JPH04192362A - Manufacture of electrostatic induction semiconductor device - Google Patents

Manufacture of electrostatic induction semiconductor device

Info

Publication number
JPH04192362A
JPH04192362A JP19353190A JP19353190A JPH04192362A JP H04192362 A JPH04192362 A JP H04192362A JP 19353190 A JP19353190 A JP 19353190A JP 19353190 A JP19353190 A JP 19353190A JP H04192362 A JPH04192362 A JP H04192362A
Authority
JP
Japan
Prior art keywords
substrate
region
semiconductor device
conductivity type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19353190A
Other languages
Japanese (ja)
Inventor
Hajime Akiyama
肇 秋山
Yoichi Akasaka
洋一 赤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19353190A priority Critical patent/JPH04192362A/en
Publication of JPH04192362A publication Critical patent/JPH04192362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Abstract

PURPOSE:To suppress autodoping and to prevent blockade of channels with inversion layers by ion implantation into the surface of a substrate with such an acceleration energy that gate regions are not exposed. CONSTITUTION:The rear of an N- silicon substrate 1 is spread with a rear- preventing SiO2 film 2, and the top of the substrate is masked with a resist 5 for injection of boron beams 101. A guard ring P<+> region 4 formed during injection is formed in a state of embedment in the substrate 1. Next, a resist 52 is formed for injection of high energy baron beams 101 to form a P gate region 6; then, an epitaxial grown layer 7b having a resistivity equal to that of the N-semiconductor substrate 1 is formed. This method causes no autodoping because of no contact of a high-doped conductivity-II region area with the epitaxial grown layer 9b and therefore eliminates problems such as blockade of channels with inversion layers.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は半導体装置、特に静電誘導型の半導体装置の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a semiconductor device, particularly an electrostatic induction type semiconductor device.

(従来の技術〕 第2図(i)は従来の埋込みゲート層を有する静電誘導
型サイリスタ(以下5IThと称する)の断面図であり
、図におて、1はN−基板、4はガードリングP″領域
、6は埋込みP令頁域、7はN−エビ層、8はカソード
A1電極、9はアノードP゛領域、12はパッシベーシ
ョン膜、13はカソードA1電極、14はゲートAff
i電極、15はセグメントパッシベーション膜、16は
Ti蒸着膜、17はNi蒸着膜、18はAu蒸着膜であ
る。
(Prior Art) FIG. 2(i) is a cross-sectional view of a conventional static induction thyristor (hereinafter referred to as 5ITh) having a buried gate layer. In the figure, 1 is an N-substrate, 4 is a guard Ring P'' area, 6 is embedded P area, 7 is N-layer, 8 is cathode A1 electrode, 9 is anode P'' area, 12 is passivation film, 13 is cathode A1 electrode, 14 is gate Aff
In the i-electrode, 15 is a segment passivation film, 16 is a Ti vapor deposited film, 17 is a Ni vapor deposited film, and 18 is an Au vapor deposited film.

5IThはゲート電極14に印加する電圧によってゲー
ト近傍の空乏層を制御して電流をオン。
5ITh controls the depletion layer near the gate by the voltage applied to the gate electrode 14 to turn on the current.

オフするものであり、その特性は例えば、J、N15h
izaha、に、Muraoka、T、Tamamus
hi、and Y、Kawamura。
It turns off, and its characteristics are, for example, J, N15h
izaha, ni, Muraoka, T, Tamamus
Hi, and Y, Kawamura.

’Low−1oss high−speed ssmi
tching devtces、2300−v150−
^5tatic 1nduction thyrist
or、”IEEE Trans、Electron D
evices、vol、ED−32,no、4.pp、
822−830、1985に記載されているように、高
耐圧、大容量デバイスとして高速スイッチングを実現で
きる等の利点がある。
'Low-1oss high-speed ssmi
tching devtces, 2300-v150-
^5tatic 1induction thyrist
or, “IEEE Trans, Electron D
evices, vol, ED-32, no, 4. pp,
822-830, 1985, it has advantages such as being able to realize high-speed switching as a high-voltage, large-capacity device.

以上の構造を有する5IThの製造方法の一例を第2図
を用いて順次説明する。
An example of a method for manufacturing 5ITh having the above structure will be sequentially explained using FIG. 2.

N−シリコン基板1にFZ<111>を用い、その裏面
に裏面保護用の5iOz膜2を形成し、基板1上面に拡
散マスクとしてのSing膜3を設はボロン気相デボを
用いた選択拡散によってガードリングP″領域4を形成
する。
FZ<111> is used for the N-silicon substrate 1, a 5iOz film 2 for back surface protection is formed on the back surface, and a Sing film 3 as a diffusion mask is provided on the top surface of the substrate 1. Selective diffusion using boron vapor phase deposition is performed. A guard ring P'' region 4 is formed by this.

次に図(b)に示すように一旦、5ift膜3を除去し
た後、全面にS IOz膜5を形成し更にレジストマス
ク50を形成した後、ボロンイオン注入100によって
Pゲート9M域6を形成する。
Next, as shown in Figure (b), after removing the 5ift film 3, a SIOz film 5 is formed on the entire surface, a resist mask 50 is formed, and a P gate 9M region 6 is formed by boron ion implantation 100. do.

次に図(C)に示すようにレジストマスク50と5to
t)lI5を除去後に1段目のエビ成長層7aを形成す
る。このエビ層7aの比抵抗は0.1〜0゜2Ω・cm
であり、基Fi1に比較して低く、その厚さは2μm程
変である。
Next, as shown in Figure (C), resist masks 50 and 5to
t) After removing lI5, the first shrimp growth layer 7a is formed. The specific resistance of this shrimp layer 7a is 0.1~0゜2Ω・cm
is lower than that of the base Fi1, and its thickness varies by about 2 μm.

次に図(d)に示すように2段目のエビ成長層7bを形
成する。その比抵抗は10〜50Ω・cm。
Next, as shown in Figure (d), a second shrimp growth layer 7b is formed. Its specific resistance is 10 to 50 Ω·cm.

厚さは約26μm程度である。The thickness is approximately 26 μm.

上記エビ成長層7a、7b影形成の熱ドライブ効果によ
り2段目のエビ成長層7b形成終了後にはエビ成長層全
体として、はぼ比抵抗が2段目のエビ成長層7bに近い
、−様なエビ層7が形成されることとなる。
Due to the thermal drive effect of the shadow formation of the shrimp growth layers 7a and 7b, after the formation of the second shrimp growth layer 7b, the resistivity of the shrimp growth layer as a whole is close to that of the second shrimp growth layer 7b. A shrimp layer 7 will be formed.

次に図(e)に示すように、カソードN′9.1域8、
アノードP″領域9を順次拡散によって形成し、図げ)
に示すようにシリコン・エッチを行なうことによって段
差部10を形成し、セグメントを形成すると共にガード
リングP″領域4を表面に露出させる。
Next, as shown in Figure (e), the cathode N'9.1 area 8,
The anode P'' region 9 is sequentially formed by diffusion (Fig.
As shown in FIG. 3, a step portion 10 is formed by performing a silicon etch to form a segment and expose the guard ring P'' region 4 to the surface.

次に図(粉に示すように段差部10を熱酸化膜、CVD
酸化111によって覆い、パッシベーション膜12を形
成する。
Next, as shown in the figure (powder), the stepped portion 10 is coated with thermal oxide film, CVD.
Cover with oxide 111 to form a passivation film 12.

次に図(ハ)に示すようにカソードAl電極13゜ゲー
トAf電極14をAlSiスパッタによって形成するが
、コンタクト抵抗を極力下げるために予め下地にPtS
iを形成してから行ない、その後、パッシベーション膜
12の強化及び、ゲート電極14の取り出し部分以外を
保護する目的でプラズマシリコン窒化膜を用いてセグメ
ントパッシベーション膜15を形成し、図(i)に示す
ように表面電極としてTi蒸気)1!16.Ni蒸気膜
17゜Au蒸気膜18を!@次影形成る。
Next, as shown in FIG.
After that, a segment passivation film 15 is formed using a plasma silicon nitride film for the purpose of strengthening the passivation film 12 and protecting the area other than the extraction portion of the gate electrode 14, as shown in FIG. Ti vapor as a surface electrode)1!16. Ni vapor film 17° Au vapor film 18! @ Next shadow is formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の5IThの製造方法は以上のように構成されてい
たので、第2図(C)で行うエビ成長層の下地はN−基
板lとガードリングP’6.1域4及びゲー トP 9
M域6が混在して表面に露出するものであった。このよ
うな下地の上にエビ成長を行なうと、ゲートやガードリ
ングのP゛不純物の高濃度領域からB原子が飛び出して
、比抵抗の高いN−基板のチャネル領域に拡散する「オ
ートドーピング」現象が起こる。この現象については、
例えば Gurumakonda R,5riniva
san、”A Model for the Late
ral Variation of Autodopi
ng in Epitaxial FilIIIS″I
EEE Transactions on Elect
ron Devtces、v。
Since the conventional 5ITh manufacturing method was configured as described above, the base of the shrimp growth layer shown in FIG.
The M region 6 was mixed and exposed on the surface. When growth is performed on such a substrate, an "autodoping" phenomenon occurs in which B atoms jump out from the high concentration region of P impurity in the gate or guard ring and diffuse into the channel region of the N substrate with high resistivity. happens. Regarding this phenomenon,
For example Gurumakonda R,5riniva
san,”A Model for the Late
ral Variation of Autodopi
ng in Epitaxial FilIIIS''I
EEE Transactions on Elect
Ron Devtces, v.

1、HD−27,No、8.Aug、1980 pp、
1493−1496等に詳細な解説があるが、5ITh
の製造中にこの「オートドーピング」が起これば、第3
図に示すようにN−高比抵抗エビ層40bの下にP4反
転層40aが形成されてしまい、本来の5IThとは違
う、ノーマリ−オフ型の素子が製造されてしまう等の問
題があづた。そしてこのような問題を避けるために第2
図(C)、 (d)のプロセスに示したようにエビ成長
を2段回に分けて行ない、1段回目で高濃度ドーピング
を行うことによりボロンとコンペンセートさせる「カウ
ンタードーピング」法を用いているが、制御性が向上し
たとは言えず、又エビ成長工程を2回に分けて行なうこ
とからその製造工程が繁雑である等の問題があった。
1, HD-27, No. 8. August, 1980 pp.
There are detailed explanations in 1493-1496 etc., but 5ITh
If this "autodoping" occurs during the production of
As shown in the figure, a P4 inversion layer 40a is formed under the N-high resistivity layer 40b, leading to problems such as manufacturing a normally-off type device, which is different from the original 5ITh. Ta. And to avoid such problems, the second
As shown in the process in Figures (C) and (d), shrimp growth is carried out in two stages, and a "counter-doping" method is used in which boron is compensated by high concentration doping in the first stage. However, it cannot be said that the controllability has been improved, and there are problems such as the manufacturing process is complicated because the shrimp growth process is carried out in two steps.

この発明は上記のような問題を解消するためになされた
もので、「オートドーピング」現象が発生しないととも
に、制御性がよくかつ製造工程が簡略な5IThの製造
方法を捉供することを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a method for manufacturing 5ITh that does not cause the "autodoping" phenomenon, has good controllability, and has a simple manufacturing process. .

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る静電誘導型半導体装置の製造方法は、第
1導電型の半導体基板の主面にイオンビームを加速注入
して、第2導電型領域層を上記第1導電型の半導体基板
主面に露呈しないように形成し、上記第2導電型領域層
が形成された基板の主面上に、第1導電型のエピタキシ
ャル成長層を形成するようにしたものである。
A method for manufacturing a static induction type semiconductor device according to the present invention includes accelerating implantation of an ion beam into the main surface of a semiconductor substrate of a first conductivity type to form a second conductivity type region layer on the main surface of the semiconductor substrate of a first conductivity type. The epitaxial growth layer of the first conductivity type is formed on the main surface of the substrate on which the second conductivity type region layer is formed so as not to be exposed on the surface.

〔作用〕[Effect]

この発明においては、第1導電型の半導体基板の主面に
イオンビームを加速注入して、第2導電型領域層を上記
第1導電型の半導体基板主面に露呈しないように形成し
、上託第2導電型領域層が形成された基板の主面上に、
第1導電型のエピタキシャル成長層を形成するようにし
たので、エビ成長には高濃度の第2導電型領域層がエビ
成長層と接触しないのでオートドーピングが起こらず、
従って反転層の形成によるチャネルの閉鎖等の問題が解
消される。
In this invention, an ion beam is acceleratedly implanted into the main surface of the semiconductor substrate of the first conductivity type to form a second conductivity type region layer so as not to be exposed on the main surface of the semiconductor substrate of the first conductivity type. On the main surface of the substrate on which the second conductivity type region layer is formed,
Since the epitaxial growth layer of the first conductivity type is formed, the highly concentrated second conductivity type region layer does not come into contact with the shrimp growth layer, so autodoping does not occur.
Therefore, problems such as channel closure due to the formation of an inversion layer are eliminated.

〔実施例〕〔Example〕

以下、本発明の一実施例を図について説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例による静電誘導型半導体装置
の製造方法の製造工程図であり、第2図と同一符号は同
一または相当部分を示し、図において、5はイオン注入
時の下敷きSi0g膜、51はレジスト、101はボロ
ンビームであり、その加速エネルギーはIMeV以上で
あるため、住人時に形成されたガードリングP″領域4
は基板1中に埋め込まれた状態で形成される。
FIG. 1 is a manufacturing process diagram of a method for manufacturing an electrostatic induction type semiconductor device according to an embodiment of the present invention, and the same reference numerals as in FIG. 2 indicate the same or corresponding parts. The underlying Si0g film, 51 is a resist, and 101 is a boron beam, whose acceleration energy is more than IMeV, so the guard ring P'' region 4 formed during inhabitation is
is formed embedded in the substrate 1.

次に図(ロ)に示すようにレジスト52を形成し、高エ
ネルギーボロンビーム101を注入しPゲート領域6を
形成し、その後回(C)に示すようにN−半導体基板1
と同等な比抵抗をもつエビ成長層7bを形成する。
Next, as shown in Figure (B), a resist 52 is formed, a high energy boron beam 101 is implanted to form a P gate region 6, and then, as shown in Figure (C), a
A shrimp growth layer 7b having a resistivity equivalent to that of the shrimp is formed.

その後の工程は従来と同一であるためここでは省略する
Since the subsequent steps are the same as those of the conventional method, they will be omitted here.

なお、上記実施例では基板1の片方面にのみゲートを有
する片面ゲートサイリスタを形成したが、第4図に示す
ようにN−半導体基板1の一方の主面側に形成されたP
−半導体基板21について各々の基板上に第1上述した
ような工程を加えることによって両面ゲー)S ITh
を製造することも可能であるり、N゛ガードリング領域
24.Nゲート領域26.P”アノード領域2B、P−
エビ成長層27が各々上記片面サイリスタの場合と逆の
導電形で形成されている。
In the above embodiment, a single-sided gate thyristor having a gate only on one side of the substrate 1 was formed, but as shown in FIG.
- For semiconductor substrates 21, by adding the first above-mentioned process on each substrate, a double-sided game)S ITh
It is also possible to manufacture N' guard ring region 24. N gate region 26. P” anode area 2B, P-
Each shrimp growth layer 27 is formed with a conductivity type opposite to that of the single-sided thyristor.

尚30はアノード電極、31はゲート電極であり、ゲー
ト電極14とゲート電極31は、各々第1、第2ゲート
として別々に駆動する。
Note that 30 is an anode electrode, 31 is a gate electrode, and the gate electrode 14 and the gate electrode 31 are driven separately as first and second gates, respectively.

[発明の効果〕 以上のように、本発明に係る静電誘導型半導体装置の製
造方法によれば、埋込みゲートを有する静電誘導型半導
体装置の製造において、基板にイオン注入してゲート領
域を形成する工程において、基板表面にゲー) $5域
が露呈しないような加速エネルギーでもってイオン注入
を行なうようにしたので、オートドーピングが起こらず
、従って反転層の形成によるチャネルの閉鎖等の恐れが
なく製造時の制御性が向上するという効果がある。
[Effects of the Invention] As described above, according to the method for manufacturing a static induction type semiconductor device according to the present invention, in manufacturing a static induction type semiconductor device having a buried gate, ions are implanted into a substrate to form a gate region. In the formation process, ions were implanted with an acceleration energy that would not expose the Ga $5 region on the substrate surface, so autodoping would not occur and there would be no risk of channel closure due to the formation of an inversion layer. This has the effect of improving controllability during manufacturing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1′はこの発明の一実施例による静電誘導型半導体装
置の製造方法を示す断面図、第2図は従来の静電誘導型
半導体装置の製造方法を示す断面図、第3図はエビ成長
時にオートドーピング現象が発生した状態を説明するた
めの断面図、第4図はこの発明の応用例で、両面ゲート
静電誘導型半導体装置の構造を示す断面図である。 1はN−半導体基板、4はP°ガードリング領域、6は
Pゲート領域、7はエビ成長層、101はボロンビーム
である。 なお、各図中同一符号は同一または、相当部分を示す。
1' is a cross-sectional view showing a method for manufacturing a static induction semiconductor device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing a conventional method for manufacturing a static induction semiconductor device, and FIG. FIG. 4 is a cross-sectional view for explaining a state in which an auto-doping phenomenon occurs during growth, and FIG. 4 is a cross-sectional view showing the structure of a double-sided gate electrostatic induction type semiconductor device, which is an application example of the present invention. 1 is an N-semiconductor substrate, 4 is a P° guard ring region, 6 is a P gate region, 7 is a shrimp growth layer, and 101 is a boron beam. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)埋込みゲート電極を有する静電誘導型半導体装置
の製造方法において、 第1導電型の半導体基板の主面にイオンビームを加速注
入して、第2導電型領域層を上記第1導電型の半導体基
板主面に露呈しないように形成する工程と、 上記第2導電型領域層が形成された基板の主面上に、第
1導電型のエピタキシャル成長層を形成する工程とを含
むことを特徴とする静電誘導型半導体装置の製造方法。
(1) In a method for manufacturing a static induction type semiconductor device having a buried gate electrode, an ion beam is acceleratedly implanted into the main surface of a semiconductor substrate of a first conductivity type to form a second conductivity type region layer of the first conductivity type. and forming an epitaxial growth layer of the first conductivity type on the main surface of the substrate on which the second conductivity type region layer is formed. A method for manufacturing a static induction type semiconductor device.
JP19353190A 1990-07-20 1990-07-20 Manufacture of electrostatic induction semiconductor device Pending JPH04192362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19353190A JPH04192362A (en) 1990-07-20 1990-07-20 Manufacture of electrostatic induction semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19353190A JPH04192362A (en) 1990-07-20 1990-07-20 Manufacture of electrostatic induction semiconductor device

Publications (1)

Publication Number Publication Date
JPH04192362A true JPH04192362A (en) 1992-07-10

Family

ID=16309625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19353190A Pending JPH04192362A (en) 1990-07-20 1990-07-20 Manufacture of electrostatic induction semiconductor device

Country Status (1)

Country Link
JP (1) JPH04192362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258591A (en) * 2006-03-24 2007-10-04 Ngk Insulators Ltd Electrostatic inductive thyristor with current control layer and protect circuit/pulse generating circuit of electrostatic inductive thyristor with current control layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258591A (en) * 2006-03-24 2007-10-04 Ngk Insulators Ltd Electrostatic inductive thyristor with current control layer and protect circuit/pulse generating circuit of electrostatic inductive thyristor with current control layer

Similar Documents

Publication Publication Date Title
JP2577330B2 (en) Method of manufacturing double-sided gate static induction thyristor
KR20020084685A (en) Method for fabricating forward and reverse blocking devices
JPS61234041A (en) Semiconductor device and manufacture thereof
US10205026B2 (en) Thin film transistor having a composite metal gate layer
CN111384154A (en) Radiation-resistant bipolar device
CN114050183B (en) Manufacturing method of reverse-conduction type power chip
JPH04192362A (en) Manufacture of electrostatic induction semiconductor device
CN113659013A (en) Schottky diode with p-type oxide dielectric composite mixed anode and manufacturing method thereof
CN111129151A (en) Silicon carbide semi-accumulation type channel MOSFET device and preparation method thereof
JPH01266760A (en) Schottky barrier semiconductor device
JP2724490B2 (en) Manufacturing method of gate turn-off thyristor
JPS63219176A (en) Manufacture of field-effect transistor
JPS61137371A (en) Manufacture of semiconductor device
JPS61163666A (en) Manufacture of field-effect transistor
JP2020115533A (en) Manufacturing method of semiconductor device
JPH01160051A (en) Bipolar transistor
JPH01259558A (en) Schottky barrier semiconductor device
JPH0467794B2 (en)
JPH0349232A (en) Manufacture of diode
JPH03156974A (en) Insulated-gate field-effect transistor of compound semiconductor
JPS62173760A (en) Static induction type thyristor
JPH0618274B2 (en) Method of manufacturing Schottky barrier semiconductor device
JPS6123365A (en) Formation of constant voltage diode
JPH0810705B2 (en) Integrated circuit device
JPS63300570A (en) Manufacture of gallium arsenide hyper abrupt varactor diode