water preheater decreases.

(2) 一方、給水タンクからの給水温度が計装温度
計に設定した制御温度より高くなつた場合も同
様に、つまり、給水タンクからの給水量の一部
をバイパス管へ流すことにより給水予熱器への
給水温度を一定の制御温度に制御する。この場
合も脱気器入口への給水温度は前記の理由と同
様に定常運転時より低くなる。
(2) On the other hand, if the temperature of the water supplied from the water tank becomes higher than the control temperature set on the instrument thermometer, the water supply can be preheated by flowing part of the water supply from the water tank to the bypass pipe. The temperature of water supplied to the vessel is controlled to a constant temperature. In this case as well, the temperature of the water supplied to the deaerator inlet will be lower than during steady operation for the same reason as described above.

ここで本給水予熱装置の運転における脱気器へ
の給水温度が一番高くなる場合は、 定常運転時、つまり、給水予熱器への給水
を、一定の制御温度で全量流した場合で、 給水予熱器設置部での排ガス温度、排ガス量
が最大の場合である。
Here, when the temperature of the water supplied to the deaerator during operation of this feed water preheating device is the highest, it is during steady operation, that is, when the entire amount of water supplied to the feed water preheater is flowing at a constant controlled temperature. This is the case where the exhaust gas temperature and exhaust gas amount at the preheater installation part are maximum.

そこで、この場合においても脱気器への給水
温度が上昇、例えば85℃以上することのないよ
うに、給水予熱器への給水制御温度を、あらか
じめ給水流量、最大排ガス温度及びガス量、給
水予熱器能力、水対水熱交換器能力より、机上
にて試算・設定しておけば、給水タンクから給
水予熱器への供給される給水温度が変動した場
合、前記(1),(2),の作用により、脱気器へ常時
例えば85℃以下の給水が可能となり脱気効率が
向上できる。
Therefore, in order to prevent the water supply temperature to the deaerator from rising, e.g. 85°C or higher, even in this case, the water supply control temperature to the supply water preheater should be set in advance based on the supply water flow rate, maximum exhaust gas temperature and gas amount, and the supply water preheating temperature. If the temperature of the water supplied from the water tank to the water preheater fluctuates, the above (1), (2), Due to this action, it is possible to constantly supply water at a temperature of, for example, 85°C or lower to the deaerator, and the deaeration efficiency can be improved.

〔考案の効果〕[Effect of idea]

本考案は、給水予熱器設備の給水予熱開始及び
停止時過程で発生しやすいダストの付着を防止で
き、かつ冬期の水温度低下時にも熱回収量を向上
させ、更に脱気器への給水温度の上昇をおさえ脱
気器での脱気効率を向上できるという効果を有す
る。
This invention can prevent the adhesion of dust that is likely to occur during the start and stop process of preheating the feed water in the feed water preheater equipment, improve the amount of heat recovery even when the water temperature drops in winter, and further improve the temperature of the water feed to the deaerator. This has the effect of suppressing the increase in air pressure and improving the deaeration efficiency in the deaerator.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案に係る給水予熱装置を設けたボイラ
給水系のシステムを示すものである。 1……タンク、2……水−水熱交換器、3……
給水予熱器、4……脱気器給水配管、5……脱気
器、6……脱気器加熱蒸気配管、7……ボイラ給
水配管、8……循環配管、9……バイパス管、1
0……脱気器給水ポンプ、11……バイパス温度
制御弁、12……循環ポンプ、13……計装温度
計、14……電動ニードル弁(脱気水供給弁)。
The figure shows a boiler water supply system equipped with a feed water preheating device according to the present invention. 1...Tank, 2...Water-water heat exchanger, 3...
Feed water preheater, 4... Deaerator water supply piping, 5... Deaerator, 6... Deaerator heating steam piping, 7... Boiler feed water piping, 8... Circulation piping, 9... Bypass pipe, 1
0... Deaerator water supply pump, 11... Bypass temperature control valve, 12... Circulation pump, 13... Instrumentation thermometer, 14... Electric needle valve (deaerated water supply valve).

Claims (1)

【実用新案登録請求の範囲】 給水タンクからボイラへの給水路に、外部を排
ガス通路で囲まれた給水予熱器と、同給水予熱器
の下流側に位置し加熱蒸気で給水を脱気する脱気
器とを備えた給水予熱装置において、 前記脱気器の下流と前記給水予熱器上流の給水
路を連絡して循環系を構成する循環流路を形成
し、同循環流路に循環ポンプと流量調節可能な脱
気水供給弁を配置し、 前記給水予熱器への入側の給水と同給水予熱器
からの出側の給水とを熱交換させる水対水熱交換
器を給水予熱器の近傍へ設け、 同給水予熱器への入側で同水対水熱交換器の上
流側の給水路と同給水予熱器からの出側で同水対
水熱交換器の下流側の給水路とを連絡するバイパ
ス管を設け、 同バイパス管へ同給水予熱器への入側で同水対
水熱交換器の下流側の給水器へ取りつけた計装温
度計で検知した給水温度によりバイパス流量を調
節可能にしたバイパス温度制御弁を配置したこと
を特徴とする給水予熱装置。
[Scope of Claim for Utility Model Registration] A feed water preheater, which is surrounded by an exhaust gas passage on the outside, is installed in the water supply waterway from the water tank to the boiler, and a degassing device located downstream of the feed water preheater, which degass the feed water using heated steam. In the feedwater preheating device equipped with an air heater, a circulation flow path forming a circulation system is formed by connecting a water supply waterway downstream of the deaerator and upstream of the feedwater preheater, and a circulation pump and a circulation flow path are provided in the circulation flow path. A deaerated water supply valve with an adjustable flow rate is arranged, and a water-to-water heat exchanger is installed in the feed water preheater to exchange heat between the feed water on the inlet side of the feed water preheater and the feed water on the outlet side from the feed water preheater. The water supply channel is installed nearby, and is connected to the water supply channel on the upstream side of the water-to-water heat exchanger on the inlet side to the feedwater preheater, and the water supply channel on the downstream side of the water-to-water heat exchanger on the exit side from the feedwater preheater. A bypass pipe is installed to connect the feed water, and the bypass flow rate is determined by the feed water temperature detected by an instrumentation thermometer attached to the water supply device on the downstream side of the water-to-water heat exchanger at the inlet side of the feed water preheater to the bypass pipe. A water supply preheating device characterized by having an adjustable bypass temperature control valve.
JP1985011392U 1985-01-29 1985-01-29 Expired JPH0419284Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985011392U JPH0419284Y2 (en) 1985-01-29 1985-01-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985011392U JPH0419284Y2 (en) 1985-01-29 1985-01-29

Publications (2)

Publication Number Publication Date
JPS61128510U JPS61128510U (en) 1986-08-12
JPH0419284Y2 true JPH0419284Y2 (en) 1992-04-30

Family

ID=30493471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985011392U Expired JPH0419284Y2 (en) 1985-01-29 1985-01-29

Country Status (1)

Country Link
JP (1) JPH0419284Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505762A (en) * 1973-05-21 1975-01-21
JPS57182001A (en) * 1981-04-30 1982-11-09 Toyo Boseki Method of recovering heat of exhaust gas

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131908U (en) * 1983-02-25 1984-09-04 株式会社東芝 Combined cycle power plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505762A (en) * 1973-05-21 1975-01-21
JPS57182001A (en) * 1981-04-30 1982-11-09 Toyo Boseki Method of recovering heat of exhaust gas

Also Published As

Publication number Publication date
JPS61128510U (en) 1986-08-12

Similar Documents

Publication Publication Date Title
JP3082826B2 (en) Exhaust heat recovery device
JP4725985B2 (en) Operation method of flue gas treatment equipment
JPH03124902A (en) Combined cycle power plant and operating method therefor
WO2012090517A1 (en) Heat recovery and utilization system
JP2016142515A (en) Heat exchanger and heat exchanger control method
JP5348477B2 (en) Boiler and concentrated blow method
JPH0419284Y2 (en)
JPH09122438A (en) Exhaust gas treatment system and its operation method
CN210688281U (en) Flue gas treatment system
JP3783122B2 (en) Smoke removal equipment
JP3776641B2 (en) Gas gas heat exchanger
JP2009216279A (en) Gas-gas heat exchanger and its heat exchanging method
KR200234751Y1 (en) Circulation device for array recovery system
JPH1199317A (en) Flue gas desulfurizer and its operation
JPS61108814A (en) Gas-steam turbine composite facility
CN108506923A (en) A kind of boiler supply water deaerating system
JP2556596B2 (en) Heat recovery device for coke dry fire extinguishing equipment
CN218626800U (en) Low-grade flue gas waste heat recovery system
JP2004333033A (en) Heat medium circulating device and method for gas-gas heat exchanger
CN217109523U (en) Condensate system and dry quenching boiler system
JPS625003A (en) Drain tank
JPS59147907A (en) Feedwater heating system of steam turbine plant
JP2001289042A (en) Exhaust heat recovery device
JPH05187606A (en) Water supply preheater for coke dry type fire fighting apparatus
JP2002005402A (en) Waste heat recovery system for refuse disposal plant