JPH0418920B2 - - Google Patents

Info

Publication number
JPH0418920B2
JPH0418920B2 JP12735386A JP12735386A JPH0418920B2 JP H0418920 B2 JPH0418920 B2 JP H0418920B2 JP 12735386 A JP12735386 A JP 12735386A JP 12735386 A JP12735386 A JP 12735386A JP H0418920 B2 JPH0418920 B2 JP H0418920B2
Authority
JP
Japan
Prior art keywords
wastewater
inflow
amount
anaerobic reactor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12735386A
Other languages
Japanese (ja)
Other versions
JPS62286595A (en
Inventor
Kazuo Shibazaki
Ryosuke Miura
Shioko Kurihara
Itaru Takase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP61127353A priority Critical patent/JPS62286595A/en
Publication of JPS62286595A publication Critical patent/JPS62286595A/en
Publication of JPH0418920B2 publication Critical patent/JPH0418920B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は下水や産業廃水の微生物を利用して浄
化する水処理装置の流入負荷分配制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an inflow load distribution control device for a water treatment system that purifies sewage or industrial wastewater using microorganisms.

(従来の技術) 下水や産業廃水などの有機性廃水は活性汚泥や
嫌気性微生物などの微生物の作用によつて浄化さ
れる。特に近年では嫌気性微生物を利用した嫌気
性処理が省エネルギーの観点から注目されてい
る。
(Prior Art) Organic wastewater such as sewage and industrial wastewater is purified by the action of microorganisms such as activated sludge and anaerobic microorganisms. Particularly in recent years, anaerobic treatment using anaerobic microorganisms has attracted attention from the viewpoint of energy conservation.

この嫌気性処理法は、嫌気性微生物の働きで有
機物を分解処理する方法であり、有機性廃水中の
炭水化物、脂肪、タンパク質を主に揮発性有機酸
に分解する液化反応と、揮発性有機酸を主に炭酸
ガスとメタンに分解するガス化反応の二段階の反
応から構成されている。液拡反応を行なわせる細
菌、ガス化過程を行なわせる細菌はメタン菌と呼
ばれる。このように、嫌気性処理法では、廃水中
の有機物は主にメタンと炭酸ガスから成る発酵ガ
スに分解される。
This anaerobic treatment method is a method of decomposing organic matter using the action of anaerobic microorganisms. It consists of a two-step gasification reaction that mainly decomposes carbon dioxide into carbon dioxide and methane. Bacteria that cause liquid expansion reactions and bacteria that cause gasification processes are called methane bacteria. In this way, in the anaerobic treatment method, organic matter in wastewater is decomposed into fermentation gas mainly consisting of methane and carbon dioxide gas.

このような水処理システムでは特に下水処理の
ように多量の廃水を浄化する場合は、複数のリア
クターを持つ構成が一般的である。従来このよう
な水処理システムでは、複数のリアクターへの流
入廃水量が均等になるように制御されていた。こ
の従来例では運転管理が非常に容易である反面、
次のような欠点があつた。すなわち、微生物は何
らかの原因だ浄化能力が低下することがあり、こ
れは現在の技術では避けられない。浄化能力が低
下した場合は流入負荷を軽減させる運転管理を行
い、浄化能力のより一層の低下を防止する必要が
ある。しかし複数のリアクタへ流入廃水量を均等
に分配する従来例ではこのような対処ができなか
つた。このため、何らかの原因で浄化能力が低下
したリアクタでは、さらに浄化能力が低下し、試
理水質が悪化する。
In such water treatment systems, a configuration having a plurality of reactors is common, especially when purifying a large amount of wastewater such as in sewage treatment. Conventionally, in such water treatment systems, the amount of wastewater flowing into multiple reactors is controlled to be equal. In this conventional example, operation management is very easy, but on the other hand,
It had the following shortcomings: In other words, the purification ability of microorganisms may be reduced for some reason, and this is unavoidable with current technology. When the purification capacity decreases, it is necessary to perform operational management to reduce the inflow load to prevent further decrease in the purification capacity. However, in the conventional example where the amount of inflowing wastewater is evenly distributed to multiple reactors, such measures cannot be taken. Therefore, in a reactor whose purification ability has decreased for some reason, the purification ability is further decreased and the test water quality deteriorates.

(発明が解決しようとする問題点) すなわち、リアクタへの流入廃水量を制御する
ことができず、浄化能力の低下による処理水質の
悪化が生じることがあつた。
(Problems to be Solved by the Invention) That is, the amount of wastewater flowing into the reactor could not be controlled, and the quality of treated water sometimes deteriorated due to a decrease in purification ability.

したがつて、本発明の目的は流入流量と発酵ガ
ス量との割分から嫌気性リアクタの処理能力をと
らえ、この処理能力に応じて流入廃水量を制御す
るようにして、常に良好な処理水が得られるよう
にした水処理装置の流入負荷分配制御装置を提供
することにある。
Therefore, the purpose of the present invention is to grasp the processing capacity of an anaerobic reactor from the ratio of the inflow flow rate and the fermentation gas amount, and to control the inflow wastewater amount according to this processing capacity, so that good quality treated water is always available. An object of the present invention is to provide an inflow load distribution control device for a water treatment device.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は廃水流入管路から分岐された複数の流
入管路毎にそれぞれ嫌気性リアクタを設けた水処
理装置の流入負荷分配制御装置に関するもので、
前記廃水流入管路および分岐された各流入管路に
流れる廃水の流量をそれぞれ測定する流量計を設
けると共に、各嫌気性リアクタ毎に、これから生
じる発酵ガス量をそれぞれ測定するガス流量計を
設ける。また演算装置として、前記各ガス流量計
によるガス量と分岐された各流入管路毎の廃水流
量とを入力しこの廃水流量に対するガス量の割合
により各嫌気性リアクタ毎にその処理能力を求め
る手段と、これら各嫌気性リアクタ毎の処理能力
に応じて、前記廃水流入管路に流れる流入廃水
の、各嫌気性リアクタに対する分配量を決定する
手段とを持つものを用いる。
(Means for Solving the Problems) The present invention relates to an inflow load distribution control device for a water treatment device in which an anaerobic reactor is provided for each of a plurality of inflow pipes branched from a wastewater inflow pipe.
A flow meter is provided to measure the flow rate of waste water flowing into the waste water inflow pipe and each of the branched inflow pipes, and a gas flow meter is provided for each anaerobic reactor to measure the amount of fermentation gas generated therefrom. Further, as a calculation device, means for inputting the gas amount from each gas flow meter and the wastewater flow rate for each branched inflow pipe, and calculating the processing capacity of each anaerobic reactor based on the ratio of the gas amount to the wastewater flow rate. and a means for determining the amount of inflow wastewater flowing into the wastewater inflow pipe to be distributed to each anaerobic reactor according to the processing capacity of each of these anaerobic reactors.

(作 用) 本発明では、各嫌気性リアクタへの流入廃水量
と各発酵ガス発生量をそれぞれ測定し、これらに
よつて各嫌気性リアクタの処理能力を演算する。
前述したように、廃水中の有機物は嫌気性微生物
の作用を受けて主にメタンと炭酸ガスから成る発
酵ガスに分解される。通常COD1Kgが分解される
と約0.3〜0.5m3の発酵ガスが得られる。ここで0.3
〜0.5m3と幅広いのは、COD成分の組成の違いに
よるものである。複数個の嫌気性リアクタから成
る水処理施設の場合には、各嫌気性リアクタへ流
入する廃水の組成は当然同一のものであるので、
各嫌気性リアクタへ流入する廃水量と発酵ガス発
生量の比率を比較することによつて、各嫌気性リ
アクタの処理能力を比較することができる。さら
にこの快較結果に基づいて流入廃水を分配する。
(Function) In the present invention, the amount of wastewater flowing into each anaerobic reactor and the amount of each fermentation gas generated are measured, and the processing capacity of each anaerobic reactor is calculated based on these.
As mentioned above, organic matter in wastewater is decomposed into fermentation gas mainly consisting of methane and carbon dioxide under the action of anaerobic microorganisms. Normally, when 1 kg of COD is decomposed, about 0.3 to 0.5 m 3 of fermentation gas is obtained. Here 0.3
The wide range of ~ 0.5m3 is due to the difference in the composition of COD components. In the case of a water treatment facility consisting of multiple anaerobic reactors, the composition of the wastewater flowing into each anaerobic reactor is naturally the same, so
By comparing the ratio between the amount of wastewater flowing into each anaerobic reactor and the amount of fermentation gas generated, the processing capacity of each anaerobic reactor can be compared. Furthermore, the inflow wastewater is distributed based on this comparison result.

(実施例) 第1図は本発明の一実施例を示すもので、n個
の嫌気性リアクタ6a,6b…6nから成る水処
理施設の概略ブロツク図である。
(Embodiment) FIG. 1 shows an embodiment of the present invention, and is a schematic block diagram of a water treatment facility comprising n anaerobic reactors 6a, 6b, . . . , 6n.

図において、廃水流入管路1にはポンプ2およ
び流量計3が設置されており、この流量計3によ
つて流入廃水の流量が測定される。また分岐され
た各廃水流入管路1a,1b,…,1nには流量
計5a,5b,…,5nが設置されており、これ
らによつて各嫌気性リアクタ6a,6b,…,6
nに流入される廃水量がそれぞれ測定される。さ
らに、各廃水流入管路1a,1b,…1nには、
それぞれ調節バルブ4a,4b,…4nが設けら
れ、対応するリアクタ6a,6b,…6nへの流
入廃水量を所望の値に調節する。これら各リアク
タ6a,6b,…6nのガス流出管にはガス流量
計7a,7b,…7nが設けられる。
In the figure, a pump 2 and a flowmeter 3 are installed in a wastewater inflow pipe 1, and the flowmeter 3 measures the flow rate of inflowing wastewater. In addition, flow meters 5a, 5b,..., 5n are installed in each of the branched wastewater inflow pipes 1a, 1b,..., 1n, and these flow meters 5a, 5b,..., 6n to each anaerobic reactor 6a, 6b,..., 6.
The amount of wastewater flowing into each of the n is measured. Furthermore, each wastewater inflow pipe 1a, 1b, ... 1n includes:
Control valves 4a, 4b, . . . 4n are provided, respectively, to adjust the amount of wastewater flowing into the corresponding reactors 6a, 6b, . . . 6n to a desired value. Gas flow meters 7a, 7b, . . . 7n are provided in the gas outlet pipes of these reactors 6a, 6b, . . . 6n.

9は演算装置で、前述した各流量計3および5
a,5b,…5nと、ガス流量計7a,7b,…
7nとからの各測定信号をそれぞれ入力し、後述
する演算手法により、分岐された各廃水流入管路
1a,1b,…1nの流入廃水量を決定する。8
a,8b,…8nは流量調節装置で、各廃水流入
管路1a,1b,…1n毎に設けられ、前記演算
装置9にて求められた流入廃水量を得るべく、対
応する流量計5a,5b,…5nの値を入力しな
がら、対応する調節バルブ4a,4b,…4nの
開度調節を行う。ここで各嫌気性リアクタ6a,
6b,…6nの廃水流入管路1a,1b,…1n
に設置された流量計5a,5b…5nは各嫌気
性、リアクタに流入する廃水量Q1,Q2…Qnを測
定する。また、ガス流量計7a,7b…7nは、
各嫌気性リアクタ6a,6b…6nから発生する
発酵ガス量G1,G2…Gnを測定する。これらの測
定結果は、演算装置9に入力される。演算装置9
では、流入廃水量と発酵ガス発生量の比率Gi/
Qi(i=1,2…n)、各嫌気性リアクタ6a,
6b…6nごとに演算し、この結果によつて流量
計3の測定値である流入廃水量QTを分配する分
配率wi(i=1,2…n)を演算する。分配率wi
を演算する方法の一例として次式を示す。
Reference numeral 9 denotes a calculation device, which connects each of the flow meters 3 and 5 described above.
a, 5b,...5n, and gas flow meters 7a, 7b,...
Each measurement signal from 7n is inputted, and the amount of inflowing wastewater in each of the branched wastewater inflow pipes 1a, 1b, . . . 1n is determined by a calculation method described later. 8
Reference numerals a, 8b, ... 8n denote flow rate adjusting devices, which are provided for each of the wastewater inflow pipes 1a, 1b, ... 1n. While inputting the values of 5b, . . . 5n, the opening degrees of the corresponding control valves 4a, 4b, . Here, each anaerobic reactor 6a,
6b,...6n wastewater inflow pipes 1a, 1b,...1n
Flowmeters 5a, 5b...5n installed in the reactor measure the amount of wastewater Q1 , Q2 ...Qn flowing into each anaerobic reactor. In addition, the gas flow meters 7a, 7b...7n are
The amounts of fermentation gases G 1 , G 2 ...Gn generated from each anaerobic reactor 6a, 6b...6n are measured. These measurement results are input to the calculation device 9. Arithmetic device 9
Then, the ratio between the amount of inflow wastewater and the amount of fermentation gas generated is Gi/
Qi (i=1, 2...n), each anaerobic reactor 6a,
6b...6n, and based on this result, a distribution ratio wi (i=1, 2...n) for distributing the inflow wastewater amount QT , which is the measured value of the flowmeter 3, is calculated. Distribution rate wi
The following equation is shown as an example of a method for calculating .

w1=(G1/Q1)/(G1/Q1)+(G2/Q2)+…+(Gn/
Qn) w2=(G2/Q2)/(G1/Q1)+(G2/Q2)+…+(Gn/
Qn) 〓wn=
(G2/Q2)/(G1/Q1)+(G2/Q2)+…+(Gn/Qn) ここで、 G1lo:各嫌気性リアクタ毎の発酵ガス発生量
(実測値) G1lo:各嫌気性リアクタへの流入廃水量(実測
値) w1lo:各嫌気性リアクタに対する分配率 上記分配率w1loと廃水流入管路1に設置されて
いる流量計3の出力QTとによつて、次式に従つ
て各嫌気性リアクタへの流入廃水量の目標値
Qr1,Qr2,…Qrnを演算する。
w 1 = (G 1 /Q 1 ) / (G 1 /Q 1 ) + (G 2 /Q 2 ) +… + (Gn /
Qn) w 2 = (G 2 /Q 2 ) / (G 1 /Q 1 ) + (G 2 /Q 2 ) +… + (Gn /
Qn) 〓wn=
(G 2 /Q 2 ) / (G 1 /Q 1 ) + (G 2 /Q 2 ) +… + (Gn / Qn) where, G 1 lo : Fermentation gas generation amount for each anaerobic reactor ( G 1 l o : Amount of wastewater flowing into each anaerobic reactor (actual measured value) w 1 l o : Distribution ratio for each anaerobic reactor With the above distribution ratio w 1 l o and installed in wastewater inflow pipe 1 The target value of the amount of wastewater flowing into each anaerobic reactor is determined by the output QT of the flowmeter 3, according to the following formula:
Calculate Qr 1 , Qr 2 ,...Qrn.

Qr1=w1×QT Qr2=w2×QT 〓 〓 Qrn=wo×QT このようにして求めた流入廃水量の目標値
Qr1,Qr2…Qrnは各調節装置8a,8b,…,8
nに出力され、目標値になるように廃水流入管路
1a,1b,…,1nに設置されているバルブ4
a,4b,…,4nの開度が調節される。
Qr 1 =w 1 ×Q T Qr 2 =w 2 ×Q T 〓 〓 Qrn=w o × Q TTarget value of inflow wastewater amount obtained in this way
Qr 1 , Qr 2 ...Qrn are each adjusting device 8a, 8b, ..., 8
valves 4 installed in the wastewater inflow pipes 1a, 1b, ..., 1n so that the output reaches the target value.
The opening degrees of a, 4b,..., 4n are adjusted.

本実施例では上向流型のリアクタについて説明
したが、上向流型に限られるものではなく、下向
流型のリアクタにおいても何ら制約を受けるもの
ではない。
In this embodiment, an upward flow type reactor has been described, but the reactor is not limited to an upward flow type, and a downward flow type reactor is not subject to any restrictions.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、嫌気性リア
クタの処理能力に応じて流入廃水量を制御するこ
とができるので、常に良好な処理水を得ることが
でき、水処理施設を安定に運転管理することがで
きる。また、処理能力を求める手段として発酵ガ
ス量を用いているため、センサが廃水と直接接触
せず、汚れ等による誤差が生じ、常に正確な値を
得ることができる。
As described above, according to the present invention, the amount of inflowing wastewater can be controlled according to the processing capacity of the anaerobic reactor, so it is possible to always obtain good quality treated water and to stably manage the operation of water treatment facilities. can do. In addition, since the amount of fermentation gas is used as a means for determining processing capacity, the sensor does not come into direct contact with wastewater, and errors due to dirt etc. occur, so accurate values can always be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による水処理装置の流入負荷分
配制御装置の一実施例を示す概略ブロツク図であ
る。 3…流量計、4a,4b,〜4n…バルブ、5
a,5b,〜5n…流量計、6a,6b〜6n…
嫌気性リアクタ、7a,7b〜7n…ガス流量
計、8a,8b〜8n…調節装置、9…演算装
置。
FIG. 1 is a schematic block diagram showing an embodiment of an inflow load distribution control device for a water treatment apparatus according to the present invention. 3...Flowmeter, 4a, 4b, ~4n...Valve, 5
a, 5b, ~5n...Flowmeter, 6a, 6b~6n...
Anaerobic reactor, 7a, 7b to 7n... Gas flow meter, 8a, 8b to 8n... Adjustment device, 9... Arithmetic device.

Claims (1)

【特許請求の範囲】 1 廃水流入管路から分岐された複数の流入管路
毎にそれぞれ嫌気性リアクタを設けた水処理装置
の流入負荷分配制御装置において、 前記廃水流入管路および分岐された各流入管路
に流れる廃水の流量をそれぞれ測定する流量計
と、 各嫌気性リアクタから生じる発酵ガス量をそれ
ぞれ測定するガス流量計とを備え、前記各ガス流
計によるガス量と分岐された各流入管路毎の廃水
流量とを入力しこの廃水流量に対するガス量の割
合により各嫌気性リアクタ毎にその処理能力を求
める手段と、これら各嫌気性リアクタ毎の処理能
力に応じて、前記廃水流入管路に流れる流入廃水
の、各嫌気性リアクタに対する分配量を決定する
手段とを有する演算装置、 を備えたことを特徴とする水処理装置の流入負荷
分配制御装置。
[Scope of Claims] 1. An inflow load distribution control device for a water treatment device in which an anaerobic reactor is provided for each of a plurality of inflow pipes branched from a wastewater inflow pipe, comprising: It is equipped with a flow meter that measures the flow rate of wastewater flowing into the inflow pipe, and a gas flow meter that measures the amount of fermentation gas generated from each anaerobic reactor, and the gas flow meter measures the amount of fermentation gas generated by each of the gas flow meters and each branched inflow. means for inputting the wastewater flow rate for each pipe line and calculating the processing capacity for each anaerobic reactor based on the ratio of gas amount to the wastewater flow rate; An inflow load distribution control device for a water treatment device, comprising: a calculation device having means for determining the distribution amount of inflow wastewater flowing into a channel to each anaerobic reactor.
JP61127353A 1986-06-03 1986-06-03 Apparatus for distribution control of inflow load of water treatment plant Granted JPS62286595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61127353A JPS62286595A (en) 1986-06-03 1986-06-03 Apparatus for distribution control of inflow load of water treatment plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61127353A JPS62286595A (en) 1986-06-03 1986-06-03 Apparatus for distribution control of inflow load of water treatment plant

Publications (2)

Publication Number Publication Date
JPS62286595A JPS62286595A (en) 1987-12-12
JPH0418920B2 true JPH0418920B2 (en) 1992-03-30

Family

ID=14957832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61127353A Granted JPS62286595A (en) 1986-06-03 1986-06-03 Apparatus for distribution control of inflow load of water treatment plant

Country Status (1)

Country Link
JP (1) JPS62286595A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026461A (en) * 2004-07-12 2006-02-02 Toray Ind Inc Method and apparatus for controlling anaerobic water treatment plant generating methane gas
CN107032486A (en) * 2017-05-31 2017-08-11 桂林理工大学 The Inlet and outlet water measurement and control system of up-flow anaerobic biofilter
JP7282730B2 (en) * 2020-10-20 2023-05-29 水ing株式会社 Wastewater treatment method and wastewater treatment equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225796A (en) * 1983-05-23 1984-12-18 ヘキスト・セラニーズ・コーポレーション Control for anaerobic reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225796A (en) * 1983-05-23 1984-12-18 ヘキスト・セラニーズ・コーポレーション Control for anaerobic reactor

Also Published As

Publication number Publication date
JPS62286595A (en) 1987-12-12

Similar Documents

Publication Publication Date Title
CN107500408A (en) A kind of multistage A/O techniques aeration control system fed back based on ammonia nitrogen and dissolved oxygen
CN106495321A (en) Biological tank process optimization and operation control system and its control method
JP2003200190A (en) Device for controlling quality of water at sewage treatment plant
JP2006055683A (en) Activated sludge type wastewater treatment method and activated sludge type wastewater treatment apparatus
CN103553206A (en) Control system and control method for low-concentration dissolved oxygen in biochemical reaction basin
JPH0418920B2 (en)
KR100978706B1 (en) Apparatus for treating waste water
JPH0347158B2 (en)
JP3214489B2 (en) Sewage treatment method and sewage treatment device
CN104418428A (en) Water treatment control apparatus
CN207877400U (en) A kind of sewage treatment aeration system
JPS62286594A (en) Apparatus for distribution control of inflow load of water treatment plant
KR20030079435A (en) inner flow control system of apparatus for treating water
JP4248043B2 (en) Biological phosphorus removal equipment
JPS62286593A (en) Apparatus for distribution control of inflow load of water treatment plant
JPH0938682A (en) Biological water treatment
CN216584395U (en) Carbon-adding denitrification control structure
JP2950661B2 (en) Control unit for water treatment plant
Tzeng Advanced dynamic modeling of the high purity oxygen activated sludge process
JPH11290888A (en) Method for biological water treatment and its control device
JPH049604Y2 (en)
JPH0268196A (en) Optimum load control device in waste water treatment apparatus
CN117699967A (en) Intelligent aeration system based on biological membrane MBBR technology and control method
Äijälä et al. Integrated soft sensor model for flow control
CN116239233A (en) Accurate aeration air volume calculation system and air volume control method thereof