JPH04187747A - Manufacture of thick heat treatable aluminum alloy member having complicated shape - Google Patents

Manufacture of thick heat treatable aluminum alloy member having complicated shape

Info

Publication number
JPH04187747A
JPH04187747A JP31896590A JP31896590A JPH04187747A JP H04187747 A JPH04187747 A JP H04187747A JP 31896590 A JP31896590 A JP 31896590A JP 31896590 A JP31896590 A JP 31896590A JP H04187747 A JPH04187747 A JP H04187747A
Authority
JP
Japan
Prior art keywords
intermediate material
compression
aluminum alloy
treatment
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31896590A
Other languages
Japanese (ja)
Other versions
JPH083139B2 (en
Inventor
Aoshi Tsuyama
青史 津山
Naotake Yoshihara
吉原 直武
Yoshimichi Hino
善道 日野
Tetsuo Sakiyama
崎山 哲雄
Katsuhiko Hirokami
広神 勝彦
Takaharu Shimizu
清水 尊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
JFE Engineering Corp
Original Assignee
Nissan Motor Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2318965A priority Critical patent/JPH083139B2/en
Publication of JPH04187747A publication Critical patent/JPH04187747A/en
Publication of JPH083139B2 publication Critical patent/JPH083139B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To improve the strength and toughness of an alloy member without the generation of buckling and cracking by subjecting the cast material of a heat treatable Al alloy to plastic working to obtain intermediate stock, subjecting it to soln. treatment, thereafter inserting a dummy block into the penetrating part or the like of the stock and executing cold compression. CONSTITUTION:The cast material of a heat treatable Al alloy is subjected to plastic working and machining to form intermediate stock contg. a projecting part, a penetrating part and a through-hole part. The intermediate stock is subjected to soln. treatment, and after that, a dummy block made of metal having 70 to 200% deformation resistance to the intermediate stock is inserted into the penetrating part and through-hole part of the intermediate stock. In this state, cold compression at least in the two-axis direction is executed to remove residual stress caused by the soln. treatment. As for the cold compression, the one to attain 1.5 to 5.0% compressive strain is executed in a one direction, and next, the one to attain 1.5 to 5.0% compressive strain is executed in the other direction orthogonally crossed with the above direction. After that, aging treatment is executed. In this way, a thick Al alloy member with a complicated shape excellent in strength and toughness can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、熱処理型アルミニウム合金を素材として、突
出部、陥入部および/または貫通孔部を含む特定形状部
を有する厚肉・複雑形状の軽合金部材を製造するのに適
用される熱処理型アルミニウム合金部材の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is directed to a thick-walled and complex-shaped aluminum alloy having a specific shape including protrusions, recesses, and/or through-holes, made of a heat-treated aluminum alloy. The present invention relates to a method for manufacturing a heat-treated aluminum alloy member that is applied to manufacturing a light alloy member.

[従来技術] 熱処理型アルミニウム合金としては、例えば昭和58年
4月25日に丸善株式会社が発行した「増補版 航空宇
宙工学便覧」の第514頁に記載されているように、A
ff−Cu−Mg系(JIS  2000系) 、 A
Q −Mg−5i系(JIS  6000系)、Al−
Zn−Mg系(JIS  7000系)などがある。
[Prior Art] As a heat-treatable aluminum alloy, for example, A
ff-Cu-Mg system (JIS 2000 system), A
Q -Mg-5i series (JIS 6000 series), Al-
Examples include Zn-Mg series (JIS 7000 series).

従来、複雑な形状を有する熱処理型アルミニウム合金部
材を製造するに際しては、上記熱処理型アルミニウム合
金からなる鋳造材を鍛造加工により矩形状の中間素材に
成形し、次いで前記矩形状の中間素材に対して溶体化処
理を施L7、続いて前記溶体化処理後の残留応力を除去
するために、前記矩形状の中間素材に対して、一方向、
例えば厚さ方向の冷間圧縮を行った後、時効処理を施し
、さらに前記時効処理後の中間素材に対し切削加工を行
うことによって、突出部や陥入部あるいは貫通孔部など
の特定形状部を有する複雑な形状のアルミニウム合金部
材を得ている。
Conventionally, when manufacturing a heat-treated aluminum alloy member having a complicated shape, a cast material made of the above-mentioned heat-treated aluminum alloy is formed into a rectangular intermediate material by forging, and then the rectangular intermediate material is Solution treatment is performed L7, and then, in order to remove residual stress after the solution treatment, the rectangular intermediate material is treated in one direction,
For example, after performing cold compression in the thickness direction, aging treatment is performed, and then cutting is performed on the intermediate material after the aging treatment to remove specific shaped parts such as protrusions, invaginations, or through holes. An aluminum alloy member with a complicated shape has been obtained.

[発明が解決しようとする課題] しかしながら、このような従来の熱処理型アルミニウム
合金部材の製造方法にあっては、鍛造加工によって成形
する矩形状の中間素材は、後に切削除去される陥入部や
余肉部分をも含んだ厚肉ブロック状に成形されており、
この状態で溶体化処理されるため、溶体化処理時におい
て矩形状中間素材の厚さがかなり大きくなっており、溶
体化処理の効果が十分でなく、高強度、高靭性のものを
得ることが困難である。また、本合金は溶体化処理時に
発生する残留応力を十分除去しておかなければ、切削加
工時に歪や割れか発生するだけでなく、潮風や海水にさ
らされると応力腐食割れを助長することになる。そこで
従来は矩形状の中間素材に対し溶体化処理後に一軸の冷
間圧縮を施こすことにより、残留応力を除去していた。
[Problems to be Solved by the Invention] However, in such a conventional method for manufacturing heat-treated aluminum alloy members, the rectangular intermediate material formed by forging has invaginations and surplus parts that are later removed. It is molded into a thick block shape that also includes the meat part,
Since the solution treatment is performed in this state, the thickness of the rectangular intermediate material becomes considerably large during the solution treatment, and the effect of the solution treatment is not sufficient and it is difficult to obtain a product with high strength and high toughness. Have difficulty. In addition, if the residual stress generated during solution treatment is not sufficiently removed from this alloy, it will not only cause distortion and cracking during cutting, but will also promote stress corrosion cracking when exposed to sea breeze or seawater. Become. Conventionally, the residual stress has been removed by subjecting a rectangular intermediate material to uniaxial cold compression after solution treatment.

しかしながら、先に述べたように、このような方法では
、例えば7075合金の場合、100關程度の肉厚にな
ると十分な強度・靭性が確保できなくなるため、また、
−軸のみの圧縮では十分な残留応力除去が難しいため、
新たな方法を開発する必要がある。その一つとして、突
出部や陥入部あるいは貫通孔部などの特定形状部を有す
る中間素材あるいは最終仕上材を溶体化し、圧縮の代り
に一196℃の液体窒素中に浸漬し、引き続き蒸気加熱
により、板厚表層および内部で溶体化冷却とは逆の熱サ
イクルを与える“アップヒルクエンチ法″が開発された
。しかし、この方法では冷媒の費用が必要になるのみな
らず、形状に合せた蒸気ノズル配置が必要など設備が極
めて複雑になるため制御が容易でなく、さらに残留応力
除去効果も十分とは言えないことから、はとんど普及す
るには至っていない。
However, as mentioned above, with this method, for example, in the case of 7075 alloy, sufficient strength and toughness cannot be ensured when the thickness becomes about 100 mm.
- It is difficult to remove residual stress sufficiently by compressing only the axis.
New methods need to be developed. One method is to solutionize an intermediate or finished material with a specific shape such as a protrusion, recess, or through hole, immerse it in liquid nitrogen at -196°C instead of compression, and then heat it with steam. , an "uphill quench method" was developed that provides a thermal cycle opposite to that of solution cooling at the surface and inside the plate. However, this method not only requires the cost of the refrigerant, but also requires extremely complicated equipment such as the need to arrange the steam nozzle to match the shape, making control difficult, and furthermore, the residual stress removal effect is not sufficient. For this reason, it has not yet become widespread.

そこで、本願発明者等は先に、特願平1−179724
+、:おいて、熱処理型アルミニウム合金よりなる鋳造
材から突出部や陥入部あるいは貫通孔部などの特定形状
部を有する中間素材を形成し、この中間素材に対して溶
体化処理を施した後、当該溶体化処理後の中間素材に対
して圧縮歪が1.5〜5.0%となる冷間圧縮を一方向
に行い、さらに圧縮歪が1.5〜5.0%となる冷間圧
縮を前記一方向に対し直交する他の方向に行う少なくと
も2軸方向の冷間圧縮を行い、その後時効処理を施すこ
とを特徴とする熱処理型アルミニウム合金部材の製造方
法を提案した。この方法によれば十分な強度・靭性が確
保でき、また、十分に残留応力を除去することができる
。しが【7、さらに検討を重ねた結果、部分的に薄肉部
が存在する場合は、上記方法では圧縮時に座屈や割れが
生じる可能性があることが判明した。
Therefore, the inventors of the present application first filed the patent application No. 1-179724.
+: After forming an intermediate material having specific shaped parts such as protrusions, invaginations, or through holes from a cast material made of heat-treated aluminum alloy, and subjecting this intermediate material to solution treatment. After the solution treatment, the intermediate material is subjected to cold compression in one direction with a compressive strain of 1.5 to 5.0%, and further cold compressed with a compressive strain of 1.5 to 5.0%. We have proposed a method for manufacturing a heat-treated aluminum alloy member, characterized in that cold compression is performed in at least two axial directions, in which compression is performed in another direction perpendicular to the one direction, and then an aging treatment is performed. According to this method, sufficient strength and toughness can be ensured, and residual stress can be sufficiently removed. However, [7] As a result of further investigation, it was found that in the case where there is a partially thin walled portion, there is a possibility that buckling or cracking may occur during compression using the above method.

本発明は、このような実情に鑑みてなされたものであっ
て、溶体化処理による熱処理効果を高めると共に、溶体
化処理によって発生する残留応力の除去効果を十分なも
のとすることによって、強度および靭性を割れや座屈を
生じさせることなく改善することができる熱処理型アル
ミニウム合金部材の製造方法を提供することを目的とす
る。
The present invention has been made in view of these circumstances, and improves strength and strength by increasing the heat treatment effect of solution treatment and making sufficient the effect of removing residual stress generated by solution treatment. An object of the present invention is to provide a method for manufacturing a heat-treated aluminum alloy member that can improve toughness without causing cracking or buckling.

〔課題を解決するための手段] 本発明に係る厚肉・複雑形状の熱処理型アルミニウム合
金部材の製造方法は、熱処理型アルミニウム合金よりな
る鋳造材に対し、塑性加工と切削加工を行うことによっ
て、または塑性加工のみを行うことによって、突出部、
陥入部および/または貫通孔部を含む特定形状部を有す
る中間素材を形成し、次いで前記中間素材に対して溶体
化処理を施し、その後当該溶体化処理後の中間素材に対
して70%以上200%以下の変形抵抗を有する金属製
ダミーブロックをその陥入部および貫通孔部に挿入した
うえで、当該中間素材に対して、圧縮歪が1.5〜5.
0%となる冷間圧縮を一方向に行うと共に圧縮歪が1,
5〜5,0%となる冷間圧縮を前記一方向に対し直交す
る他の方向に行う少なくとも2軸方向の冷間圧縮を行い
、その後時効処理を施すことを特徴とする。
[Means for Solving the Problems] The method for manufacturing a thick-walled, complex-shaped heat-treated aluminum alloy member according to the present invention involves performing plastic working and cutting on a cast material made of a heat-treated aluminum alloy. Or by performing only plastic working, protrusions,
An intermediate material having a specific shape including an invaginated portion and/or a through hole is formed, and then the intermediate material is subjected to solution treatment, and then 70% or more of the intermediate material after the solution treatment is 200% A metal dummy block having a deformation resistance of 1.5 to 5% is inserted into the recess and through hole, and the compressive strain of the intermediate material is set to 1.5 to 5%.
Cold compression is performed in one direction so that the compression strain becomes 0%, and the compression strain becomes 1.
It is characterized by performing cold compression in at least two axial directions in which cold compression to 5 to 5.0% is performed in another direction orthogonal to the one direction, and then subjecting it to aging treatment.

以下、本発明に係る熱処理型アルミニウム合金部材の製
造方法について詳細に説明する。
Hereinafter, a method for manufacturing a heat-treated aluminum alloy member according to the present invention will be described in detail.

本発明において適用される熱処理型アルミニウム合金と
しては、前述のように例えば、JIS201.4,20
17.2024に代表される2000系、606]に代
表される6000系、7NO1,7075に代表される
7000系等があるか、これらJISに制定されたもの
だけに限定されないことはいうまでもなく、Fe、Sn
As mentioned above, examples of the heat-treatable aluminum alloy used in the present invention include JIS201.4, 20
There are 2000 series represented by 17.2024, 6000 series represented by 606], 7000 series represented by 7NO1, 7075, etc., and it goes without saying that these are not limited to those established by JIS. , Fe, Sn
.

V、Cr、Mo等の元素を適宜添加し、または上記合金
のこれら添加元素の量を増減したものが用いられる。
Elements such as V, Cr, and Mo are appropriately added, or the above-mentioned alloys are used in which the amounts of these added elements are increased or decreased.

このような熱処理型アルミニウム合金を素材とするアル
ミニウム部材を本発明に基いて製造するに際しては、ま
ず、前記熱処理型アルミニウム合金よりなる鋳造材に対
し、鍛造加工などの塑性加工を行うことにより、または
このような塑性加工と切削加工とを併用することにより
、第1図に例示するような中間素材1を成形する。この
中間素材1は、4ケ所の突出部2811ケ所の陥入部2
bおよび2ケ所の貫通孔部2Cを特定形状部として有す
る厚肉で複雑な形状をなすものである。
When manufacturing an aluminum member made of such a heat-treated aluminum alloy according to the present invention, first, a cast material made of the heat-treated aluminum alloy is subjected to plastic working such as forging, or By using such plastic working and cutting in combination, an intermediate material 1 as illustrated in FIG. 1 is formed. This intermediate material 1 has four protrusions and 2811 invaginations 2.
It is thick and has a complicated shape, having a through hole portion 2C at two locations as specific shaped portions.

なお、ここで特定形状部とは突出部、陥入部及び貫通孔
部に代表される加工部分を示すものであるか、必ずしも
これらに限定されるものではなく他の形状部分を含んで
いてもよい。また、このような特定形状部として突出部
、陥入部および貫通孔部か全て存在する必要はなく、陥
入部または貫通孔部のみが存在するものであってもよい
Note that the specific shaped part here refers to processed parts such as protrusions, invaginations, and through holes, but is not necessarily limited to these and may include other shaped parts. . Moreover, it is not necessary that all of the protruding part, the recessed part, and the through-hole part exist as such a specific shaped part, and only the recessed part or the through-hole part may be present.

次に、上述の中間素材1に対して溶体化処理を施す。こ
の溶体化処理は、例えば2024−T62材においては
490〜500℃に加熱して溶体化した後水冷する条件
、6061−762材においては515〜550℃に加
熱して溶体化した後水冷する条件、7075−T62材
においては460〜500℃に加熱して溶体化した後水
冷する条件で行う。
Next, the above-mentioned intermediate material 1 is subjected to solution treatment. This solution treatment is carried out under the following conditions: for example, 2024-T62 material is heated to 490-500°C, solution-treated, and then water-cooled, and 6061-762 material is heated to 515-550°C, solution-treated, and then water-cooled. , 7075-T62 material is heated to 460 to 500°C to form a solution, and then cooled with water.

次に、溶体化処理後の中間素材1の陥入部および貫通孔
部に、その変形抵抗の70%以上200%以下の変形抵
抗を有する金属製ダミーブロックを挿入したうえで、溶
体化処理による残留応力を除去するために、所定条件で
少なくとも2軸方向の冷間圧縮を行う。この冷間圧縮は
、少なくとも、圧縮歪が1.5〜5.0%となる冷間圧
縮を一方向に行い、次いで圧縮歪が1.5〜5.0%と
なる冷間圧縮を前記一方向に対し直交する他の方向に行
うものであり、この場合の2軸方向としては、例えば第
1図に示すような二方向およびX方向を選択することか
できる。なお、冷間圧縮の際の順序および方向は特に限
定されず、互いに直交する3軸のうち、加工しやすい少
なくとも2軸方向を選択すればよく、さらには要すれば
3回以上繰り返し行ってもよい。
Next, metal dummy blocks having a deformation resistance of 70% or more and 200% or less of the deformation resistance of the intermediate material 1 are inserted into the invaginations and through holes of the intermediate material 1 after the solution treatment, and the remaining In order to remove stress, cold compression is performed in at least two axial directions under predetermined conditions. This cold compression is performed at least in one direction with a compression strain of 1.5 to 5.0%, and then cold compression with a compression strain of 1.5 to 5.0% in one direction. This is carried out in another direction orthogonal to the direction, and in this case, the two axial directions can be selected, for example, as shown in FIG. 1 and the X direction. Note that the order and direction during cold compression are not particularly limited, and it is sufficient to select at least two axial directions that are easy to process among the three mutually orthogonal axes, and if necessary, the cold compression may be repeated three or more times. good.

本発明において、溶体化処理後の中間素材1に対して少
なくとも2軸方向に冷間圧縮するのは、当該中間素材1
の形状が複雑であるため1軸方向のみでは冷間圧縮によ
る残留応力の除去効果が期待できない領域があることに
よるものである。2軸方向に冷間圧縮したときに残留応
力が減少することについて第6図、第7図および第8図
により説明する。
In the present invention, the intermediate material 1 after solution treatment is cold compressed in at least two axial directions.
This is because there are regions where the residual stress removal effect due to cold compression cannot be expected only in one axial direction due to the complicated shape of the material. The reduction in residual stress when cold compressed in two axial directions will be explained with reference to FIGS. 6, 7, and 8.

第6図は板厚40mmの無限平板20を部分的に示すも
のであって、圧縮方向をZ、板厚方向をY、これら二方
向に対し相互に直交する板面方向をXとして示している
FIG. 6 partially shows an infinite flat plate 20 with a thickness of 40 mm, in which Z indicates the compression direction, Y indicates the thickness direction, and X indicates the direction of the plate surface perpendicular to these two directions. .

第7図は第6図に示した平板20に対し、470℃に加
熱したあと20℃の水中に水焼入れする溶体化処理を施
したのち、二方向に圧縮した時(外力負荷状態の時)の
圧縮歪に対する内部応力の変化を熱応力解析によって計
算した結果を示すものであり、圧縮方向(二方向)の内
部応力をσ8、板厚方向(X方向)の内部応力をσ2、
板面方向(X方向)の内部応力をσ8で示しである。
Fig. 7 shows the flat plate 20 shown in Fig. 6 after being subjected to solution treatment by heating to 470°C and water quenching in 20°C water, and then compressed in two directions (under external force load). This shows the results of calculating the change in internal stress with respect to compressive strain by thermal stress analysis, where the internal stress in the compression direction (two directions) is σ8, the internal stress in the thickness direction (X direction) is σ2,
The internal stress in the plate surface direction (X direction) is indicated by σ8.

第7図より明らかなように、二方向の内部応力σ2は、
圧縮歪が1.5%以上で表面および中心とも同じような
応力レベルとなり、X方向の内部応力σ、およびX方向
の内部応力σ、は、圧縮歪が1.5%以上でOに収束す
る。なお、この解析結果は、板厚40mmの無限平板2
0を対象としたものであるので、溶体化処理後において
もX方向の内部応力σ、は0となっているが実際の有限
(所定)寸法を有する平板の場合には溶体化処理後にお
いてX方向にも内部応力σ、が存在する。従って、圧縮
方向(Z方向)と直交する板厚方向(X方向)および板
面方向(X方向)の応力分布は圧縮歪か1.5%以上て
0に収束するものとなっていることから、このZ方向か
らの冷間圧縮後板厚方向(X方向)または/および板面
方向(X方向)より冷間圧縮する2軸方向以上の冷間圧
縮を行うことによって内部応力(σ8. 7.σK)は
圧縮歪σ が1.5%以上でOに向けて収束することとなる。
As is clear from Fig. 7, the internal stress σ2 in two directions is
When the compressive strain is 1.5% or more, the stress level is the same on the surface and the center, and the internal stress σ in the X direction and the internal stress σ in the X direction converge to O when the compressive strain is 1.5% or more. . Note that this analysis result is based on an infinite flat plate 2 with a thickness of 40 mm.
0, the internal stress σ in the X direction is 0 even after solution treatment, but in the case of an actual flat plate with finite (predetermined) dimensions, There is also an internal stress σ in the direction. Therefore, the stress distribution in the plate thickness direction (X direction) and the plate surface direction (X direction) perpendicular to the compression direction (Z direction) converges to 0 when the compressive strain is 1.5% or more. After this cold compression from the Z direction, the internal stress (σ8.7 .σK) converges toward O when the compressive strain σ is 1.5% or more.

逆に言えば1軸のみの圧縮では内部応力(σ、。Conversely, in uniaxial compression, the internal stress (σ,

σ7.σ、)をすべてゼロに近づけることは難しいこと
になる。
σ7. It will be difficult to make all σ, ) close to zero.

第8図は第7図のZ方向に冷間圧縮を行った際の圧縮歪
による内部応力の変化を示す状態からZ方向の冷間圧縮
力を解放した後の残留応力分布を示すものである。冷間
圧縮力を解放した状態か最終の残留応力状態となり、例
えば圧縮歪か2.09゜の冷間圧縮を行った場合には、
第8図に示すように残留応力は著しく小さなものとなる
Figure 8 shows the residual stress distribution after the cold compression force in the Z direction is released from the state shown in Figure 7, which shows changes in internal stress due to compressive strain when cold compression is performed in the Z direction. . If the cold compression force is released or the final residual stress state is achieved, for example, if the compressive strain or cold compression is 2.09°,
As shown in FIG. 8, the residual stress becomes extremely small.

以上のように、本発明においては、冷間圧縮を行う際の
圧縮歪は前述したように内部応力力(01こ向かって収
束することが可能となる1、5 %以上りこ規定する。
As described above, in the present invention, the compressive strain during cold compression is specified to be at least 1.5%, which allows the internal stress force to converge toward the internal stress (01), as described above.

しかし、圧縮歪か大きすぎると中間素材1に対する負荷
が過大なものとなるので、50%以下に規定する。
However, if the compressive strain is too large, the load on the intermediate material 1 will be excessive, so it is specified to be 50% or less.

また、ダミーブロックについては、その変形抵抗が溶体
化処理後の中間素材に対して70%より小さいとダミー
ブロックが容易に変形し座屈や卵[れを防ぐための拘束
体としての用を無さす、逆1こ200%より大きいとダ
ミープロ・ンクカ曵変形せず中間素材の圧縮変形がダミ
ープロ・ツクと接して(する部分では進行しないため残
留応力除去力・達成できない。また、中間素材と同様に
変形するものとしては金属が望ましい。よって、ダミー
プロ・ツクを金属製とし、その変形抵抗を中間素材の変
形抵抗の70%以上200%以下に規定した。なお、ダ
ミーブロックの挿入に際してはM o 32等の潤滑材
を塗布することにより、かじり等を防止し変形をスムー
ズに進行させることが望ましい。また、ダミーブロック
の形状は0.3關以下のクリアランスを考慮したほぼ中
間素材の陥入部および貫通孔部と同じ寸法・形状とする
。なお、ダミープロ・ツクは、特定形状部として陥入部
および貫通孔部を有する場合にはこれらの両方に挿入す
る。
Regarding the dummy block, if its deformation resistance is less than 70% of the intermediate material after solution treatment, the dummy block will easily deform and will no longer be used as a restraining body to prevent buckling or cracking. As expected, if the reverse 1 is larger than 200%, the compressive deformation of the intermediate material will not progress in the part where it touches the dummy pro, and the residual stress removal force cannot be achieved.Also, the same as with the intermediate material. Metal is desirable as a material that can be deformed to It is desirable to apply a lubricant such as No. 32 to prevent galling and ensure smooth deformation.Also, the shape of the dummy block is approximately the same as the invaginated part of the intermediate material and the clearance of 0.3 degrees or less. It should have the same size and shape as the through hole.If the specific shaped part has an invaginated part and a through hole, the dummy prong should be inserted into both of these parts.

次いで、冷間圧縮を行った中間素材1に対して時効処理
を施し、その後、必要に応じて前記中間素材1の表面に
切削加工や研磨加工などの仕上げ加工を施すことによっ
て所定の寸法に仕上げ、突出部2 a s陥入部2b、
および貫通孔部2Cなどの特定形状部2を有する熱処理
型アルミニウム合金部材を得る。なお、前記時効処理は
、例えば、2024−T62材においては185〜19
5℃で約9時間、6061−T62材においては155
〜165℃で約18時間、7075−T62材において
は115〜]25℃で約24時間以上の条件で行うよう
にすることかできる。
Next, the cold-compressed intermediate material 1 is subjected to an aging treatment, and then, if necessary, the surface of the intermediate material 1 is subjected to finishing processing such as cutting or polishing to finish it to predetermined dimensions. , protrusion 2 a s invagination 2 b,
A heat-treated aluminum alloy member having specific shaped portions 2 such as through-hole portions 2C is obtained. Note that the aging treatment is performed, for example, in the case of 2024-T62 material at a temperature of 185 to 19
Approximately 9 hours at 5℃, 155 for 6061-T62 material
The heating can be carried out at ~165°C for about 18 hours, and in the case of 7075-T62 material, at 115~25°C for about 24 hours or more.

なお、参考までに前述した“アップヒルクエンチ法”と
圧縮法による残留応力除去の程度第9図に示す。焼入れ
後肉厚中心と表層での応力差かいずれも50 kg f
/w 2あったのに対し、時効後はアップヒルクエンチ
を施したものては15kgf/mm2、圧縮を施こした
ものでは5kgf/am2となり、圧縮法の方が残留応
力除去法として優っていることがわかる。
For reference, the degree of residual stress removal by the above-mentioned "uphill quench method" and compression method is shown in FIG. After quenching, the stress difference between the center of wall thickness and the surface layer is 50 kg f.
/w 2, whereas after aging it was 15 kgf/mm2 with uphill quenching and 5 kgf/am2 with compression, indicating that the compression method is superior as a residual stress removal method. I understand that.

[作用コ 本発明においては、溶体化処理前に、鋳造材に対し、鍛
造加工などの塑性加工を行うことによって、あるいは鍛
造加工などの塑性加工と切削加工とを併用することによ
って、鋳造材を突出部、陥入部および/または貫通孔部
を含む特定形状部を有する最終製品形状に近似した中間
素材に成形し、次いてこの中間素材に対して溶体化処理
を施し、その後の冷間圧縮を少なくとも2軸方向で行う
ようにしているので、溶体化処理時には前記中間素材の
肉厚が薄くなっていて溶体化処理による熱処理効果が十
分なものとなり、かつまた溶体化処理により発生する残
留応力の除去効果か十分なものとなる。このため、高強
度および高靭性を備えた熱処理型アルミニウム合金部材
を得ることかできる。また、圧縮時、中間素材の陥入部
および貫通孔部に特定範囲の変形抵抗を有するダミーブ
ロックを挿入するため、薄肉部でも座屈や割れか生じな
い。
[Operation] In the present invention, the cast material is processed by performing plastic working such as forging on the cast material before solution treatment, or by using a combination of plastic working such as forging and cutting. An intermediate material having a specific shape including protrusions, invaginations, and/or through holes is formed to approximate the shape of the final product, and then the intermediate material is subjected to solution treatment, followed by cold compression. Since the process is carried out in at least two axial directions, the thickness of the intermediate material becomes thinner during the solution treatment, so that the heat treatment effect of the solution treatment is sufficient, and the residual stress generated by the solution treatment is reduced. The removal effect is sufficient. Therefore, it is possible to obtain a heat-treated aluminum alloy member with high strength and high toughness. Furthermore, since dummy blocks having a specific range of deformation resistance are inserted into the invaginations and through-holes of the intermediate material during compression, buckling and cracking do not occur even in thin-walled parts.

[実施例] 熱処理型アルミニウム合金であるJIS7075材から
なる鋳造材に対して、塑性加工として鍛造加工を行うこ
とにより、第2図に示すように、3ケ所の陥入部4a、
4b、4cおよび1ケ所の貫通孔部4dを特定形状部4
として備えた、長さり、−680關、幅W2−660 
mm、高さH2−285mmの中間素材3を作成した。
[Example] As shown in FIG. 2, three invaginations 4a,
4b, 4c and one through hole 4d are formed into a specific shape part 4.
As provided, length: -680 mm, width: W2-660
An intermediate material 3 with a height of H2-285 mm was created.

次いで前記中間素材3に対し、第3図に示すように、4
68℃に加熱して6時間保持した後水冷する条件の溶体
化処理を施した。
Next, as shown in FIG.
Solution treatment was performed under conditions of heating to 68°C, holding for 6 hours, and then cooling with water.

続いて、クリアランス0,3關以下の変形抵抗か種々異
なるダミーブロックを陥入部および貫通孔部にM o 
S 2を塗布した状態で挿入したうえて、前記溶体化処
理後の中間素材3の残留応力を除去するために、溶体化
後の中間素材に対し2軸方向の冷間圧縮を行った。なお
、比較のためにグミ−ブロックを挿入しないものについ
ても冷間圧縮を行い、また]軸方向の冷間圧縮について
も試験した。この際の種々の試験条件を第1表に示す。
Next, dummy blocks with various deformation resistances or different clearances of 0.3 or less are placed in the invaginations and through-holes.
After inserting the intermediate material 3 coated with S2, the solution-treated intermediate material 3 was cold compressed in two axial directions in order to remove residual stress in the intermediate material 3 after the solution treatment. For comparison, cold compression was also carried out without inserting gummy blocks, and cold compression in the axial direction was also tested. Various test conditions at this time are shown in Table 1.

第1表中試験番号]〜3はこの発明の範囲内の実施例で
あり、試験番号4〜9はその範囲から外れる比較例であ
る。なお試験番号4については後述するように特定形状
部を形成しない中間素材を用い、後の加工で特定形状部
を形成する従来の方法を用いたものである。
Test numbers] to 3 in Table 1 are examples within the scope of the present invention, and test numbers 4 to 9 are comparative examples outside the scope. As for test number 4, as will be described later, a conventional method was used in which an intermediate material was used that did not form a specific shape part, and the specific shape part was formed in a subsequent process.

この際の2軸方向の冷間圧縮は、第5図に示す7075
材の圧縮荷重と圧縮歪との間の関係、すなわち、第5図
の直線部分において以下の(1)式で表される関係に従
って以下に示すようにして行った。
At this time, the biaxial cold compression is performed using the 7075 shown in Fig. 5.
The test was carried out as shown below in accordance with the relationship between the compressive load and the compressive strain of the material, that is, the relationship expressed by the following equation (1) in the straight line section of FIG.

Fヰ[24,9+ 3.8  δIXS・・・・・・・
・・ (1)[たたし、Fはプレス荷重(kgf)、δ
は圧縮歪(%)、Sはプレス断面積(m12)、定数の
単位はkgf/m!12である。] すなわち、前記溶体化処理後の中間素材3に対し、まず
、第2図中においてZ方向の冷間圧縮を一部の試料を除
いて約67トンの圧縮荷重により行って約2.5%の圧
縮歪が付与されるようにし、続いて、第2図中において
Y方向の冷間圧縮を一部の試料を除いて同じく約67ト
ンの圧縮荷重により行って約2.5%の圧縮歪が付与さ
れるようにして、Z方向およびY方向の2軸方向からの
冷間圧縮を行った。なお、試験番号9についてはZ方向
のみの一軸圧縮とした。
Fヰ[24,9+ 3.8 δIXS・・・・・・
... (1) [Tatashi, F is press load (kgf), δ
is compressive strain (%), S is press cross-sectional area (m12), and the constant unit is kgf/m! It is 12. ] That is, the intermediate material 3 after the solution treatment was first subjected to cold compression in the Z direction in FIG. 2 with a compressive load of about 67 tons except for some samples, resulting in a reduction of about 2.5%. Then, as shown in Figure 2, cold compression in the Y direction was applied with a compressive load of about 67 tons, resulting in a compressive strain of about 2.5%. Cold compression was performed in two axial directions, the Z direction and the Y direction, so that the following properties were applied. For test number 9, uniaxial compression was performed only in the Z direction.

次いで、前記冷間圧縮後の中間素材3に対して、同じく
第3図に示すように、108℃で7時間および]65℃
で7時間の2段時効処理を施した後、仕上げ加工(切削
加工)を施すことによって、陥入部4a、4b、4cお
よび貫通孔部4dからなる特定形状部4を有する熱処理
型アルミニウム合金部材を得た。
Next, as shown in FIG. 3, the intermediate material 3 after the cold compression was heated at 108°C for 7 hours and at 65°C.
After performing a two-stage aging treatment for 7 hours, a finishing process (cutting process) is performed to obtain a heat-treated aluminum alloy member having a specific shape part 4 consisting of invaginations 4a, 4b, 4c and a through hole part 4d. Obtained.

また、試験番号40部材は、以下のようにして形成した
Moreover, the test number 40 member was formed as follows.

すなわち、まず上述の実施例と同じく熱処理型アルミニ
ウム合金であるJ 157075材からなる鋳造材に対
して鍛造加工を行い、第4図に示すように、長さL4−
680mm、幅W4−660mm。
That is, first, a cast material made of J 157075 material, which is a heat-treated aluminum alloy, is forged as in the above embodiment, and as shown in FIG. 4, the length L4-
680mm, width W4-660mm.

高さH4−3101111の矩形ブロック状の中間素材
10を作成した。
A rectangular block-shaped intermediate material 10 with a height of H4-3101111 was created.

続いて、前記ブロック状の中間素材]0に対して、上述
の実施例と同じく第3図に示すように468℃に加熱し
て6時間保持した後水冷する条件の溶体化処理を施した
Subsequently, the block-shaped intermediate material [0] was subjected to solution treatment under the conditions of heating to 468° C., holding for 6 hours, and cooling with water, as shown in FIG. 3, as in the above-mentioned example.

次に、溶体化処理後の前記ブロック状の中間組材10に
対し、第4図中においてZ方向のみの冷間圧縮を約67
トンの圧縮荷重により行って約2.5%の圧縮歪が付与
されるようにした。
Next, the block-shaped intermediate assembly 10 after the solution treatment is cold compressed only in the Z direction in FIG.
A compressive strain of about 2.5% was applied by applying a compressive load of 1,000 tons.

次いで、前記実施例と同様に同じく第3図に示すように
、108℃×7時間および165℃×7時間の2段時効
処理を施し、その後当該ブロック状中間素材10に対し
切削加工を施すことによって、第2図に示した前記実施
例と同一形状、同一寸法の陥入部(4a、4b、4c)
 、貫通孔部(4d)および突出部(4e)からなる特
定形状部4を有する熱処理型アルミニウム合金部材を得
た。
Next, as in the above embodiment, as shown in FIG. 3, a two-stage aging treatment of 108° C. x 7 hours and 165° C. x 7 hours is performed, and then the block-shaped intermediate material 10 is subjected to cutting processing. Accordingly, the recessed portions (4a, 4b, 4c) having the same shape and the same dimensions as the embodiment shown in FIG.
A heat-treated aluminum alloy member having a specific shape portion 4 consisting of a through hole portion (4d) and a protrusion portion (4e) was obtained.

そしてこのようにして得られたそれぞれのアルミニウム
合金最終仕上部材の表層残留応力(裏面中央、突出部4
eの高さ・幅中央)と引張特性、破壊靭性を評価した。
Then, the surface residual stress of each aluminum alloy final finished member obtained in this way (center of the back surface, protrusion 4
The height and width center of e), tensile properties, and fracture toughness were evaluated.

これらの結果を第1表に示す。なお、残留応力は表層の
第2図または第4図の裏面側中央位置と突出部4eの高
さ、幅中央についてドリル穿孔法(ASTM  E83
7)により測定し、機械的性質については陥入部4aと
4bとに挾まれる突出部の高さ中央および肉厚中央にて
測定した。
These results are shown in Table 1. The residual stress was determined by the drilling method (ASTM E83) at the center position on the back side of the surface layer in Figure 2 or Figure 4, and at the height and width center of the protrusion 4e.
7), and the mechanical properties were measured at the center of the height and center of the thickness of the protrusion sandwiched between the invaginations 4a and 4b.

第1表に示した結果から明らかなように、本発明実施例
の試験番号1〜3の場合には座屈や割れが生ずることな
く、2段時効処理後に残留応力がほとんど除去されてい
るとともに、耐力(YS)および引張強さ(TS)、破
壊靭性(KIc)についても良好な値か得られており本
発明の効果が十分に得られていることか認められた。
As is clear from the results shown in Table 1, in the cases of test numbers 1 to 3 of the examples of the present invention, no buckling or cracking occurred, and almost all residual stress was removed after the two-step aging treatment. , yield strength (YS), tensile strength (TS), and fracture toughness (KIc) were also obtained, indicating that the effects of the present invention were sufficiently obtained.

これに対し、直方体形状で焼入れした試験番号1は強度
、靭性に劣り、また試験番号5や7のようにダミーブロ
ックを挿入しなかったり、あるいは挿入しても変形抵抗
が低すぎる場合には、座屈および割れが薄肉部で発生す
ることか確認された。
On the other hand, test number 1, which was hardened in a rectangular parallelepiped shape, was inferior in strength and toughness, and if a dummy block was not inserted, or if the deformation resistance was too low even if a dummy block was inserted, as in test numbers 5 and 7, It was confirmed that buckling and cracking occurred in thin-walled parts.

また、試験番号6,8のように圧縮歪量が小さい場合や
、ダミーブロックの変形抵抗が高すぎると十分な残留応
力除去効果が得られず、さらに試験番号6のように一軸
(Z方向)のみ圧縮では残留応力を有効に除去すること
ができないことが確認された。
In addition, if the amount of compressive strain is small as in test numbers 6 and 8, or if the deformation resistance of the dummy block is too high, sufficient residual stress removal effect cannot be obtained. It was confirmed that residual stress cannot be effectively removed by compression alone.

[発明の効果コ 以上説明したように、この本発明に係る熱処理型アルミ
ニウム合金部材の製造方法によれば、溶体化処理時の肉
厚を薄くすることができるので、溶体化処理による熱処
理効果を十分なものとすることができる。また、圧縮時
に座屈や割れを生ずることなく十分に残留応力を除去す
ることができるので、優れた強度および靭性を備えた熱
処理型アルミニウム合金部材を得ることか可能である。
[Effects of the Invention] As explained above, according to the method for manufacturing a heat-treated aluminum alloy member according to the present invention, the wall thickness during solution treatment can be reduced, so that the heat treatment effect due to solution treatment can be reduced. It can be made sufficient. Further, since residual stress can be sufficiently removed without buckling or cracking during compression, it is possible to obtain a heat-treated aluminum alloy member with excellent strength and toughness.

さらに、このようにアルミニウム合金部材の残留応力を
低減することかできることにより、耐応力腐食割れ性の
向上をも図ることができる。
Furthermore, by being able to reduce the residual stress of the aluminum alloy member in this way, it is also possible to improve the stress corrosion cracking resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る熱処理型アルミニウム合金部材の
製造方法に用いる熱処理前の中間素材の一例を示す斜視
図、第2図は本発明の実施例に用いた熱処理前の中間素
材の形状を示す斜視図、第3図は本発明の実施例および
比較例において適用した熱処理条件を示す説明図、第4
図は比較例に用いた熱処理前の中間素材の形状を示す斜
視図、第5図は7075材における圧縮荷重と圧縮歪と
の関係を調べた結果を例示するグラフ、第6図は2軸方
向の冷間圧縮を説明するための無限平板を示す斜視図、
第7図は2軸方向に冷間圧縮したときの応力と圧縮歪と
の関係を例示するグラフ、第8図は冷間圧縮応力を解放
した後の残留応力分布を例示するグラフ、第9図は“ア
ップヒルクエンチ法“と圧縮法の残留応力除去の程度を
比較して説明する図である。 1.3・・・中間素材、2,4・・・特定形状部、2a
。 4 e−・・突出部、2 b 、 4 a、 4 c−
陥入部、2c。 4d・・・貫通孔部。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図 第4図 Q1234 圧槁歪(’/、) 第5因 0.5  1 15225 33.54hガr1(0ム
) 第7図 第8図
FIG. 1 is a perspective view showing an example of an intermediate material before heat treatment used in the method for manufacturing a heat-treated aluminum alloy member according to the present invention, and FIG. 2 shows the shape of the intermediate material before heat treatment used in an example of the present invention. FIG. 3 is an explanatory diagram showing the heat treatment conditions applied in the examples and comparative examples of the present invention, and FIG.
The figure is a perspective view showing the shape of the intermediate material before heat treatment used in the comparative example, Figure 5 is a graph illustrating the results of investigating the relationship between compressive load and compressive strain in 7075 material, and Figure 6 is a biaxial direction. A perspective view showing an infinite flat plate to explain the cold compression of
Fig. 7 is a graph illustrating the relationship between stress and compressive strain when cold compressed in biaxial directions, Fig. 8 is a graph illustrating the residual stress distribution after releasing cold compressive stress, and Fig. 9 2 is a diagram illustrating a comparison of the degree of residual stress removal between the "uphill quench method" and the compression method. 1.3...Intermediate material, 2,4...Specific shape part, 2a
. 4 e-...Protrusion, 2 b, 4 a, 4 c-
Invagination, 2c. 4d...Through hole section. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Q1234 Pressure distortion ('/,) 5th factor 0.5 1 15225 33.54 h gal r1 (0 m) Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] (1)突出部、陥入部および/または貫通孔部を含む特
定形状部を有する厚肉・複雑形状の熱処理型アルミニウ
ム合金部材を製造するにあたり、熱処理型アルミニウム
合金よりなる鋳造材に対し、塑性加工と切削加工を行う
ことによって、または塑性加工のみを行うことによって
、突出部、陥入部および/または貫通孔部を含む特定形
状部を有する中間素材を形成し、次いで前記中間素材に
対して溶体化処理を施し、その後当該溶体化処理後の中
間素材に対して70%以上200%以下の変形抵抗を有
する金属製ダミーブロックをその陥入部および貫通孔部
に挿入したうえで、当該中間素材に対して圧縮歪が1.
5〜5.0%となる冷間圧縮を一方向に行うと共に圧縮
歪が1.5〜5.0%となる冷間圧縮を前記一方向に対
し直交する他の方向に行う少なくとも2軸方向の冷間圧
縮を行い、その後時効処理を施すことを特徴とする厚肉
・複雑形状の熱処理型アルミニウム合金部材の製造方法
(1) When manufacturing heat-treatable aluminum alloy members with thick walls and complex shapes that have specific shapes including protrusions, invaginations, and/or through-holes, plastic processing is performed on cast materials made of heat-treatable aluminum alloys. An intermediate material having a specific shape including a protrusion, an invagination and/or a through hole is formed by cutting or only by plastic working, and then the intermediate material is subjected to solution treatment. After that, a metal dummy block having a deformation resistance of 70% or more and 200% or less is inserted into the recessed part and through-hole part of the intermediate material after the solution treatment, and then The compression strain is 1.
At least two axial directions in which cold compression with a compression strain of 5 to 5.0% is performed in one direction and cold compression with a compressive strain of 1.5 to 5.0% is performed in another direction orthogonal to the one direction. A method for manufacturing a heat-treated aluminum alloy member having a thick wall and a complex shape, the method comprising performing cold compression and then subjecting it to an aging treatment.
JP2318965A 1990-11-22 1990-11-22 Method for manufacturing thick and complex heat-treating aluminum alloy member Expired - Lifetime JPH083139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2318965A JPH083139B2 (en) 1990-11-22 1990-11-22 Method for manufacturing thick and complex heat-treating aluminum alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2318965A JPH083139B2 (en) 1990-11-22 1990-11-22 Method for manufacturing thick and complex heat-treating aluminum alloy member

Publications (2)

Publication Number Publication Date
JPH04187747A true JPH04187747A (en) 1992-07-06
JPH083139B2 JPH083139B2 (en) 1996-01-17

Family

ID=18104975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2318965A Expired - Lifetime JPH083139B2 (en) 1990-11-22 1990-11-22 Method for manufacturing thick and complex heat-treating aluminum alloy member

Country Status (1)

Country Link
JP (1) JPH083139B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848073A1 (en) * 1996-12-16 1998-06-17 Hoogovens Aluminium Walzprodukte GmbH Stress relieving of an age hardenable aluminium alloy product
US6159315A (en) * 1994-12-16 2000-12-12 Corus Aluminium Walzprodukte Gmbh Stress relieving of an age hardenable aluminum alloy product
JP2002018696A (en) * 2000-06-14 2002-01-22 Alcoa Inc Method for smoothing surface of aluminum or aluminum alloy used as aircraft part and such aircraft part
WO2002010482A2 (en) * 2000-08-01 2002-02-07 Federalnoe Gosudarstvennoe Unitarnoe Predpriyatie 'vserossiysky Nauchno-Issledovatelsky Institut Aviatsionnykh Materialov' Method for producing half-finished products made of aluminium alloys and an article manufactured with the aid of said method
US6406567B1 (en) 1996-12-16 2002-06-18 Corus Aluminium Walzprodukte Gmbh Stress relieving of an age hardenable aluminium alloy product
US6888425B2 (en) 2002-04-16 2005-05-03 Murata Manufacturing Co. Ltd. Resonator, filter, composite filter, transmitting and receiving apparatus, and communication apparatus
JP2006510808A (en) * 2002-12-17 2006-03-30 ペシネイ レナリュ Method for manufacturing structural elements by processing thick plates
US7341096B2 (en) 2001-08-24 2008-03-11 Corus Technology Bv Method for processing a continuously cast metal slab or strip, and plate or strip produced in this way
US7546756B2 (en) 2001-08-24 2009-06-16 Corus Technology Bv Method for processing a metal slab or billet, and product produced using said method
US7947135B2 (en) * 2007-03-26 2011-05-24 Mx Orthopedics Corp. Proximally self-locking long bone prosthesis
WO2015002177A1 (en) * 2013-07-04 2015-01-08 昭和電工株式会社 Method for producing starting material for cutting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153252A (en) * 1986-12-15 1988-06-25 Kobe Steel Ltd Method for forging al-li alloy
JPH01116054A (en) * 1987-10-28 1989-05-09 Nissan Motor Co Ltd Manufacture of truncated cone-shaped member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153252A (en) * 1986-12-15 1988-06-25 Kobe Steel Ltd Method for forging al-li alloy
JPH01116054A (en) * 1987-10-28 1989-05-09 Nissan Motor Co Ltd Manufacture of truncated cone-shaped member

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159315A (en) * 1994-12-16 2000-12-12 Corus Aluminium Walzprodukte Gmbh Stress relieving of an age hardenable aluminum alloy product
EP0848073A1 (en) * 1996-12-16 1998-06-17 Hoogovens Aluminium Walzprodukte GmbH Stress relieving of an age hardenable aluminium alloy product
US6406567B1 (en) 1996-12-16 2002-06-18 Corus Aluminium Walzprodukte Gmbh Stress relieving of an age hardenable aluminium alloy product
JP2002018696A (en) * 2000-06-14 2002-01-22 Alcoa Inc Method for smoothing surface of aluminum or aluminum alloy used as aircraft part and such aircraft part
WO2002010482A2 (en) * 2000-08-01 2002-02-07 Federalnoe Gosudarstvennoe Unitarnoe Predpriyatie 'vserossiysky Nauchno-Issledovatelsky Institut Aviatsionnykh Materialov' Method for producing half-finished products made of aluminium alloys and an article manufactured with the aid of said method
WO2002010482A3 (en) * 2000-08-01 2002-09-26 Federalnoe G Unitarnoe Predpr Method for producing half-finished products made of aluminium alloys and an article manufactured with the aid of said method
US7341096B2 (en) 2001-08-24 2008-03-11 Corus Technology Bv Method for processing a continuously cast metal slab or strip, and plate or strip produced in this way
US7546756B2 (en) 2001-08-24 2009-06-16 Corus Technology Bv Method for processing a metal slab or billet, and product produced using said method
US6888425B2 (en) 2002-04-16 2005-05-03 Murata Manufacturing Co. Ltd. Resonator, filter, composite filter, transmitting and receiving apparatus, and communication apparatus
JP2006510808A (en) * 2002-12-17 2006-03-30 ペシネイ レナリュ Method for manufacturing structural elements by processing thick plates
US7947135B2 (en) * 2007-03-26 2011-05-24 Mx Orthopedics Corp. Proximally self-locking long bone prosthesis
US8062378B2 (en) 2007-03-26 2011-11-22 Mx Orthopedics Corp. Proximal self-locking long bone prosthesis
US8137486B2 (en) 2007-03-26 2012-03-20 Mx Orthopedics, Corp. Proximally self-locking long bone prosthesis
US8398790B2 (en) 2007-03-26 2013-03-19 Mx Orthopedics, Corp. Proximally self-locking long bone prosthesis
WO2015002177A1 (en) * 2013-07-04 2015-01-08 昭和電工株式会社 Method for producing starting material for cutting
US20160108505A1 (en) * 2013-07-04 2016-04-21 Showa Denko K.K. Method for producing starting material for cutting
JPWO2015002177A1 (en) * 2013-07-04 2017-02-23 昭和電工株式会社 Manufacturing method of cutting material

Also Published As

Publication number Publication date
JPH083139B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
JP4448208B2 (en) Stainless steel bolt manufacturing method
JPH04187747A (en) Manufacture of thick heat treatable aluminum alloy member having complicated shape
US20020003010A1 (en) Ni-plated target diffusion bonded to a backing plate and method of making same
JPS6350414B2 (en)
JP2004124151A (en) Heat treatment method for aluminum alloy
JPS6039744B2 (en) Straightening aging treatment method for age-hardening titanium alloy members
US6451185B2 (en) Diffusion bonded sputtering target assembly with precipitation hardened backing plate and method of making same
JPS62149859A (en) Production of beta type titanium alloy wire
KR19990082538A (en) Diffusion Bonded Sputtering Target Assembly with Precipitation Hardened Backplate and Method of Manufacturing the Same
Imbert et al. Analysis of the increased formability of aluminum alloy sheet formed using electromagnetic forming
JPS61195725A (en) Manufacture of high strength spur gear
JP2510729B2 (en) Method for manufacturing heat-treatable aluminum alloy member
CN114346605A (en) Anti-cracking machining process for F91 large valve body die forging
JPS6289543A (en) Cold compressing method for relieving residual stress
JP4519053B2 (en) Manufacturing method of high strength nut
CN112077613B (en) Preparation method and application of aluminum alloy pipe
KR100496151B1 (en) Forging process for increasing partial hardening of pipe fittings
JPH11189022A (en) Stabilizer in suspension of automobile and its manufacture
JP2022549682A (en) Aluminum manufacturing method
JPH02270933A (en) High toughness cast iron casting and its manufacture
Alba et al. Application of Die Cover concept to reduce wear in closed-die multi stage forging process
JPS58197217A (en) Method for applying residual compressive stress layer to surface of bolt or spring made of precipitation hardening type alloy steel
JPS626728B2 (en)
Askeland et al. Strain hardening and annealing
JPH0270046A (en) Superplastic molding method