JPH04191747A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH04191747A
JPH04191747A JP32090490A JP32090490A JPH04191747A JP H04191747 A JPH04191747 A JP H04191747A JP 32090490 A JP32090490 A JP 32090490A JP 32090490 A JP32090490 A JP 32090490A JP H04191747 A JPH04191747 A JP H04191747A
Authority
JP
Japan
Prior art keywords
photosensitive layer
amorphous silicon
grain size
image
photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32090490A
Other languages
Japanese (ja)
Inventor
Yuzuru Fukuda
譲 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP32090490A priority Critical patent/JPH04191747A/en
Publication of JPH04191747A publication Critical patent/JPH04191747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enhance the charging property and improve the image quality by specifying the grain size of crystal Si in a photosensitive layer mainly consisting of amorphous silicon. CONSTITUTION:This photosensitive body has a photosensitive layer mainly consisting of amorphous silicon. The photosensitive layer is formed on a support body, for example, by glow-discharging a mixture of silane gas with hydrogen. The crystal grain size determined from the half value width of the diffraction peak revealed in correspondence to the surface (iii) of the crystal Si in the photosensitive layer in X-ray diffraction using CuKalpha ray is less than 50Angstrom . When this size is larger than the above value, the charging property of the photosensitive body is aggregated, and the density of a copy image is reduced, resulting in an image of rough image quality.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子写真感光体に関し、特に、感光層に非晶
質ケイ素を用いた電子写真感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophotographic photoreceptor, and particularly to an electrophotographic photoreceptor using amorphous silicon in the photosensitive layer.

〔従来の技術〕[Conventional technology]

電子写真法は、感光体に帯電、像露光により静電潜像を
形成し、この潜像を現像剤で現像した後、転写紙にトナ
ー像を転写し、定着して複写物を得る方法として知られ
ている。この電子写真法に用いられる感光体は、基本構
成として導電性基板上に感光層を積層してなる。従来よ
り、感光層を構成する材料としては、セレン或いはセレ
ン合金、硫化カドミウム、酸化亜鉛等の無機感光材料、
或いは、ポリビニルカルバゾール、トリニトロフルオレ
ノン、ビスアゾ顔料、フタロシアニン、ピラゾリン、ヒ
ドラゾン等の有機感光材料が知られており、感光層を単
層或いは積層にして用いられている。
Electrophotography is a method in which an electrostatic latent image is formed by charging a photoreceptor and image exposure, and this latent image is developed with a developer, and then the toner image is transferred to transfer paper and fixed to obtain a copy. Are known. The photoreceptor used in this electrophotographic method basically has a photosensitive layer laminated on a conductive substrate. Conventionally, the materials constituting the photosensitive layer include inorganic photosensitive materials such as selenium or selenium alloys, cadmium sulfide, and zinc oxide;
Alternatively, organic photosensitive materials such as polyvinylcarbazole, trinitrofluorenone, bisazo pigments, phthalocyanine, pyrazoline, and hydrazone are known, and the photosensitive layer is used as a single layer or in a stacked structure.

しかしながら、従来より用いられているこれ等の感光層
は、耐久性、耐熱性、光感度等において未だ解決すべき
問題点を有している。
However, these conventionally used photosensitive layers have problems that still need to be solved in terms of durability, heat resistance, photosensitivity, etc.

近年、この感光層として、非晶質ケイ素(a −5i)
を用いた感光体が知られ、種々の改善が試みられている
。この非晶質ケイ素を用いた感光体は、シラン(SiH
2)ガスをグロー放電分解法等により処理して、ケイ素
の非晶質膜を導電性基板上に形成したものであって、非
晶質ケイ素膜中に水素原子が組み込まれて光導電性を呈
するものである。この非晶質ケイ素感光体は、感光層の
表面硬度か高く、傷つき難く、摩耗にも強く、耐熱性も
高く、機械的強度においても優れている。さらに、非晶
質ケイ素は、分光感度域が広く、高い光感度を有する等
、感光特性も優れている。
In recent years, amorphous silicon (a-5i) has been used as this photosensitive layer.
Photoreceptors using the same are known, and various improvements have been attempted. A photoreceptor using this amorphous silicon is made of silane (SiH
2) An amorphous film of silicon is formed on a conductive substrate by treating a gas using a glow discharge decomposition method, etc., and hydrogen atoms are incorporated into the amorphous silicon film to provide photoconductivity. It is intended to be presented. This amorphous silicon photoreceptor has a photosensitive layer that has a high surface hardness, is hard to be scratched, is resistant to abrasion, has high heat resistance, and is excellent in mechanical strength. Furthermore, amorphous silicon has excellent photosensitivity, such as a wide spectral sensitivity range and high photosensitivity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、反面、非晶質ケイ素を用いた電子写真感
光体は、暗減衰か大きく、帯電しても十分な帯電電位が
得られないという欠点を有する。
However, on the other hand, electrophotographic photoreceptors using amorphous silicon have the disadvantage that dark decay is large and a sufficient charging potential cannot be obtained even when charged.

即ち、非晶質ケイ素感光体を帯電し、像露光して静電潜
像を形成し、次いて、現像する際、感光体上の表面電荷
が像露光工程まで、或いは現像工程までの間に光照射を
受けなかった部分の電荷までも減衰してしまい、現像に
必要な帯電電位が得られない。このような帯電電位の暗
減衰の大きな感光体を用いて複写物を作成すると、画像
濃度か低く、また、中間調の再現性に乏しい複写物が生
じることになる。
That is, when an amorphous silicon photoreceptor is charged, imagewise exposed to form an electrostatic latent image, and then developed, the surface charge on the photoreceptor increases until the imagewise exposure process or the development process. Even the charge on the portions not irradiated with light is attenuated, making it impossible to obtain the charging potential necessary for development. If a copy is made using such a photoreceptor with a large dark decay of the charged potential, the resulting copy will have low image density and poor reproducibility of intermediate tones.

したかって、本発明の目的は、残留電位が低く、帯電性
が高く、良好な画質の画像を得ることかできる非晶質ケ
イ素電子写真感光体を提供する二とにある。
Therefore, it is an object of the present invention to provide an amorphous silicon electrophotographic photoreceptor that has a low residual potential, high chargeability, and is capable of obtaining images of good quality.

本発明の他の目的は、耐熱性及び化学安定性に優れ、機
械的強度か高く、耐摩耗性に優れた電子写真感光体を提
供することにある。
Another object of the present invention is to provide an electrophotographic photoreceptor that has excellent heat resistance and chemical stability, high mechanical strength, and excellent abrasion resistance.

〔課題を解決するための手段及び作用〕本発明者等は、
非晶質ケイ素を主体とする感光層のX線回折における回
折ピークか、電子写真感光体の電子写真特性に関係を持
つことを見出だし、本発明を完成するに至った。
[Means and effects for solving the problem] The present inventors,
The inventors have discovered that the diffraction peak in X-ray diffraction of a photosensitive layer mainly composed of amorphous silicon is related to the electrophotographic characteristics of an electrophotographic photoreceptor, and have completed the present invention.

本発明は、支持体上に、非晶質ケイ素を主体とする感光
層を設けてなる電子写真感光体において、その感光層の
X線回折における結晶Siの(111)面に対応して現
れる回折ピークの半値中から求められる結晶粒サイズが
50Å以下であることを特徴とする。
The present invention relates to an electrophotographic photoreceptor comprising a photosensitive layer mainly made of amorphous silicon on a support, which exhibits diffraction that appears corresponding to the (111) plane of crystalline Si in X-ray diffraction of the photosensitive layer. It is characterized in that the crystal grain size determined from the half value of the peak is 50 Å or less.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の電子写真感光体において、支持体としては、導
電性、絶縁性のどちらのものでも用いることができる。
In the electrophotographic photoreceptor of the present invention, the support may be either electrically conductive or insulating.

導電性支持体としては、ステンレススチール、アルミニ
ウム等の金属或いは合金が用いられる。絶縁性支持体と
しては、ポリエステル、ポリエチレン、ポリカーボネー
ト、ポリスチレン、ポリアミド等の合成樹脂フィルムま
たはシート、ガラス、セラミック、紙等があげられるか
、絶縁性支持体の場合には、少なくとも他の層と接触す
る面が導電処理されていることが必要である。
As the conductive support, metals or alloys such as stainless steel and aluminum are used. Examples of the insulating support include synthetic resin films or sheets such as polyester, polyethylene, polycarbonate, polystyrene, and polyamide, glass, ceramic, paper, etc., or in the case of an insulating support, at least one layer that is in contact with another layer. It is necessary that the surface to be used is conductive treated.

これらの導電処理は、導電性支持体に用いられる金属を
蒸着、スパッタリング、ラミネート等の処理によって行
うことができる。支持体は、円筒状、ベルト状、板状等
、任意の形状をとり得る。また、支持体は、多層構造の
ものであってもよい。支持体の厚さは、所望の電子写真
感光体に応して、適宜選択されるが、通常10m+以上
のものが適している。
These conductive treatments can be performed by vapor deposition, sputtering, lamination, or other treatments for the metal used in the conductive support. The support may have any shape, such as a cylinder, a belt, or a plate. Further, the support may have a multilayer structure. The thickness of the support is appropriately selected depending on the desired electrophotographic photoreceptor, but a thickness of 10 m+ or more is usually suitable.

感光層は、ケイ素を主成分として構成されるが、本発明
においては、X線回折における結晶Siの(111)面
に対応して現れる回折ピークの半値巾から求められる結
晶粒サイズか、50Å以下であることが必要である。
The photosensitive layer is mainly composed of silicon, but in the present invention, the crystal grain size determined from the half-width of the diffraction peak that appears corresponding to the (111) plane of crystalline Si in X-ray diffraction, or 50 Å or less. It is necessary that

この結晶粒サイズは、5cherrerの式%式% 但し、t:siの結晶粒サイズ(人) λ:用いた入射X線の波長(人) B:回折ピークの半値巾(rad) θB 結晶Siの(111)面に対応した回折ピークの
出現するブラッグ角(’ )から求められるものである
。感光層における上記結晶粒サイズが50人よりも大き
くなると、電子写真感光体の帯電性が悪くなり、したが
ってまた、得られるコピー画像の画像濃度が低く、ざら
ついた画質の画像となる。
This crystal grain size is determined by the formula of 5cherrer%, where t: crystal grain size of Si (person) λ: wavelength of incident X-ray used (person) B: half-width of diffraction peak (rad) θB of crystal Si It is determined from the Bragg angle (') at which the diffraction peak corresponding to the (111) plane appears. When the crystal grain size in the photosensitive layer is larger than 50, the charging property of the electrophotographic photoreceptor deteriorates, and therefore, the obtained copy image has a low image density and a rough image quality.

本発明における感光層は、周知の方法によって形成する
ことができる。例えば、グロー放電法、スパッタリング
法、イオンブレーティング法、真空蒸着法等によって形
成することができる。これらの膜形成方法は、目的に応
して適宜選択されるが、プラズマCvD法により、シラ
ン(SiH4)或いはシラン系ガスをグロー放電分解す
る方法か好ましく、この方法によれば、膜中に適量の水
素を含有した比較的暗抵抗が高く、かつ光感度も高い膜
が形成され、好適な特性を得ることができる。
The photosensitive layer in the present invention can be formed by a known method. For example, it can be formed by a glow discharge method, a sputtering method, an ion blating method, a vacuum evaporation method, or the like. These film forming methods are appropriately selected depending on the purpose, but it is preferable to use a plasma CVD method to decompose silane (SiH4) or a silane-based gas by glow discharge. A film containing hydrogen with a relatively high dark resistance and high photosensitivity is formed, and suitable characteristics can be obtained.

以下、プラスマCVD法によって形成する場合について
説明する。支持体をプラズマCVD装置内の所定の位置
に配置し、原料ガスを導入することによって行われるが
、原料ガスとしては、シランまたはシラン誘導体に、必
要に応じてシボランガス、ホスフィンガス、その他のド
ーパントガスを加えたものが用いられる。シランまたは
シラン誘導体としては、S iH4、S 12H6,5
iC14,5IHC1,,5in2C12、S 13 
H8、S 14 HIO等をあげることができる。
The case of forming by plasma CVD method will be explained below. This is carried out by placing the support at a predetermined position in a plasma CVD apparatus and introducing a raw material gas. is used. Silane or silane derivatives include S iH4, S 12H6,5
iC14,5IHC1,,5in2C12,S 13
Examples include H8, S 14 HIO, etc.

この場合、シランガスと同時に水素ガスを導入してもよ
いが、シランガスに対して0〜IO倍の範囲の流量比で
用いるのが好ましい。水素ガスの流量比が10倍を超え
ると、結晶粒サイズが50人よりも大きくなる場合かあ
る。
In this case, hydrogen gas may be introduced simultaneously with the silane gas, but it is preferable to use the hydrogen gas at a flow rate in the range of 0 to IO times the silane gas. When the flow rate ratio of hydrogen gas exceeds 10 times, the crystal grain size may become larger than 50 times.

成膜条件としては、交流放電を例にとると、周波数50
Hz 〜5 GHz 、反応器内圧10−’ 〜5To
rr、放電電力lO〜2000Wの範囲で適宜設定され
る。支持体温度は約300℃以下に設定するのが好まし
い。
Taking AC discharge as an example, the film forming conditions are a frequency of 50
Hz ~5 GHz, reactor internal pressure 10-' ~5To
rr, and the discharge power is appropriately set in the range of IO to 2000W. Preferably, the support temperature is set at about 300°C or less.

より好ましい範囲は250℃以下である。支持体温度が
約300℃よりも高くなると、結晶粒サイズが50人よ
りも大きくなる場合がある。
A more preferable range is 250°C or lower. If the substrate temperature is higher than about 300°C, the grain size may increase to greater than 50°C.

本発明において、感光層の膜厚は、任意に設定すること
ができるが、■−〜1.00μsの範囲、特に5−〜5
0加の範囲に設定するのが好ましい。
In the present invention, the thickness of the photosensitive layer can be arbitrarily set, but is in the range of ■- to 1.00 μs, particularly 5- to 5 μs.
It is preferable to set it within the range of 0 addition.

本発明の電子写真感光体においては、支持体と感光層と
の間に、電荷注入阻止層が設けられていてもよい。電荷
注入阻止層としては、例えば、非晶質ケイ素に元素周期
律表第■族又は第V族元素を添加してなるp型半導体層
、n型半導体層、或いは絶縁層等があげられ、その膜厚
は0.O1〜10虜程度の範囲で適宜設定される。
In the electrophotographic photoreceptor of the present invention, a charge injection blocking layer may be provided between the support and the photosensitive layer. Examples of the charge injection blocking layer include a p-type semiconductor layer, an n-type semiconductor layer, an insulating layer, etc. made of amorphous silicon doped with an element from group Ⅰ or group V of the periodic table of elements, and the like. Film thickness is 0. It is appropriately set in the range of O1 to O10.

また、本発明の電子写真感光体においては、表面保護の
目的で表面層が形成されていてもよい。
Further, in the electrophotographic photoreceptor of the present invention, a surface layer may be formed for the purpose of surface protection.

表面層は、窒素原子或いは炭素原子等が添加された非晶
質ケイ素を主体としてなるのが好ましい。
Preferably, the surface layer is mainly composed of amorphous silicon to which nitrogen atoms, carbon atoms, or the like are added.

〔実施例〕〔Example〕

以下、本発明を実施例によって説明する。 Hereinafter, the present invention will be explained by examples.

実施例1 円筒状支持体上への非晶質ケイ素膜の生成が可能な容量
型プラズマCVD装置を用い。シラン(SiH4)ガス
及び水素ガス(H2)混合体を、グロー放電分解するこ
とにより、円筒状アルミニウム支持体上に約18虜の膜
厚を有する感光層を形成した。この時の成膜条件は、次
の通りであった。
Example 1 A capacitive plasma CVD apparatus capable of forming an amorphous silicon film on a cylindrical support was used. A photosensitive layer having a thickness of about 18 mm was formed on a cylindrical aluminum support by glow discharge decomposition of a mixture of silane (SiH4) gas and hydrogen gas (H2). The film forming conditions at this time were as follows.

100%シランガス流量: 50cJ/ff1in10
0%水素ガス流量: 50cI+?/ll1n水素希釈
の1oOpp、m B 2H6ガス流量: 50cnf
/1ain反応器内圧: 0.4 Torr 放電型カニ50v 放電周波数: 13.58MHz 基板温度=250℃ 得られた感光層について、入射X線として、λ−1,5
4人のCuKαを使用して、Si結晶の(111)面に
対応して現れる回折ピーク(理論値:28.4’ 、実
#1値: 27.8’ )の半値中を測定したところ、
Bは75° (0,13rad )であった。したがっ
て、これらより求められる結晶粒サイズは、11.0人
であった。得られた電子写真感光体に対して、特性評価
及び複写を行ったところ、帯電性は良好で高く、コピー
画像は、欠陥の無い優れた画質を有していた。
100% silane gas flow rate: 50cJ/ff1in10
0% hydrogen gas flow rate: 50cI+? /ll1n 1oOpp of hydrogen dilution, m B 2H6 gas flow rate: 50cnf
/1ain Reactor internal pressure: 0.4 Torr Discharge type crab 50V Discharge frequency: 13.58MHz Substrate temperature = 250°C Regarding the obtained photosensitive layer, λ-1,5 as incident X-ray
Using CuKα of four people, we measured the mid-half value of the diffraction peak (theoretical value: 28.4', actual #1 value: 27.8') that appears corresponding to the (111) plane of the Si crystal.
B was 75° (0,13 rad). Therefore, the crystal grain size determined from these was 11.0. When the obtained electrophotographic photoreceptor was subjected to characteristic evaluation and copying, it was found that the charging property was good and high, and the copied image had excellent image quality without defects.

比較例1 実施例1における基板温度を300℃とし、100%水
素ガス流量を550 (J/winに変更した以外は、
実施例1と同様にして感光層を形成した。この感光層の
結晶粒サイズについて、実施例1におけると同様にして
求めたところ、半値巾は、約0.4゜(0,007ra
d)であり、したがって、これらより求められる結晶粒
サイズは204人であった。得られた電子写真感光体に
対して、特性評価及び複写を行ったところ、帯電性が低
く、コピー画像は、画像濃度が低く、ざらつきのある画
質のものであった。
Comparative Example 1 The substrate temperature in Example 1 was 300°C, and the 100% hydrogen gas flow rate was 550°C (except that it was changed to J/win).
A photosensitive layer was formed in the same manner as in Example 1. The crystal grain size of this photosensitive layer was determined in the same manner as in Example 1, and the half width was approximately 0.4° (0,007 ra).
d), and therefore, the crystal grain size determined from these was 204. When the obtained electrophotographic photoreceptor was subjected to characteristic evaluation and copying, it was found that the electrostatic chargeability was low, and the copied image had a low image density and rough image quality.

実施例2 円筒状支持体上への非晶質ケイ素膜の生成が可能な容量
型プラズマCVD装置を用い。シラン(SiH4)ガス
及び水素ガス(H2)混合体を、グロー放電分解するこ
とにより、円筒状アルミニウム支持体上に約25虜の膜
厚を有する感光層を形成した。この時の成膜条件は、次
の通りであった。
Example 2 A capacitive plasma CVD apparatus capable of forming an amorphous silicon film on a cylindrical support was used. A photosensitive layer having a thickness of about 25 mm was formed on a cylindrical aluminum support by glow discharge decomposition of a mixture of silane (SiH4) gas and hydrogen gas (H2). The film forming conditions at this time were as follows.

100%シランガス流量: 150 c+J/5ini
oox水素ガス流量: 100 cl/s+in水素希
釈の1001)l)IB2 H6ガス流量=10cシ/
sin反応器内圧: 0.7 Torr 放電型カニ80V 放電周波数: 13 、56Mtlz 基板温度=250℃ 得られた感光層について、入射X線として、λ−1,5
4人のCLIK(Zを使用して、Si結晶の(111)
面に対応して現れる回折ビーク(理論値=28.4°、
実測値: 27.8” )の半値中をn1定したところ
、Bは1.8 ’  (0,03rad )であった。
100% silane gas flow rate: 150 c+J/5ini
oox hydrogen gas flow rate: 100 cl/s+in hydrogen dilution 1001) l) IB2 H6 gas flow rate = 10 c/s
Sin reactor internal pressure: 0.7 Torr Discharge type crab 80V Discharge frequency: 13,56 Mtlz Substrate temperature = 250°C Regarding the obtained photosensitive layer, λ-1,5 as incident X-ray
(111) of Si crystal using 4 CLIK(Z)
Diffraction peak that appears corresponding to the surface (theoretical value = 28.4°,
When n1 was determined for the half value of the measured value (27.8''), B was 1.8' (0.03 rad).

したがって、これらより求められる結晶粒サイズは、4
5人であった。得られた電子写真感光体に対して、特性
評価及び複写を行ったところ、帯電性は良好で高く、コ
ピー画像は、欠陥の無い優れた画質を有していた。
Therefore, the grain size determined from these is 4
There were 5 people. When the obtained electrophotographic photoreceptor was subjected to characteristic evaluation and copying, it was found that the charging property was good and high, and the copied image had excellent image quality without defects.

比較例2 実施例2における基板温度を310℃とし、100%水
素ガス流量を9000J/minに変更した以外は、実
施例1と同様にして感光層を形成した。この感光層の結
晶粒サイズについて、実施例2におけると同様にして求
めたところ、半値巾は、約1.4゜(0,02rad 
)であり、したがって、これらより求められる結晶粒サ
イズは60人であった。得られた電子写真感光体に対し
て、特性評価及び複写を行ったところ、帯電性が低く、
コピー画像は、画像濃度が低く、その一部にざらつきの
ある画質のものであった。
Comparative Example 2 A photosensitive layer was formed in the same manner as in Example 1, except that the substrate temperature in Example 2 was changed to 310° C. and the 100% hydrogen gas flow rate was changed to 9000 J/min. The crystal grain size of this photosensitive layer was determined in the same manner as in Example 2, and the half width was approximately 1.4° (0.02 rad).
), and therefore, the crystal grain size determined from these was 60. Characteristic evaluation and copying of the obtained electrophotographic photoreceptor revealed that it had low chargeability.
The copied image had low image density and roughness in some parts.

〔発明の効果〕〔Effect of the invention〕

本発明においては、感光層のX線回折における結晶Si
の(111)面に対応して現れる回折ピークの半値巾か
ら求められる結晶粒サイズが、50Å以下であるので、
本発明の電子写真感光体は、優れた帯電性を示し、そし
て得られるコピー画像は、高い画像濃度を有する欠陥の
ない優れた画質を有しそいる。
In the present invention, crystalline Si in X-ray diffraction of the photosensitive layer
Since the crystal grain size determined from the half width of the diffraction peak that appears corresponding to the (111) plane of is 50 Å or less,
The electrophotographic photoreceptor of the present invention exhibits excellent charging properties, and the resulting copy images are likely to have excellent image quality with high image density and no defects.

出願人 富士ゼロックス株式会社Applicant: Fuji Xerox Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)支持体上に、非晶質ケイ素を主体とする感光層を
設けてなる電子写真感光体において、該感光層のX線回
折における結晶Siの(111)面に対応して現れる回
折ピークの半値巾から求められる結晶粒サイズが50Å
以下であることを特徴とする電子写真感光体。
(1) In an electrophotographic photoreceptor in which a photosensitive layer mainly composed of amorphous silicon is provided on a support, a diffraction peak that appears corresponding to the (111) plane of crystalline Si in the X-ray diffraction of the photosensitive layer The grain size determined from the half-width is 50 Å.
An electrophotographic photoreceptor characterized by the following:
JP32090490A 1990-11-27 1990-11-27 Electrophotographic sensitive body Pending JPH04191747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32090490A JPH04191747A (en) 1990-11-27 1990-11-27 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32090490A JPH04191747A (en) 1990-11-27 1990-11-27 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH04191747A true JPH04191747A (en) 1992-07-10

Family

ID=18126569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32090490A Pending JPH04191747A (en) 1990-11-27 1990-11-27 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH04191747A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282849A (en) * 1985-06-10 1986-12-13 Toshiba Corp Photoconductor
JPS6239871A (en) * 1985-08-15 1987-02-20 Toshiba Corp Electrophotographic sensitive body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282849A (en) * 1985-06-10 1986-12-13 Toshiba Corp Photoconductor
JPS6239871A (en) * 1985-08-15 1987-02-20 Toshiba Corp Electrophotographic sensitive body

Similar Documents

Publication Publication Date Title
JPS63178248A (en) Amorphous silicon image forming section having barier layer
US4775606A (en) Light receiving member comprising amorphous silicon layers for electrophotography
JPH04191747A (en) Electrophotographic sensitive body
JPS61275852A (en) Electrophotographic sensitive body
JPS61275856A (en) Electrophotographic sensitive body
JPH0721647B2 (en) Electrophotographic photoconductor
JPS62273549A (en) Electrophotographic sensitive body
JPS62273562A (en) Electrophotographic sensitive body
JPS61275858A (en) Electrophotographic sensitive body
JPH0695219B2 (en) Electrophotographic photoconductor
JPS62273553A (en) Electrophotographic sensitive body
JPH0695216B2 (en) Electrophotographic photoconductor
JPH0727253B2 (en) Electrophotographic photoconductor
JPS62273560A (en) Electrophotographic sensitive body
JPH0695215B2 (en) Electrophotographic photoconductor
JPS62273556A (en) Electrophotographic sensitive body
JPS62273555A (en) Electrophotographic sensitive body
JPH0727252B2 (en) Electrophotographic photoconductor
JPH0711707B2 (en) Electrophotographic photoconductor
JPS62273559A (en) Electrophotographic sensitive body
JPS62182748A (en) Electrophotographic sensitive body and its preparation
JPS62182746A (en) Electrophotographic sensitive body and its preparation
JPS62182745A (en) Electrophotographic sensitive body and its preparation
JPH0727256B2 (en) Electrophotographic photoconductor
JPS62273554A (en) Electrophotographic sensitive body