JPS62286594A - Apparatus for distribution control of inflow load of water treatment plant - Google Patents

Apparatus for distribution control of inflow load of water treatment plant

Info

Publication number
JPS62286594A
JPS62286594A JP61127352A JP12735286A JPS62286594A JP S62286594 A JPS62286594 A JP S62286594A JP 61127352 A JP61127352 A JP 61127352A JP 12735286 A JP12735286 A JP 12735286A JP S62286594 A JPS62286594 A JP S62286594A
Authority
JP
Japan
Prior art keywords
inflow
wastewater
water quality
anaerobic reactor
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61127352A
Other languages
Japanese (ja)
Inventor
Kazuo Shibazaki
柴崎 和夫
Ryosuke Miura
良輔 三浦
Chiyouko Kurihara
潮子 栗原
Itaru Takase
高瀬 格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61127352A priority Critical patent/JPS62286594A/en
Publication of JPS62286594A publication Critical patent/JPS62286594A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To obtain good water quality, by a method wherein treatment capacity is calculated at every anaerobic reactor and the quantity of inflow load to each anaerobic reactor is determined corresponding to the calculated treatment capacity and inflow waste water is distributed on the basis of inflow load. CONSTITUTION:A flowmeter 2 and a thermometer 3 are provided to the waste water inflow pipeline 1 of anaerobic reactors 7a, 7b...7n and the temp. of waste water is measured. Flowmeters 4a, 4b...4n are provided to branched waste water inflow pipelines 1a, 1b-1n to measure the inflow quantities of waste water. Water quality meters 8a, 8b...8n are provided to the treated water pipelines 10a, 10b...10n connected to the outflow sides of the reactors 7a, 7b...7n to measure water quality. The measuring signals of the flowmeters 2, 4a, 4b...4n and those of the water quality meters 8a, 8b...8n are inputted to an operation apparatus 9 to determine the inflow quantities of waste water of the waste water inflow pipelines 1a, 1b...1n. By this method, water treatment facilities can be stably operated and controlled.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔発明の目的〕 (産業上の利用分野) 本発明は下水や産業廃水を微生物を利用して浄化する水
処理装置の流入負荷分配ル制御装置に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Object of the Invention] (Field of Industrial Application) The present invention is directed to inflow load distribution control for water treatment equipment that purifies sewage and industrial wastewater using microorganisms. Regarding equipment.

(従来の技術) 下水や産業廃水などの有機性廃水は活性汚泥やメタン菌
などの微生物の動きによって浄化される。
(Prior Art) Organic wastewater such as sewage and industrial wastewater is purified by the movement of activated sludge and microorganisms such as methane bacteria.

特に近年ではメタン菌を応用した嫌気性処理が省エネル
ギーの観点から注目されている。
Particularly in recent years, anaerobic treatment using methane bacteria has attracted attention from the perspective of energy conservation.

これらの水処理システムでは特に下水処理のように多量
の廃水を浄化する場合は、複数のりアクタを持つ構成が
一般的である。従来このような水処理システムでは、複
数のりアクタへの流入廃水量が均等になるように制御さ
れていた。この従来例では、運転管理が非常に容易であ
る反面、次のような欠点が必った。すなわち、微生物は
何らかの原因で浄化能力が低下することがあり、これは
現在の技術では避けられない。浄化能力が低下した場合
は流入負荷を軽減させる運転管理を行い、浄化能力のよ
り一層の低下を防止する必要が必る。
In these water treatment systems, a configuration having a plurality of actuators is common, especially when purifying a large amount of wastewater such as in sewage treatment. Conventionally, in such water treatment systems, the amount of wastewater flowing into the plurality of reactors is controlled to be equal. Although this conventional example is very easy to manage, it has the following drawbacks. That is, the purification ability of microorganisms may decrease for some reason, and this cannot be avoided with current technology. If the purification capacity decreases, it is necessary to perform operational management to reduce the inflow load to prevent further decrease in the purification capacity.

しかし、複数のりアクタへ流入廃水ωを均等に分配する
従来例ではこのような対処ができなかった。
However, in the conventional example in which the inflowing wastewater ω is evenly distributed to a plurality of glue actors, such measures cannot be taken.

このため、何らかの原因で浄化能力が低下したりアクタ
では、ざらに浄化能力が低下し、処理水質が悪化する。
For this reason, if the purification ability is reduced for some reason, or in the case of an actor, the purification ability is drastically reduced, and the quality of the treated water deteriorates.

(発明が解、決しようとする問題点) すなわらリアクタへの流入廃水間を制御することができ
ず、浄化能力の低下による処理水質の悪化が生じること
があった。
(Problems to be solved by the invention) In other words, it is not possible to control the amount of wastewater flowing into the reactor, and the quality of treated water may deteriorate due to a decrease in purification ability.

したがって本発明の目的は、各嫌気性リアクタの処理能
力に応じて流入廃水量をル制御するようにして、常に良
好な処理水が得られるようにしだ流入負荷分配制御装置
を提供することにある。
Therefore, an object of the present invention is to provide an inflow load distribution control device that controls the amount of inflow wastewater according to the processing capacity of each anaerobic reactor so that good treated water can always be obtained. .

(発明の構成) (問題点を解決するための手段) 本発明は廃水流入管路から分岐された複数の流入管路毎
にそれぞれ嫌気性リアクタを設けた水処理装置の流入負
荷分配制御装置に関するもので、前記廃水流入管路およ
び分岐された各流入管路に流れる廃水の流量をそれぞれ
測定する流量計を設けると共に前記廃水流入管路に流れ
る廃水の温度を測定する温度計を設け、ざらに各嫌気性
リアクタから流出する処理水の水質をそれぞれ測定する
水質計を設(プる。また演算装置として、前記温度計に
よる廃水温度と、分岐された各流入管路毎の廃水流山と
を入力し、予め設定された基準関係式にて基9%理水質
を各嫌気性リアクタ毎に求める手段と、これら基準処理
水質と前記水質計にて実測された処理水質とにより各嫌
気性リアクタ毎にその処理能力を求める手段と、これら
各嫌気V1リアクタ毎の処理能力に応じて、前記廃水流
入管路に流れる流入廃水の、各嫌気性リアクタに対する
分配量を決定する手段とを持つものを用いる。
(Structure of the Invention) (Means for Solving the Problems) The present invention relates to an inflow load distribution control device for a water treatment device in which an anaerobic reactor is provided for each of a plurality of inflow pipes branched from a wastewater inflow pipe. A flowmeter is provided to measure the flow rate of wastewater flowing into the wastewater inflow pipe and each of the branched inflow pipes, and a thermometer is provided to measure the temperature of the wastewater flowing into the wastewater inflow pipe. A water quality meter is designed to measure the quality of the treated water flowing out from each anaerobic reactor. Also, as a calculation device, the wastewater temperature measured by the thermometer and the wastewater flow rate for each branched inflow pipe are input. Then, by means of determining the base 9% water quality for each anaerobic reactor using a preset standard relational expression, and by using these standard treated water quality and the treated water quality actually measured by the water quality meter, it is determined for each anaerobic reactor. A device having a means for determining the processing capacity and a means for determining the amount of inflow wastewater flowing into the wastewater inflow pipe to be distributed to each anaerobic reactor according to the processing capacity of each of these anaerobic V1 reactors is used.

(作 用) 本発明では、各嫌気性リアクタ毎にそれらの処理能力を
求め、この処理能力に対応して、各嫌気性リアクタへの
流入負荷量を決定し、これによって、流入廃水を分配す
ることににす、従来のように処理能力が低下した嫌気性
リアクタに均等な負lを与え続Cプることにより98理
水貿を低下さけることなく、nシに一定の良好な水質が
得られる。
(Function) In the present invention, the processing capacity of each anaerobic reactor is determined, and the amount of inflow load to each anaerobic reactor is determined in accordance with this processing capacity, thereby distributing the inflow wastewater. In particular, by applying an even negative l to an anaerobic reactor whose processing capacity has decreased as in the past, it is possible to maintain a constant level of good water quality without reducing water quality. It will be done.

(実施例) 第1図は本発明の一実施例を示すもので、n個の嫌気性
リアクタ7a、7b、・・・、7r)から成る水処理施
設の概略ブロック図である。図において、廃水流入管路
1には流量計2および湿度計3が設置されており、これ
によって流入廃水の流はおよび水温が測定される。また
分岐された各廃水流入管路1a、1b、−,inには流
量計4a、4b。
(Embodiment) FIG. 1 shows an embodiment of the present invention, and is a schematic block diagram of a water treatment facility consisting of n anaerobic reactors 7a, 7b, . . . , 7r). In the figure, a flow meter 2 and a hygrometer 3 are installed in a wastewater inflow pipe 1, and the flow and temperature of the inflowing wastewater are measured by these. Further, flow meters 4a, 4b are installed in each of the branched wastewater inflow pipes 1a, 1b, -,in.

・・・、4nが設置されており、これらによって各嫌気
性リアクタ7a、7b、・・・、7nに流入される廃水
量がそれぞれ測定される。さらに各廃水流入管路1a、
1b、・・・、1nには、それぞれ調節バルブ5a、5
b、・・・、5nが設けられ、対応するリアクタ7a、
7b、・・・7nへの流入廃水間を所望の値に調節する
。これら各リアクタ7a、7b。
..., 4n are installed, and the amount of waste water flowing into each anaerobic reactor 7a, 7b, ..., 7n is measured by these. Furthermore, each wastewater inflow pipe 1a,
1b, . . . , 1n have control valves 5a, 5, respectively.
b,..., 5n are provided, and corresponding reactors 7a,
7b, . . . 7n is adjusted to a desired value. Each of these reactors 7a, 7b.

・・・、7nの流出側には処理水管路10a、10b、
・・・。
..., on the outflow side of 7n, there are treated water pipes 10a, 10b,
....

Ionが連結されており、これらには処理水の水質を測
定するために水質計8a、3b、・・・、3nが設(プ
られる。
Ion are connected, and water quality meters 8a, 3b, . . . , 3n are installed in these to measure the water quality of the treated water.

9は演算装置で、前述した各流量計2および4a、4b
、 ・、4 n、 温度計3、各水質it 8 a 。
Reference numeral 9 denotes a calculation device, which connects each of the flowmeters 2, 4a, and 4b described above.
, , 4 n, 3 thermometers, each water quality it 8 a.

8b、・・・、8nの各測定信号を入力し、後述する演
算手法により、分岐された各廃水流入管路1a。
8b, . . . , 8n are input, and each wastewater inflow pipe 1a is branched by a calculation method described later.

1b、・・・、1nの流入廃水量を決定する。5a。Determine the amount of inflow wastewater of 1b, . . . , 1n. 5a.

6b、・・・、5nは流量調節装置で、各廃水流入管路
1a、1b、・・・、1n毎に設けられ、前記演算装置
9にて求められた流入廃水量を得るべく対応する流m計
4a、4b、・・・、4nの値を入力しながら、対応す
る調節バルブ5a、5b、・・・、5nの開度度調節を
行う。
Reference numerals 6b, . . . , 5n are flow rate regulating devices, which are provided for each of the wastewater inflow pipes 1a, 1b, . While inputting the values of the m totals 4a, 4b, . . . , 4n, the opening degrees of the corresponding control valves 5a, 5b, .

ここで、前記演算装置9には予め嫌気性リアクタフa、
7b、・・・、7nへの流入廃水量および水温と処理水
質との基準関係式が与えられている。
Here, the arithmetic unit 9 is provided with an anaerobic reactor a,
7b, . . . , 7n are given standard relational expressions between the amount of wastewater flowing into them, the water temperature, and the quality of the treated water.

嫌気性リアクタ7a、7b、・・・、7nによる水処理
では、その処理効率、ずなわら、処理水質は、主に流入
廃水量(水理学的滞留時間)と水温によって決定され、
α)式のような関数で表わされる。
In water treatment using the anaerobic reactors 7a, 7b, ..., 7n, the treatment efficiency, as well as the quality of the treated water, are mainly determined by the amount of inflow wastewater (hydraulic residence time) and water temperature.
α) It is expressed by a function such as the equation.

5e=f’(Q、θ)        ・・・■ここで
Se :lS理水質 Q :流入廃水量 θ ;水温 またU)式は廃水の性状によって変わるものであり、各
水処理施設ごとに実廃水を用いた予備実験などによって
予めα)式を決定しておく。ここで処理水質を表わす指
標としてBOD、COD。
5e=f'(Q, θ)...■Here, Se: lS Water quality Q: Inflow wastewater amount θ; Water temperature or U) The equation changes depending on the properties of the wastewater, and the actual wastewater is determined for each water treatment facility. Formula α) is determined in advance through preliminary experiments using . Here, BOD and COD are used as indicators to express the quality of treated water.

ToC,ToDなどを挙げることができ、各水処理1a
設ごとに最も適正な指標を選定する。
ToC, ToD, etc. can be mentioned, and each water treatment 1a
Select the most appropriate index for each setting.

演算装置9では、予め設定されているα)式により、温
度計3および流量計4a、4b、・・・、4nの値から
それぞれの嫌気性リアクタごとに基準処理水質Se1.
Se2.・・・、Senを演算する。
The arithmetic unit 9 determines the standard treated water quality Se1.
Se2. ..., calculate Sen.

次に基準処理水質と、処理水管路10a、10b、・・
・。
Next, the standard treated water quality and treated water pipes 10a, 10b,...
・.

Ionに設置されている水質計3a、 8b、・・・。Water quality meters 3a, 8b, etc. installed in Ion.

8nの出力(実測値)Sl、32.−、Snとを比較す
る。その結果、基準処理水質Se1゜Se2.・・・、
Senより処理水質の測定値S1゜S2.・・・、Sn
が小さい場合は、その嫌気性リアクタの処理能力は良好
であり、また反対に基準処理水質Se1.Se2.・・
・、Senより処理水質の測定値がSl、S2.・・・
、Snが大ぎい場合には、対応する嫌気性リアクタ7a
、7b、・・・。
8n output (actual measurement value) Sl, 32. −, Sn. As a result, the standard treated water quality Se1°Se2. ...,
Measured value of treated water quality from Sen S1゜S2. ..., Sn
If Se1. Se2.・・・
・, Sen, the measured value of the treated water quality is Sl, S2. ...
, Sn is too large, the corresponding anaerobic reactor 7a
,7b,...

7nの処理能力は低下していると判断する。次いで嫌気
性リアクタの処理能力に応じて流入廃水量゛を分配する
分配率を各嫌気性リアクタごとに演算する。分配率を演
算づる一例として0式を示す。
It is determined that the processing capacity of 7n has decreased. Next, a distribution ratio for distributing the amount of inflow wastewater according to the processing capacity of the anaerobic reactor is calculated for each anaerobic reactor. Equation 0 is shown as an example of calculating the distribution ratio.

上記分配率Wと廃水流入管路1に設置されている流量計
2の出力QTとによって次の■式に従って各嫌気性りア
クタ7a、7b、・・・、7nへの流入廃水量の目標値
Q1.Q2.・・・Qnを演算する。
Based on the above distribution ratio W and the output QT of the flow meter 2 installed in the wastewater inflow pipe 1, the target value of the amount of wastewater flowing into each anaerobic reactor 7a, 7b, . . . , 7n according to the following formula Q1. Q2. ...Calculate Qn.

Q1=W1XQr         (3−1)Q2 
=W2 XQT        (3−2)On −W
n X0丁(3−3) このようにして求めた流入廃水量の目標値は、各調節装
置5a、5b、・・・、5nに出力され、目標値になる
ように廃水流入管路1a、lb、・・・。
Q1=W1XQr (3-1)Q2
=W2 XQT (3-2)On -W
n lb...

1nに設置されている調節バルブ5a、5b、・・・。Control valves 5a, 5b, . . . installed at 1n.

5nの開度が調節され、各リアクタ7a、7b。The opening degree of 5n is adjusted, and each reactor 7a, 7b.

・・・、7nへの流入廃水量が調節される。..., the amount of wastewater flowing into 7n is adjusted.

(発明の効果) 以上述べたように本発明によれば嫌気性リアクタの処理
能力に応じて流入廃水量を制御することができるので、
常に良好な処理水を1qることかでき、水処理t#、設
を安定に運転管理することができる。
(Effects of the Invention) As described above, according to the present invention, the amount of inflowing wastewater can be controlled according to the processing capacity of the anaerobic reactor.
It is possible to always produce 1 q of good quality treated water, and the water treatment facility can be operated and managed in a stable manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による水処理装置の流入負荷分配制御装
置の一実施例を示す概略ブロック図で必る。 1、1a、i b、 〜、1 n・’−廃水流入管路、
2・・・流量計、3・・・温度計、 4a、4b、 〜、4n−・・流量計、5a、 6b、
−* 6n・;J節Ha、7a、7b、〜、7n・・・
嫌気性リアクタ、3a、 8b、 〜、E3n・・・水
質計9・・・演算装置 代理人 弁理士 則 近 憲 ’A3 同  三俣弘文
FIG. 1 is a schematic block diagram showing an embodiment of an inflow load distribution control device for a water treatment device according to the present invention. 1, 1a, ib, ~, 1 n・'-wastewater inflow pipe,
2...Flowmeter, 3...Thermometer, 4a, 4b, ~, 4n-...Flowmeter, 5a, 6b,
-* 6n・; J section Ha, 7a, 7b, ~, 7n...
Anaerobic reactor, 3a, 8b, ~, E3n...Water quality meter 9...Arithmetic device agent Patent attorney Noriyoshi Chika 'A3 Hirofumi Mitsumata

Claims (1)

【特許請求の範囲】 廃水流入管路から分岐された複数の流入管路毎にそれぞ
れ嫌気性リアクタを設けた水処理装置の流入負荷分配制
御装置において、 前記廃水流入管路および分岐された各流入管路に流れる
廃水の流量をそれぞれ測定する流量計と、前記廃水流入
管路に流れる廃水の温度を測定する温度計とを備え 各嫌気性リアクタから流出する処理水の水質をそれぞれ
測定する水質計と、 前記温度計による廃水温度と分岐された各流入管路毎の
廃水流量とを入力し予め設定された基準関係式にて基準
処理水質を各嫌気性リアクタ毎に求める手段と、 これら基準処理水質と前記水質計にて実測された処理水
質とにより各嫌気性リアクタ毎にその処理能力を求める
手段と、 これら各嫌気性リアクタ毎にその処理能力に応じて、前
記廃水流入管路に流れる流入廃水の、各嫌気性リアクタ
に対する分配量を決定する手段とを有する演算装置、 を設けたことを特徴とする水処理装置の流入負荷分配制
御装置。
[Scope of Claims] An inflow load distribution control device for a water treatment device in which an anaerobic reactor is provided for each of a plurality of inflow pipes branched from a wastewater inflow pipe, comprising: A water quality meter that measures the quality of treated water flowing out from each anaerobic reactor, comprising a flowmeter that measures the flow rate of wastewater flowing into each pipe, and a thermometer that measures the temperature of wastewater flowing into the wastewater inflow pipe. and means for inputting the wastewater temperature measured by the thermometer and the wastewater flow rate for each branched inflow pipe, and calculating the standard treated water quality for each anaerobic reactor using a preset standard relational expression, and these standard treatments. means for determining the processing capacity of each anaerobic reactor based on the water quality and the treated water quality actually measured by the water quality meter; and inflow flowing into the wastewater inflow pipe according to the processing capacity of each of these anaerobic reactors An inflow load distribution control device for a water treatment device, comprising: a calculation device having means for determining the distribution amount of wastewater to each anaerobic reactor.
JP61127352A 1986-06-03 1986-06-03 Apparatus for distribution control of inflow load of water treatment plant Pending JPS62286594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61127352A JPS62286594A (en) 1986-06-03 1986-06-03 Apparatus for distribution control of inflow load of water treatment plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61127352A JPS62286594A (en) 1986-06-03 1986-06-03 Apparatus for distribution control of inflow load of water treatment plant

Publications (1)

Publication Number Publication Date
JPS62286594A true JPS62286594A (en) 1987-12-12

Family

ID=14957805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61127352A Pending JPS62286594A (en) 1986-06-03 1986-06-03 Apparatus for distribution control of inflow load of water treatment plant

Country Status (1)

Country Link
JP (1) JPS62286594A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529417A (en) * 2006-03-15 2009-08-20 メリ エントゾルグングステヒニック フューア ディ パピーアインドゥストリー ゲーエムベーハー Method and apparatus for wastewater anaerobic treatment
JP2014233681A (en) * 2013-06-03 2014-12-15 住友重機械工業株式会社 Anaerobic treatment apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529417A (en) * 2006-03-15 2009-08-20 メリ エントゾルグングステヒニック フューア ディ パピーアインドゥストリー ゲーエムベーハー Method and apparatus for wastewater anaerobic treatment
JP2014233681A (en) * 2013-06-03 2014-12-15 住友重機械工業株式会社 Anaerobic treatment apparatus

Similar Documents

Publication Publication Date Title
CN106495321B (en) Biological tank process optimization and operation control system and its control method
CN102464426A (en) Intelligent adding control method of chemical phosphorus removal agent for municipal wastewater plant and device thereof
CN105301960A (en) Method for controlling input amount of tap water flocculating agent
JP6655975B2 (en) Aeration control device and aeration control method
CN109592804A (en) A kind of sewage treatment approach follows excellent accurate aeration method
CN114380378B (en) Intelligent phosphorus control drug feeding method and device and storage medium
EP3504163B1 (en) Treatment of wastewater
Ozdemir et al. Realistic numerical simulation of chlorine decay in pipes
JPS62286594A (en) Apparatus for distribution control of inflow load of water treatment plant
Alvarez-Vázquez et al. Optimal location of sampling points for river pollution control
CN207877400U (en) A kind of sewage treatment aeration system
CN201056505Y (en) Intelligent-induction water processing device
CN204116928U (en) The accuracy-control system of sewage treatment plant's aeration total amount
CN104914897B (en) Continuous activated sludge process aeration control method and system
CN110204021B (en) Faucet water quality guarantee method based on user feedback
JPH0418920B2 (en)
CN108009307A (en) Sewage treatment plant's managerial experiences succession method
JP3579300B2 (en) Sewage flow prediction control device
JPH0347158B2 (en)
JPS62286593A (en) Apparatus for distribution control of inflow load of water treatment plant
Jeung et al. Dynamic energy footprint monitoring of wastewater aeration systems via full-scale deployment of real-time off-gas analyzers
Äijälä et al. Integrated soft sensor model for flow control
CN117776379A (en) Accurate aeration system of mud film composite MBBR and control method
JPH0268196A (en) Optimum load control device in waste water treatment apparatus
JPH04180894A (en) Apparatus for controlling quantity of sludge