JP5348477B2 - Boiler and concentrated blow method - Google Patents

Boiler and concentrated blow method Download PDF

Info

Publication number
JP5348477B2
JP5348477B2 JP2009052032A JP2009052032A JP5348477B2 JP 5348477 B2 JP5348477 B2 JP 5348477B2 JP 2009052032 A JP2009052032 A JP 2009052032A JP 2009052032 A JP2009052032 A JP 2009052032A JP 5348477 B2 JP5348477 B2 JP 5348477B2
Authority
JP
Japan
Prior art keywords
blow
water
water supply
line
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009052032A
Other languages
Japanese (ja)
Other versions
JP2010203728A (en
Inventor
雅夫 蔵野
和洋 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2009052032A priority Critical patent/JP5348477B2/en
Publication of JP2010203728A publication Critical patent/JP2010203728A/en
Application granted granted Critical
Publication of JP5348477B2 publication Critical patent/JP5348477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boiler capable of efficiently heat-exchanging between blow water and supplied water by concentrated blow. <P>SOLUTION: The boiler 1 includes a can 3, a steam-water separator 5, a steam taking-out line 6, a downcomer 7, a water supply line 11 for supplying water to the can 3, a concentrated blow line 15 for performing the concentrated blow, a heat exchanger 20 for heat-exchanging between the supplied water of the water supply line 11 and the blow water of the concentrated blow line 15, and a controller 30. The concentrated blow line 15 is installed with a concentrated blow valve 16 and a strainer 17. The concentrated blow valve 16 is an electric proportional control valve capable of continuously adjusting flow rate. The controller 30 controls a water supply pump 12 and the concentrated blow valve 16 so as to make the heat exchanger 20 continuously heat-exchange between the supplied water and the blow water by performing continuous water supply and continuous concentrated blow. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、燃料を燃焼させて得た熱を水に伝え、水蒸気や温水に換える熱源機器であるボイラに関し、特に、ボイラの濃縮ブローに関する。   The present invention relates to a boiler that is a heat source device that transfers heat obtained by burning fuel to water and converts it to water vapor or hot water, and more particularly to a concentrated blow of the boiler.

一般に、ボイラにおいては、ボイラ内の缶水を長時間に亘り高温で加熱し続けると、発生する蒸気量に比例して缶水の濃縮が進行し、蒸気の乾き度が低下してしまう。蒸気の乾き度が低下してくると、蒸気中にボイラ水が同伴してきてしまい、ボイラ水には種々の成分が含まれているため、蒸気に直接触れる機器にしみ等が付着したり、蒸気配管において振動や異音が発生したりする。   In general, in a boiler, if the can water in the boiler is continuously heated at a high temperature for a long time, the concentration of the can water proceeds in proportion to the amount of steam generated, and the dryness of the steam decreases. When the dryness of the steam decreases, the boiler water is accompanied by the steam, and the boiler water contains various components. Vibration or abnormal noise may occur in the piping.

このため、従来のボイラでは、濃縮ブロー弁を備えた濃縮ブローラインをボイラ缶体に接続して設置し、濃縮ブロー弁を開状態としてボイラ水の一部を排出する濃縮ブローにより、ボイラ水の濃縮を防止しており、例えば、このようなボイラが下記特許文献1に開示されている。   For this reason, in a conventional boiler, a concentrating blow line provided with a concentrating blow valve is connected to the boiler can body, and the condensing blow is performed with the concentrating blow valve opened to discharge part of the boiler water. Concentration is prevented, and for example, such a boiler is disclosed in Patent Document 1 below.

また、下記特許文献2には、濃縮ブローを行うボイラにおいて、濃縮ブローによる無駄な廃熱を少なくするために、ボイラ缶体へ供給する給水と、ボイラ缶体から排出されたブロー水との間で熱交換を行うための熱交換器を設置した構成が開示されている。   Further, in Patent Document 2 below, in a boiler that performs a concentration blow, in order to reduce wasteful waste heat due to the concentration blow, there is a gap between water supplied to the boiler can body and blow water discharged from the boiler can body. The structure which installed the heat exchanger for performing heat exchange in is disclosed.

特開2008−2739号公報JP 2008-2739 A 特開2002−22106号公報JP 2002-22106 A

ところで、従来のボイラにおいては、濃縮ブロー弁として電磁弁が用いられている。電磁弁は、構造上、全開又は全閉の状態しか取り得ないため、電磁弁の開時間を調整する間欠ブロー制御を行うことで、濃縮ブローにより排出されるブロー水の量(濃縮ブロー量)を調節していた。   By the way, in a conventional boiler, an electromagnetic valve is used as a concentration blow valve. Since the solenoid valve can only be in the fully open or fully closed state due to its structure, the amount of blow water discharged by the concentrate blow (concentrated blow amount) can be reduced by performing intermittent blow control to adjust the open time of the solenoid valve. I was adjusting.

しかし、間欠的に濃縮ブローが行われる場合、ブロー水が排出されていない間に給水が行われると、給水とブロー水との間で熱交換を行うことができず、濃縮ブローに伴う廃熱を有効に利用することができない。   However, when concentration blow is intermittently performed, if water is supplied while the blow water is not discharged, heat exchange cannot be performed between the water supply and the blow water, and waste heat associated with the concentration blow is generated. Cannot be used effectively.

本発明は、このような課題に鑑みてなされたものであり、濃縮ブローによるブロー水と給水との間で効率的に熱交換が可能なボイラを提供することを目的とする。   This invention is made | formed in view of such a subject, and it aims at providing the boiler which can exchange heat efficiently between the blow water and water supply by concentration blow.

上記課題を解決するために、本発明に係るボイラは、缶体と、前記缶体に給水するための給水ラインと、前記缶体からブロー水を排出するための濃縮ブローラインと、前記給水ラインを流れる給水と前記濃縮ブローラインを流れるブロー水との間で熱交換を行うための熱交換器と、を備えるボイラにおいて、前記給水ラインは、インバータ制御による連続給水を行う給水ポンプを有し、前記濃縮ブローラインは、ブロー水量を連続して調整可能な比例制御弁を有し、連続濃縮ブロー及び連続給水を行うことで、給水中に前記熱交換器において前記給水と前記ブロー水との間で連続的に熱交換を行わせるように前記給水ポンプ及び前記比例制御弁を制御する制御器を備えることを特徴とする。 In order to solve the above problems, a boiler according to the present invention includes a can body, a water supply line for supplying water to the can body, a concentration blow line for discharging blow water from the can body, and the water supply line. A heat exchanger for exchanging heat between the feed water flowing through and the blow water flowing through the concentration blow line, the water feed line has a feed water pump that performs continuous water feed by inverter control , The concentration blow line has a proportional control valve capable of continuously adjusting the amount of blow water, and performs continuous concentration blow and continuous water supply , so that the water is supplied between the water supply and the blow water in the heat exchanger during water supply. And a controller for controlling the water supply pump and the proportional control valve so as to perform heat exchange continuously.

また、本発明に係る濃縮ブロー方法は、缶体と、前記缶体に給水するための給水ラインと、前記缶体からブロー水を排出するための濃縮ブローラインと、前記給水ラインを流れる給水と前記濃縮ブローラインを流れるブロー水との間で熱交換を行うための熱交換器と、を備えるボイラにおける濃縮ブロー方法において、前記濃縮ブローラインにおいて連続濃縮ブローを行うと共に、前記給水ラインにおいて連続給水を行うことで、給水中に前記熱交換器において前記給水と前記ブロー水との間で連続的に熱交換を行わせることを特徴とする。 The concentration blow method according to the present invention includes a can body, a water supply line for supplying water to the can body, a concentration blow line for discharging blow water from the can body, and water supply flowing through the water supply line. And a heat exchanger for exchanging heat with blow water flowing through the concentration blow line. In the method for concentration blow in a boiler, continuous concentration blow is performed in the concentration blow line, and continuous water supply is performed in the water supply line. By performing the above, heat exchange is continuously performed between the water supply and the blow water in the heat exchanger during water supply.

本発明によれば、濃縮ブローによるブロー水と給水との間で効率的に熱交換が可能となる。   According to the present invention, it is possible to efficiently exchange heat between blow water and water supply by concentration blow.

図1は、本実施形態に係るボイラの構成を概略的に示す模式図である。FIG. 1 is a schematic diagram schematically showing the configuration of the boiler according to the present embodiment.

以下、図面を参照しながら、本発明の実施形態に係るボイラについて説明する。図1は、本実施形態に係るボイラ1の構成を概略的に示す模式図である。同図に示すように、ボイラ1は、缶体3、気水分離器5、蒸気取出ライン6、降水管7、缶体3に給水するための給水ライン11、濃縮ブローを行うための濃縮ブローライン15、給水ライン11の給水と濃縮ブローライン15のブロー水との間で熱交換を行うための熱交換器20及び制御器30を備えている。   Hereinafter, a boiler according to an embodiment of the present invention will be described with reference to the drawings. Drawing 1 is a mimetic diagram showing roughly the composition of boiler 1 concerning this embodiment. As shown in FIG. 1, the boiler 1 includes a can body 3, a steam / water separator 5, a steam discharge line 6, a downcomer pipe 7, a water supply line 11 for supplying water to the can body 3, and a concentration blow for performing concentration blow. The heat exchanger 20 and the controller 30 for exchanging heat between the water supplied from the line 15 and the water supply line 11 and the blow water from the concentration blow line 15 are provided.

缶体3には、蒸気圧力を測定するための圧力センサ4が設置されており、その検出値は、制御器30へと送られる。給水ライン11には、給水ポンプ12が設置されており、この給水ポンプ12には、インバータ回路13が接続されている。インバータ回路13は、制御器30と接続されており、インバータ制御のために給水ポンプ12の回転数を制御器30へと送信する。給水ポンプ12は、インバータ回路13を介して制御器30によって制御され、インバータ制御による比例(連続)給水を行う。   The can 3 is provided with a pressure sensor 4 for measuring the vapor pressure, and the detected value is sent to the controller 30. A water supply pump 12 is installed in the water supply line 11, and an inverter circuit 13 is connected to the water supply pump 12. The inverter circuit 13 is connected to the controller 30 and transmits the rotation speed of the water supply pump 12 to the controller 30 for inverter control. The feed water pump 12 is controlled by the controller 30 via the inverter circuit 13, and performs proportional (continuous) water supply by inverter control.

濃縮ブローライン15には、濃縮ブロー弁16及びストレーナ17が設置されており、濃縮ブロー弁16は、制御器30によって制御される。また、本実施形態に係る濃縮ブロー弁16は、流量を連続的に調整することが可能な電動比例制御弁である。流量を調整できる電動比例制御弁は、流量が少量のときに弁の詰まりが発生しやすいが、本実施形態では、電動比例制御弁である濃縮ブロー弁16の上流側にストレーナ17を設置することで、濃縮ブロー弁16の詰まりを防止している。また、濃縮ブロー弁16の詰まりを防止するために、ストレーナ17の設置に加え、濃縮ブロー弁16に備えられるボールバルブを180°回転させて逆洗浄を行うことで濃縮ブロー弁16の詰まりを防止しても良い。 The concentration blow line 15 is provided with a concentration blow valve 16 and a strainer 17, and the concentration blow valve 16 is controlled by a controller 30. The concentration blow valve 16 according to the present embodiment is an electric proportional control valve capable of continuously adjusting the flow rate. Although the electric proportional control valve capable of adjusting the flow rate is likely to be clogged when the flow rate is small, in this embodiment, a strainer 17 is installed upstream of the concentration blow valve 16 that is an electric proportional control valve. Thus, the concentration blow valve 16 is prevented from being clogged. Also, prevention in order to prevent clogging of the blowdown valve 16, in addition to the installation of the strainer 17, the clogging of the blowdown valve 16 by performing the reverse cleaning is rotated 180 ° ball valve provided in the blowdown valve 16 You may do it.

本実施形態では、濃縮ブローライン15におけるブロー弁として、連続的に流量可変な濃縮ブロー弁16を用いることで、ブロー水量を連続的に調整することができる。したがって、従来のように、電磁弁の開時間の制御によりブロー水量を間欠調整する場合には、熱交換器20をブロー水が流れない場合が生じるのに対して、本実施形態では、連続濃縮ブローにより、熱交換器20において連続的にブロー水を流すことが可能となる。   In this embodiment, the amount of blow water can be continuously adjusted by using the concentration blow valve 16 having a continuously variable flow rate as the blow valve in the concentration blow line 15. Therefore, when the amount of blow water is intermittently adjusted by controlling the opening time of the solenoid valve as in the conventional case, the blow water may not flow through the heat exchanger 20, whereas in this embodiment, continuous concentration is performed. The blow water can be continuously flowed in the heat exchanger 20 by the blow.

上述したように、本実施形態では、インバータ制御により連続給水が行われており、連続濃縮ブローと併せて、ブロー水と給水との間で連続的に熱交換を行うことができ、濃縮ブローに伴う無駄な廃熱を大きく抑えることができる。   As described above, in this embodiment, continuous water supply is performed by inverter control, and continuous heat exchange can be performed between the blow water and the water supply together with the continuous concentration blow. The wasteful heat that accompanies it can be greatly reduced.

続いて、本実施形態における制御器30による濃縮ブロー弁16の開度調整ついて詳細に説明する。濃縮ブロー弁16の開度X(%)は、機能設定による濃縮ブロー率A(%)(ブロー量と給水量との比率)と、蒸気圧力P(MPa)による圧力補正係数とから決定され、例えば、下記式により決定される。   Subsequently, the opening degree adjustment of the concentration blow valve 16 by the controller 30 in the present embodiment will be described in detail. The opening degree X (%) of the concentration blow valve 16 is determined from the concentration blow rate A (%) (ratio between the blow amount and the water supply amount) according to the function setting and the pressure correction coefficient due to the steam pressure P (MPa). For example, it is determined by the following formula.

Figure 0005348477
Figure 0005348477

したがって、濃縮ブロー率がA=20%で、蒸気圧力P=0.686MPa(7.0kgf/cm2)の場合には、圧力補正係数は1となり、ブロー弁16の開度Xは、100%となる。なお、蒸気圧力P≦0のときは、P=0.01とし、開度Xの上限は、100%である。また、蒸気圧力Pは、定期的に(例えば、1分ごとに)測定される。 Accordingly, when the concentration blow rate is A = 20% and the steam pressure P = 0.686 MPa (7.0 kgf / cm 2 ), the pressure correction coefficient is 1, and the opening X of the blow valve 16 is 100%. . When the steam pressure P ≦ 0, P = 0.01, and the upper limit of the opening degree X is 100%. Further, the vapor pressure P is measured periodically (for example, every minute ) .

もちろん、濃縮ブロー弁16の開度Xは、他の算出式を用いても良く、例えば、高燃焼換算時間や給水温度をパラメータとする式を用いても良い。なお、本実施形態では、制御器30は、給水ライン11における連続給水が停止した場合には、濃縮ブローによる無駄な廃熱を防ぐために、濃縮ブロー弁16を閉じるように制御する。   Of course, another calculation formula may be used for the opening degree X of the concentration blow valve 16, for example, a formula using the high combustion conversion time or the feed water temperature as a parameter may be used. In the present embodiment, when the continuous water supply in the water supply line 11 is stopped, the controller 30 controls the concentration blow valve 16 to be closed in order to prevent useless waste heat due to the concentration blow.

このように、本実施形態においては、濃縮ブロー弁として、流量を連続的に調整できる電動比例制御弁を採用することで、ブロー率に応じた流量による連続的なブロー水の排出が可能となり、連続的に供給される給水とブロー水との間で、効率的に熱交換が可能となる。特に、濃縮ブロー量が少ない領域では、従来の間欠濃縮ブローと比べて、熱損失を大きく抑えることができる。   Thus, in this embodiment, by adopting an electric proportional control valve that can continuously adjust the flow rate as a concentration blow valve, it becomes possible to discharge continuous blow water at a flow rate according to the blow rate, Heat exchange can be efficiently performed between continuously supplied water and blow water. In particular, in a region where the amount of concentration blow is small, heat loss can be greatly suppressed as compared with conventional intermittent concentration blow.

また、本実施形態によれば、連続的に濃縮ブローを行うことで、従来の間欠濃縮ブローの場合と比べて缶内ボイラ水の電気伝導度の変動を抑えて安定化させることができ、ボイラのメンテナンス性を向上させることもできる。   Further, according to the present embodiment, by continuously performing the concentration blow, it is possible to suppress the fluctuation in the electrical conductivity of the boiler water in the can as compared with the case of the conventional intermittent concentration blow, and to stabilize the boiler. The maintainability can be improved.

続いて、本実施形態に係る連続濃縮ブローによる熱交換器における熱回収量と、従来の間欠濃縮ブローによる熱交換器における熱回収量とを比較した試験結果について説明する。なお、上記実施形態では、熱回収率の最も良い連続濃縮ブローと連続給水との組み合わせについて説明したが、給水が間欠給水であったとしても、連続濃縮ブローを採用することで熱回収量を大きく向上させることができるので、本実施形態の変形例として、連続濃縮ブローと間欠給水を組み合わせた場合の試験結果も示した。   Then, the test result which compared the heat recovery amount in the heat exchanger by the continuous concentration blow which concerns on this embodiment, and the heat recovery amount in the heat exchanger by the conventional intermittent concentration blow is demonstrated. In the above embodiment, the combination of continuous concentrating blow and continuous water supply with the best heat recovery rate has been described. However, even if the water supply is intermittent water supply, the amount of heat recovery can be increased by adopting continuous concentrating blow. Since it can improve, the test result at the time of combining continuous concentration blow and intermittent water supply was also shown as a modification of this embodiment.

下記表1に、本実施形態(連続給水/連続濃縮ブロー)、本実施形態の変形例(間欠給水/連続濃縮ブロー)、比較例1(連続給水/間欠濃縮ブロー)及び比較例2(間欠給水/間欠濃縮ブロー)の熱交換器における熱回収量の試験結果を示す。また、表1では、濃縮ブロー率が5%、10%、15%、20%の場合の熱回収量を示しており、また、比較例2の各濃縮ブロー率における熱回収量を1とした場合の熱回収量を示している。   Table 1 below shows this embodiment (continuous water supply / continuous concentration blow), a modification of this embodiment (intermittent water supply / continuous concentration blow), comparative example 1 (continuous water supply / intermittent concentration blow) and comparative example 2 (intermittent water supply). The test result of the heat recovery amount in the heat exchanger of (/ intermittent concentration blow) is shown. Table 1 shows the heat recovery amount when the concentration blow rate is 5%, 10%, 15%, and 20%, and the heat recovery amount at each concentration blow rate of Comparative Example 2 is 1. In this case, the heat recovery amount is shown.

なお、本試験における間欠濃縮ブローは、濃縮ブロー率が20%の場合には、ブロー弁を常時開、15%の場合には、ブロー弁を7.5分開で2.5分閉、10%の場合には、ブロー弁を5分開で5分閉、5%の場合には、ブロー弁を2.5分開で7.5分閉のサイクルで間欠濃縮ブローを行うものである。   The intermittent concentration blow in this test is that the blow valve is always open when the concentration blow rate is 20%, the blow valve is opened for 7.5 minutes and closed for 2.5 minutes when the concentration blow rate is 15%, and 10%. When the blow valve is open for 5 minutes and closed for 5 minutes, and 5%, the blow valve is opened for 2.5 minutes and closed for 7.5 minutes to perform intermittent concentration blow.

Figure 0005348477
Figure 0005348477

表1に示すように、本実施形態は、比較例2と比較して、全ての濃縮ブロー率において、熱回収量を大きく向上させている。また、本実施形態と比較例1とを比較すると、濃縮ブロー率が20%の場合には、比較例1の場合にも常時電磁弁が開いているため、熱回収量はほぼ同じであるが、その他の濃縮ブロー率の場合には、本実施形態の熱回収量のほうが上回っており、熱回収率が大きく向上している。   As shown in Table 1, this embodiment greatly improves the amount of heat recovery compared to Comparative Example 2 at all concentrated blow rates. Further, comparing this embodiment with Comparative Example 1, when the concentration blow rate is 20%, the heat recovery amount is almost the same because the solenoid valve is always open in Comparative Example 1 as well. In the case of other concentrated blow rates, the heat recovery amount of the present embodiment is higher and the heat recovery rate is greatly improved.

また、本実施形態の変形例は、間欠給水であるため、連続給水及び間欠濃縮ブローを行う比較例1と比べると、電磁弁の閉時間の短い濃縮ブロー率15%及び20%において熱回収量が下回っているが、電磁弁の閉時間が長くなる濃縮ブロー率5%及び10%の場合には、熱回収率が大きく上回っていると共に、比較例2と比べると、熱回収率が大きく向上している。   Moreover, since the modified example of this embodiment is intermittent water supply, compared with Comparative Example 1 in which continuous water supply and intermittent concentration blow are performed, the amount of heat recovered is 15% and 20% in the concentration blow rate with a short closing time of the solenoid valve. However, when the concentration blow rate is 5% and 10%, which increases the closing time of the solenoid valve, the heat recovery rate is much higher and the heat recovery rate is greatly improved compared to Comparative Example 2. doing.

よって、この試験結果により、流量を連続的に調整できる比例制御弁を濃縮ブロー弁として用い、連続濃縮ブローを行う本発明の実施形態によれば、従来の間欠濃縮ブローを行う場合と比べて、熱交換器における熱回収率を大きく向上できることが裏付けられている。   Therefore, according to this test result, according to the embodiment of the present invention in which a continuous concentration blow is performed using a proportional control valve capable of continuously adjusting the flow rate as a concentration blow valve, compared to a case where a conventional intermittent concentration blow is performed, It is supported that the heat recovery rate in the heat exchanger can be greatly improved.

以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々の変形が可能である。例えば、上記実施形態では、ブロー水量を連続的に調整するための弁としては、電動比例制御弁を用いているが、弁を流れる流量を連続的に調整できる比例制御弁であれば、適宜他の弁を用いることができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, A various deformation | transformation is possible within the range which does not deviate from the main point of this invention. For example, in the above embodiment, an electric proportional control valve is used as a valve for continuously adjusting the amount of blow water. However, any other proportional control valve can be used as long as it can continuously adjust the flow rate flowing through the valve. The valve can be used.

1 ボイラ
3 缶体
4 圧力センサ
5 気水分離器
6 蒸気取出ライン
7 降水管
11 給水ライン
12 給水ポンプ
13 インバータ回路
15 濃縮ブローライン
16 濃縮ブロー弁
17 ストレーナ
20 熱交換器
30 制御器
DESCRIPTION OF SYMBOLS 1 Boiler 3 Can body 4 Pressure sensor 5 Air-water separator 6 Steam extraction line 7 Precipitation pipe 11 Water supply line 12 Water supply pump 13 Inverter circuit 15 Concentration blow line 16 Concentration blow valve 17 Strainer 20 Heat exchanger 30 Controller

Claims (2)

缶体と、前記缶体に給水するための給水ラインと、前記缶体からブロー水を排出するための濃縮ブローラインと、前記給水ラインを流れる給水と前記濃縮ブローラインを流れるブロー水との間で熱交換を行うための熱交換器と、を備えるボイラにおいて、
前記給水ラインは、インバータ制御による連続給水を行う給水ポンプを有し、
前記濃縮ブローラインは、ブロー水量を連続して調整可能な比例制御弁を有し、
連続濃縮ブロー及び連続給水を行うことで、給水中に前記熱交換器において前記給水と前記ブロー水との間で連続的に熱交換を行わせるように前記給水ポンプ及び前記比例制御弁を制御する制御器を備えることを特徴とするボイラ。
Between a can body, a water supply line for supplying water to the can body, a concentration blow line for discharging blow water from the can body, a water supply flowing through the water supply line, and a blow water flowing through the concentration blow line In a boiler comprising a heat exchanger for performing heat exchange at
The water supply line has a water supply pump that performs continuous water supply by inverter control ,
The concentration blow line has a proportional control valve capable of continuously adjusting the amount of blow water,
By performing continuous concentration blow and continuous water supply , the water supply pump and the proportional control valve are controlled so that heat is continuously exchanged between the water supply and the blow water in the heat exchanger during water supply. A boiler comprising a controller.
缶体と、前記缶体に給水するための給水ラインと、前記缶体からブロー水を排出するための濃縮ブローラインと、前記給水ラインを流れる給水と前記濃縮ブローラインを流れるブロー水との間で熱交換を行うための熱交換器と、を備えるボイラにおける濃縮ブロー方法において、
前記濃縮ブローラインにおいて連続濃縮ブローを行うと共に、前記給水ラインにおいて連続給水を行うことで、給水中に前記熱交換器において前記給水と前記ブロー水との間で連続的に熱交換を行わせることを特徴とする濃縮ブロー方法。
Between a can body, a water supply line for supplying water to the can body, a concentration blow line for discharging blow water from the can body, a water supply flowing through the water supply line, and a blow water flowing through the concentration blow line And a heat exchanger for performing heat exchange with a concentration blow method in a boiler comprising:
In addition to performing continuous concentration blow in the concentration blow line and continuous water supply in the water supply line, heat exchange is continuously performed between the water supply and the blow water in the heat exchanger during water supply. Concentrated blow method characterized by.
JP2009052032A 2009-03-05 2009-03-05 Boiler and concentrated blow method Active JP5348477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009052032A JP5348477B2 (en) 2009-03-05 2009-03-05 Boiler and concentrated blow method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009052032A JP5348477B2 (en) 2009-03-05 2009-03-05 Boiler and concentrated blow method

Publications (2)

Publication Number Publication Date
JP2010203728A JP2010203728A (en) 2010-09-16
JP5348477B2 true JP5348477B2 (en) 2013-11-20

Family

ID=42965380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009052032A Active JP5348477B2 (en) 2009-03-05 2009-03-05 Boiler and concentrated blow method

Country Status (1)

Country Link
JP (1) JP5348477B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5671915B2 (en) * 2010-09-29 2015-02-18 三浦工業株式会社 Boiler equipment
JP5826539B2 (en) * 2011-07-07 2015-12-02 株式会社日本サーモエナー Boiler blow control device and blow control method
JP2017161105A (en) * 2016-03-07 2017-09-14 富士電機株式会社 Heat pump type steam generator
JP2019163882A (en) * 2018-03-19 2019-09-26 栗田工業株式会社 Blow rate calculation device of boiler
JP2019163881A (en) * 2018-03-19 2019-09-26 栗田工業株式会社 Boiler water chemical concentration measuring device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183303A (en) * 1987-01-26 1988-07-28 房森サ−ビス株式会社 Blow controller for boiler
JP2000171002A (en) * 1998-12-07 2000-06-23 Miura Co Ltd Concentration blow control method for boiler
JP4654392B2 (en) * 2000-08-07 2011-03-16 株式会社片山化学工業研究所 Boiler water treatment system and blow water management method using the same
JP5000909B2 (en) * 2006-03-28 2012-08-15 栗田工業株式会社 Operation method of boiler equipment

Also Published As

Publication number Publication date
JP2010203728A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP5348477B2 (en) Boiler and concentrated blow method
JP5593902B2 (en) Heat pump steam generator
JP5008134B2 (en) Water supply preheating boiler
JP2006105442A (en) Pressure drain collecting system
JP5370807B2 (en) Latent heat recovery water heater
CN103727519B (en) Device for preventing low-temperature corrosion of economizer heating surface
JP2010270962A (en) Flare stack heat recovering device
JP2012189297A (en) Boiler equipment and control method for outlet gas temperature therefor
JP2010266158A (en) Boiler
CN104990065B (en) Boiler feedwater circulation deaerating type of cycles in turbine LP rotors
JP5598698B2 (en) Bath equipment
JP2011242018A (en) Heat pump steam generator
JP2010203729A (en) Boiler and concentrated blow method
JP2011021768A (en) Boiler
JP2015010798A (en) Boiler
CN203656895U (en) Device for preventing low temperature corrosion on coal economizer heating surfaces
CN206347557U (en) A kind of feed water system of boiler
JP2007139235A (en) Control method for condenser
US11333348B2 (en) Exhaust gas cooler
JP2009210150A (en) Hot water supply system
JP2013130356A (en) Storage water heater
JP2011025206A (en) Degassed water supply system
JP2012215314A (en) Waste heat recovery boiler and operation method therefor
JPH0419284Y2 (en)
JP2013029267A (en) Boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130807

R150 Certificate of patent or registration of utility model

Ref document number: 5348477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250