JPH0419195B2 - - Google Patents

Info

Publication number
JPH0419195B2
JPH0419195B2 JP55088792A JP8879280A JPH0419195B2 JP H0419195 B2 JPH0419195 B2 JP H0419195B2 JP 55088792 A JP55088792 A JP 55088792A JP 8879280 A JP8879280 A JP 8879280A JP H0419195 B2 JPH0419195 B2 JP H0419195B2
Authority
JP
Japan
Prior art keywords
single crystal
insb
crystal
pulling
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55088792A
Other languages
Japanese (ja)
Other versions
JPS5717494A (en
Inventor
Kazutaka Terajima
Shoichi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8879280A priority Critical patent/JPS5717494A/en
Publication of JPS5717494A publication Critical patent/JPS5717494A/en
Publication of JPH0419195B2 publication Critical patent/JPH0419195B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は引上げ法による半導体等の単結晶の
製造方法に関する。 半導体素子の高性能化、微細化に伴い、単結晶
基板の高品質化に対する要求がますます強くなつ
てきている。特に単結晶内の不純物の不均一分布
は、素子特性のばらつきを大きくし、バンド幅の
狭いInSbやHgCdTe等の半導体単結晶を用いた
素子では顕著である。この様な素子は表面に酸化
膜が形成され、この膜質の低下によつて、この膜
を介して形成した電極とこの半導体単結晶間にト
ンネル効果に起因するトンネル電流の密度に著し
い差が現われる原因となる。このトンネル電流密
度が著しく高くなることによりリーク電流が発生
する。 また単結晶中の転位密度が高いと、素子化工程
中、エピタキシヤル成長や拡散等の高温処理工程
で転位線に不純物が集中し、素子間のリーク電流
の増大や暗電流の増大をもたらす。とりわけ
InSbでは上記の如き問題が発生し易く、例えば
赤外線CCD検出素子等の画素数の多い素子やマ
ルチアレイセンサ等を作つた場合、InSb単結晶
の品質が特性および製造歩留りに大きく影響す
る。 上述した赤外線CCDは、CCD(sharge coupled
device、テレビジヨン画像工学ハンドブツク、
149頁、テレビジヨン学会編オーム社発行昭和55
年12月30日)と呼ばれる一枚の基板上に画素とし
てMOSFET等をマトリツクスアレー状に配した
電荷結合デバイスで、特にこのMOSFET等が赤
外光を感じて電荷を蓄積し、これを電気信号とし
て出力することにより、赤外光を感和する素子の
ことである。 この発明の目的は、引上げ法により不純物分布
が均一で欠陥密度の少ない高品質の単結晶を得る
方法を提供することにある。 この発明は、原料融液から引上げ法により単結
晶を育成するに際し、単結晶引上げの方向を結晶
の低指数方位<111>から<110>へ5°から10°で
傾けて設定することにより高品質の単結晶を得る
ことを特徴としている。 以下この発明をInSb単結晶の引上げを例にと
つて説明する。育成方位<111>のInSb単結晶の
端面を観察すると、参考写真に示すようにY字
型に凹んだ領域をオフフアセツト(off facet)
の中心付近に見ることができる。つまり引上げ法
等により単結晶の成長を行つた際、単結晶の床面
はフラツトになる。この面をフアセツト(facet)
と称し、この周囲に隣接する傾斜した面がオフフ
アセツトである。この面にY字型に凹んだ領域が
観察される。Y字型領域と不純物分布の関係を調
べるため、GeとAsをドープして方位<111>で
InSb単結晶を育成した。このInSb単結晶から第
1図aに示すように固化分率(fraction
slidified)g≒0.6とg≒0.7の部分からウエハを
切出し、同図bに斜線で示すY字型領域AとY字
型領域からはずれた領域Bについてスパークマス
ク分析を行つた。ここで固化分率とは、るつぼ中
に入れた原料の重量を1とし、このうち単結晶と
して固化させたものの重量割合が0.6の場合、固
化分率0.6と定めた値のことである。 またスパークマスク分析とは、試料を粒状等に
して電荷を与えて発光させ、その発光スペクトル
を分析することにより原子の持つ特有のスペクト
ルを検出して、試料中の原子の種類と割合を検出
する方法であり、例えば共立出版発行の「結晶工
学ハンドブツク」昭和46年5月10日初版、第486
〜487頁に開示されている。その結果を表−1に
示す。
The present invention relates to a method for manufacturing single crystals such as semiconductors by a pulling method. 2. Description of the Related Art As semiconductor devices become more sophisticated and smaller, demands for higher quality single-crystal substrates are becoming stronger. In particular, non-uniform distribution of impurities within a single crystal increases variations in device characteristics, which is noticeable in devices using semiconductor single crystals such as InSb and HgCdTe, which have narrow bandwidths. An oxide film is formed on the surface of such devices, and due to the deterioration of this film quality, a significant difference appears in the density of tunneling current caused by the tunnel effect between the electrode formed through this film and the semiconductor single crystal. Cause. Leakage current occurs when this tunnel current density becomes extremely high. Furthermore, when the dislocation density in a single crystal is high, impurities concentrate on dislocation lines during high-temperature processing steps such as epitaxial growth and diffusion during the device fabrication process, resulting in an increase in leakage current between devices and an increase in dark current. especially
InSb is prone to the above-mentioned problems, and when producing elements with a large number of pixels such as infrared CCD detection elements, multi-array sensors, etc., the quality of the InSb single crystal greatly affects the characteristics and manufacturing yield. The infrared CCD mentioned above is a CCD (sharge coupled
device, Television Image Engineering Handbook,
149 pages, edited by the Television Society, published by Ohmsha, 1977.
It is a charge-coupled device in which MOSFETs and other pixels are arranged in a matrix array on a single substrate called a pixel (December 30, 2017).In particular, these MOSFETs sense infrared light and accumulate charge, which is then converted into electricity. This is an element that senses infrared light by outputting it as a signal. An object of the present invention is to provide a method for obtaining a high-quality single crystal with uniform impurity distribution and low defect density by a pulling method. In this invention, when growing a single crystal from a raw material melt by the pulling method, the pulling direction of the single crystal is tilted at 5° to 10° from the low index orientation of the crystal <111> to <110>. It is characterized by obtaining quality single crystals. The present invention will be explained below using pulling of an InSb single crystal as an example. When observing the end face of an InSb single crystal with growth orientation <111>, a Y-shaped concave region is off-facet, as shown in the reference photo.
It can be seen near the center of. In other words, when a single crystal is grown by a pulling method or the like, the floor surface of the single crystal becomes flat. facet this side
The sloped surface adjacent to this periphery is the off-face. A Y-shaped concave region is observed on this surface. In order to investigate the relationship between the Y-shaped region and impurity distribution, we doped it with Ge and As and formed it with the orientation <111>.
InSb single crystals were grown. From this InSb single crystal, the solidification fraction (fraction
The wafer was cut out from the portions at g≒0.6 and g≈0.7, and spark mask analysis was performed on the Y-shaped region A shown by diagonal lines in FIG. Here, the solidification fraction is defined as a solidification fraction of 0.6 when the weight of the raw material placed in the crucible is 1 and the weight ratio of the material solidified as a single crystal is 0.6. In addition, spark mask analysis involves making a sample into particles, giving it an electric charge, causing it to emit light, and analyzing its emission spectrum to detect the unique spectrum of atoms, and detect the type and proportion of atoms in the sample. For example, "Crystal Engineering Handbook" published by Kyoritsu Shuppan, first edition May 10, 1970, No. 486.
It is disclosed on pages ~487. The results are shown in Table-1.

【表】 この結果から、Asは領域Aで少なく、領域B
に多く取込まれ、逆にGeは領域Aに多く、領域
Bには少ない。このことら、Y字型領域Aの存在
が不純物を不均一にする重要な要因となつている
ことが判る。 次にY字型領域を観察するために、種子結晶の
方位を傾けて、育成方向を<111>から<100>側
に5°、10°、15°傾けたInSb単結晶、<111>から<
110>側に5°、10°、15°傾けたInSb単結晶および<
111>、<211>方位で育成したInSb単結晶を比較
検討した。その結果、Y字型領域は、<111>から
<110>側に5°傾けた場合には結晶端面の隅に現
われる場合もあるが、10°、15°と傾けた場合には
完全に消えている。また<111>から<110>側に
傾けた場合は5°で完全にY字型領域が消えてい
る。この<111>から<110>側に5°傾けて育成し
たInSb単結晶の端面を参考写真に示す。 次いで上記各InSb単結晶の欠陥密度を比較検
討した。評価方法としては(111)In面ウエハに
鏡面研磨を施し、エツチング液として49%HF:
30%H2O2=1:2:2の溶液を用いてエツチン
グを施してエツチピツトの観察を行つた。第2図
はその結果を示している。 ここで(111)In面ウエハとは、InSb単結晶の
インゴツトをスライスして(111)面を正確に切
り出した場合、In原子が一面に並んでいる面と
Sb原子が一面に並んでいる面が生じるが、この
うちのIn原子が一面に並んだ面であり、エツチン
グされ易くSb面に比べて評価し易いことから結
晶性の評価等に利用される。また第2図におい
て、D(Dislocation)ピツトとは転位による欠陥
を意味し、S(saucer−like)ピツトは皿状のエ
ツチピツトを意味する。 Dピツトは、単結晶内部に入つたひび状の欠陥
に起因して生じるもので、この欠陥が表面に入つ
たウエハをエツチングした際、このひびに沿つて
鋭く斜めにエツチングされるため、その形状は円
すいや四角すい状にえぐれた穴となつたものであ
る。また、Sピツトは、単結晶内部に入つた粒状
の欠陥に起因して生じるもので、この欠陥が表面
に入つたウエハをやはりエツチングした際、この
粒状の欠陥の周辺がエツチングされ易いために半
球状にエツチングされて結果的に皿状の穴となつ
たものである。 第2図には引上げ方向を<111>から<110>方
向に5°〜10°ずらした角度での引上げがこのDピ
ツトとSピツトが最も少くなつており、ひび状や
粒状の欠陥を最も少くでき、極めて結晶性の良い
ものを形成できることが分かる。 第3図は<100>、<011>、及び<111>方位を
一つの平面上で指し示したもので特に<111>方
位と平行な長手方向を持つ種結晶を用い、結晶1
と融液2の固液界面が単結晶1側にへこむような
成長条件に設定した場合のものである。この場合
に育成方位<111>から<100>側または<110>
側に傾けることによりY字型領域3が単結晶1の
端面から消えることは第3図からも予想される。 尚、第3図の半円状の平面はInSb単結晶の
(011)面上に描いた方位である。第4図にこ
の(011)面(点及び斜線で示す領域)を
InSbの結晶系中に示した。特に斜線で示した領
域は<111>フアミリーの中に[111]から<110
>フアミリーの中の[011]側へ5°〜10°傾けた方
位の領域を示す。この方位と平行な長手方向を持
つ種結晶を使用して単結晶の引上げを行うことに
より欠陥の少ない単結晶を形成できる。即ち、成
長条件を異ならせれば、Y字型領域が消えて良質
結晶が得られるために必要な<111>からの傾き
角度が変わることも容易に予想される。 また、<111>から<100>側に傾けた場合には、
結晶が<211>方向に成長し易い性質があるため
に引上げられる結晶が曲がる傾向が認められる。 具体的に、第2図のデータを得た試料のうち、
<111>から<110>側に5°傾けて育成したInSb単
結晶を用いて上述した赤外線CCD検出素子を製
作した結果、個々の画素の感度および暗電流の大
きさにばらつきが少なく、良好な歩留りが得られ
た。 なお、以上では育成方位を<111>を中心とし
て説明したが、他の低指数方位<110>、<100>
で引上げる場合にも、その方位を所定角度傾ける
ことにより同様の効果が期待できる。またこの発
明はInSbに限らず、GaAs、GaSb、InP、GaP等
の化合物半導体単結晶その他類似の単結晶を引上
げる場合にも有効である。 以上のようにこの発明によれば、低指数方位で
単結晶を引上げる場合に、引上げ方向を所定角度
傾けることによつて結晶欠陥が少なく、不純物分
布の均一な良質の単結晶を得ることができる。
[Table] From this result, As is less in area A and less in area B.
On the other hand, Ge is mostly incorporated in region A and less in region B. From this, it can be seen that the presence of the Y-shaped region A is an important factor in making impurities non-uniform. Next, in order to observe the Y-shaped region, the orientation of the seed crystal was tilted, and the growth direction was tilted 5 degrees, 10 degrees, and 15 degrees from the <111> side to the <100> side. <
InSb single crystals tilted by 5°, 10°, and 15° toward 110> and <
We compared InSb single crystals grown in the 111> and <211> orientations. As a result, a Y-shaped region may appear at the corner of the crystal end face when tilted by 5 degrees from <111> to <110>, but it disappears completely when tilted by 10 degrees or 15 degrees. ing. Furthermore, when tilting from <111> to <110>, the Y-shaped area completely disappears at 5 degrees. The reference photo shows the end face of the InSb single crystal grown at a 5° angle from <111> to <110>. Next, the defect densities of each of the above InSb single crystals were compared and examined. The evaluation method was to mirror polish a (111)In surface wafer and use 49% HF as an etching solution.
Etching was performed using a solution of 30% H 2 O 2 =1:2:2, and the etching pits were observed. Figure 2 shows the results. Here, a (111) In-plane wafer is a plane in which InSb single-crystal ingots are sliced to accurately cut out the (111) plane.
A plane in which Sb atoms are lined up on one side is generated, and this is a plane on which all In atoms are lined up on one side, and it is used for evaluation of crystallinity because it is easily etched and easier to evaluate than the Sb plane. In FIG. 2, a D (dislocation) pit means a defect due to dislocation, and an S (saucer-like) pit means a dish-shaped etching pit. D pits are caused by crack-like defects inside the single crystal, and when a wafer with this defect on the surface is etched, it is etched sharply and diagonally along the crack, resulting in a change in its shape. It is a hole hollowed out in the shape of a cone or square pyramid. In addition, S pits are caused by granular defects that have entered the inside of a single crystal, and when a wafer with these defects on its surface is etched, the area around these granular defects is easily etched, resulting in a hemisphere. It was etched into a shape, resulting in a dish-shaped hole. Figure 2 shows that D and S pits have the least amount of crack-like and granular defects when the pulling direction is shifted from <111> to <110> by 5° to 10°. It can be seen that it is possible to form a product with extremely good crystallinity. Figure 3 shows the <100>, <011>, and <111> directions on one plane. In particular, using a seed crystal with a longitudinal direction parallel to the <111> direction,
This is the case where the growth conditions are set such that the solid-liquid interface of the melt 2 is depressed toward the single crystal 1 side. In this case, from the growing direction <111> to the <100> side or <110>
It can be expected from FIG. 3 that the Y-shaped region 3 disappears from the end face of the single crystal 1 by tilting it to the side. Note that the semicircular plane in FIG. 3 is the orientation drawn on the (011) plane of the InSb single crystal. Figure 4 shows this (011) plane (area indicated by dots and diagonal lines).
Shown in the crystal system of InSb. In particular, the shaded area is from [111] to <110> within the <111> family.
> Indicates an area tilted 5° to 10° toward the [011] side in the family. By pulling a single crystal using a seed crystal whose longitudinal direction is parallel to this orientation, a single crystal with fewer defects can be formed. That is, it is easily expected that by changing the growth conditions, the inclination angle from <111>, which is necessary for the Y-shaped region to disappear and a good quality crystal to be obtained, will change. Also, when tilting from <111> to <100> side,
Since the crystal tends to grow in the <211> direction, the pulled crystal tends to be bent. Specifically, among the samples from which the data shown in Figure 2 was obtained,
As a result of fabricating the above-mentioned infrared CCD detection element using InSb single crystal grown at an angle of 5 degrees from <111> to <110>, it was found that there was little variation in the sensitivity and dark current of each pixel, and the result was good. Yield was obtained. In addition, although the above explanation focused on the cultivation direction <111>, other low index directions <110> and <100>
Similar effects can be expected when pulling up by tilting the direction at a predetermined angle. Further, the present invention is effective not only for pulling InSb but also for pulling compound semiconductor single crystals such as GaAs, GaSb, InP, GaP, and other similar single crystals. As described above, according to the present invention, when pulling a single crystal in a low index orientation, by tilting the pulling direction at a predetermined angle, it is possible to obtain a high-quality single crystal with few crystal defects and a uniform impurity distribution. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は<111>方位で引上げたInSb単結晶を
示す図。第2図は種々の方位で引上げたInSb単
結晶の欠陥密度を測定した結果を示す図、第3図
は<111>方位で引上げるInSb単結晶の固液界面
の様子を示す図、第4図はInSbの(011)面
を示す図である。
Figure 1 shows an InSb single crystal pulled in <111> orientation. Figure 2 shows the results of measuring the defect density of InSb single crystals pulled in various orientations, Figure 3 shows the solid-liquid interface of InSb single crystals pulled in the <111> orientation, and Figure 4 The figure shows the (011) plane of InSb.

Claims (1)

【特許請求の範囲】[Claims] 1 原料融液から引上げ法によりInSb単結晶を
育成するに際し、単結晶引上げ方向を<111>か
ら<110>側に5°から10°の範囲で傾けて設定する
ことを特徴とする単結晶の製造方法。
1. When growing an InSb single crystal from a raw material melt by the pulling method, the single crystal pulling direction is tilted from <111> to <110> in a range of 5° to 10°. Production method.
JP8879280A 1980-06-30 1980-06-30 Manufacture of single crystal Granted JPS5717494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8879280A JPS5717494A (en) 1980-06-30 1980-06-30 Manufacture of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8879280A JPS5717494A (en) 1980-06-30 1980-06-30 Manufacture of single crystal

Publications (2)

Publication Number Publication Date
JPS5717494A JPS5717494A (en) 1982-01-29
JPH0419195B2 true JPH0419195B2 (en) 1992-03-30

Family

ID=13952691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8879280A Granted JPS5717494A (en) 1980-06-30 1980-06-30 Manufacture of single crystal

Country Status (1)

Country Link
JP (1) JPS5717494A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177781U (en) * 1984-10-26 1986-05-24
JPS61178491A (en) * 1985-01-31 1986-08-11 Nec Corp Method for pulling up single crystal
JP4142332B2 (en) 2002-04-19 2008-09-03 Sumco Techxiv株式会社 Single crystal silicon manufacturing method, single crystal silicon wafer manufacturing method, single crystal silicon manufacturing seed crystal, single crystal silicon ingot, and single crystal silicon wafer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109896A (en) * 1980-02-01 1981-08-31 Hitachi Ltd Semiconductor single crystal and its growing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109896A (en) * 1980-02-01 1981-08-31 Hitachi Ltd Semiconductor single crystal and its growing method

Also Published As

Publication number Publication date
JPS5717494A (en) 1982-01-29

Similar Documents

Publication Publication Date Title
EP0747513A2 (en) Silicon single crystal with low defect density and method of producing same
EP2933359B1 (en) Method for growing a beta-ga2o3-based single crystal
EP3775328B1 (en) Device for manufacturing aiii-bv-crystals and substrate wafers manufactured thereof free of residual stress and dislocations
US5212394A (en) Compound semiconductor wafer with defects propagating prevention means
JPH0419195B2 (en)
JPS62206816A (en) Manufacture of semiconductor crystal layer
Swink et al. Rapid, nondestructive evaluation of macroscopic defects in crystalline materials: the laue topography of (Hg, Cd) Te
EP3205625A1 (en) Polycrystalline silicon and method for selecting polycrystalline silicon
US11319646B2 (en) Gallium arsenide single crystal substrate
KR20010080295A (en) Method and system for measuring polycrystalline chunk size and distribution in the charge of a czochralski process
KR930007856B1 (en) Wafer of compound semiconductor
JPS62275099A (en) Semi-insulating indium phosphide single crystal
JP5282762B2 (en) Method for producing silicon single crystal
JP3621290B2 (en) Manufacturing method of silicon single crystal wafer for particle monitor and silicon single crystal wafer for particle monitor
JPH08104592A (en) Production of semiconductor substrate for semiconductor device and semiconductor device
JP2705016B2 (en) InP-based compound semiconductor device
US20230212784A1 (en) Low etch pit density, low slip line density, and low strain indium phosphide
JPH0316119A (en) Compound semiconductor wafer
Hamilton et al. Electron microscope investigation of surface features of {100} Cd1− y Zn y Te grown by metalorganic chemical vapor deposition
JP2547188Y2 (en) PCB holder
Reijnen et al. Comparison Of LEC‐Grown And VGF‐Grown GaSb
Wolny et al. Nondestructive characterization of II-VI materials for infrared detection by scanned photoluminescence
JP2673194B2 (en) Method for manufacturing compound semiconductor single crystal
Iguchi et al. Crystal quality of InGaAs epitaxial layer on 3-inch diameter VCZ/LEC InP (Fe) substrates
JPH061700A (en) Production of indium antimonide single crystal