JPH04186730A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04186730A
JPH04186730A JP31533790A JP31533790A JPH04186730A JP H04186730 A JPH04186730 A JP H04186730A JP 31533790 A JP31533790 A JP 31533790A JP 31533790 A JP31533790 A JP 31533790A JP H04186730 A JPH04186730 A JP H04186730A
Authority
JP
Japan
Prior art keywords
film
tungsten
melting point
point metal
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31533790A
Other languages
Japanese (ja)
Inventor
Takuya Kato
卓哉 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31533790A priority Critical patent/JPH04186730A/en
Publication of JPH04186730A publication Critical patent/JPH04186730A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce resistivity and also relatively reduce unevenness of a surface by forming a high melting point metal film by means of CVD method and then forming a high melting point metal film of a similar kind by means of sputtering. CONSTITUTION:After a layer insulation film 3 is formed on a silicon substrate 1 having a highly concentrated impurity region 2 on a surface, a via hole 4 is formed through a lithography process. A titanium film 5 is formed by approximately 0.1mum and a titanium nitride film is formed by approximately 0.5mum by means of sputtering. Tungsten hexafluoride gas and hydrogen gas is used to form a tungsten film 7 by approximately 0.1mum by means of CVD method. Then a tungsten film 8 is formed by approximately 0.5mum by means of sputtering. Since the highly concentrated impurity region 2 is in contact with the titanium film 5, connection resistance of the via hole 4 is small while since thickness of the CVD tungsten film is as thin as approximately 0.1mum, unevenness of the surface is small. Furthermore, since the sputtered tungsten, film 8 is formed on the CVD tungsten film 7, resistivity of the sputtered tungsten film 8 is small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に、高融点金
属配線の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a high melting point metal wiring.

〔従来の技術〕[Conventional technology]

半導体装置の微細化・高密度化が進むにつれ、配線は益
々微細化され、エレクトロマイグレーションやストレス
マイグレーションに対スる耐性が強い配線材料が求めら
れている。このような要求にこたえるため、近年通常側
われているアルミニウムに)わり高融点金属を配線に使
用することが検討されている。(Proc、6th I
nt、VMICp40゜1989やProc、6th 
Int、VMICp19,1989など)これら高融点
金属膜は、通常化学気相成長法もしくはマグネトロンス
パッタリング法により形成されるが、従来は上記2方法
のうちどちらか一方の方法で形成されていた。
BACKGROUND ART As semiconductor devices become smaller and more dense, interconnections are becoming increasingly finer, and there is a need for interconnection materials that are highly resistant to electromigration and stress migration. In order to meet these demands, in recent years the use of high melting point metals (instead of aluminum, which is commonly used) for wiring has been considered. (Proc, 6th I
nt, VMICp40゜1989 and Proc, 6th
Int, VMIC p19, 1989, etc.) These high melting point metal films are usually formed by chemical vapor deposition or magnetron sputtering, but conventionally they have been formed by one of the above two methods.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

化学気相成長法で高融点金属膜を形成すると表面の凹凸
が大きく、配線として使用する場合に必要な微細加工が
困難という問題を有している。
When a high melting point metal film is formed by chemical vapor deposition, the surface has large irregularities, making it difficult to perform microfabrication necessary for use as wiring.

iた、マグネトロンスパッタリング法で高融点金属膜を
形成すると、化学気相成長法で形成した場合に比べ高融
点金属の比抵抗が大きくなるという欠点を有している。
Additionally, when a high melting point metal film is formed by magnetron sputtering, it has the disadvantage that the specific resistance of the high melting point metal becomes larger than when it is formed by chemical vapor deposition.

本発明の目的は上記欠点を排除し、比抵抗が小さくしか
も表面の凹凸が比較的小さい高融点金属膜の形成方法を
提供することである。
An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a method for forming a high melting point metal film having a low specific resistance and a relatively small surface unevenness.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、半導体装置の配線を形成する工程において、
化学気相成長法(CVD法)により高融点金属膜を形成
する工程と、引き続きマグネトロンスパッタリング法(
スパッタ法)により同種の高融点金属膜を形成する工程
とを有している。
In the process of forming wiring of a semiconductor device, the present invention includes:
A process of forming a high melting point metal film by chemical vapor deposition (CVD) followed by magnetron sputtering (
The method includes a step of forming a high melting point metal film of the same type by a sputtering method.

本発明の製造方法によれば、CVD法により形成する高
融点金属膜の厚さを薄くすることができるので表面の凹
凸を小さくすることができる。また引き続きスパッタ法
により高融点金属膜を形成すると、下地の結晶構造を反
映した高融点金属膜が形成されるのでCVD法により形
成された高融点金属膜の比抵抗に近い低い比抵抗値をも
つ高融点金属膜が形成される。
According to the manufacturing method of the present invention, the thickness of the high-melting point metal film formed by the CVD method can be reduced, so that surface irregularities can be reduced. Furthermore, when a high melting point metal film is subsequently formed by sputtering, a high melting point metal film is formed that reflects the crystal structure of the underlying layer, so it has a low resistivity value close to that of a high melting point metal film formed by CVD. A high melting point metal film is formed.

したがって、比抵抗でかつ微細加工の比較的容易な高融
点金属膜を形成することができる。
Therefore, it is possible to form a high melting point metal film that has a high resistivity and is relatively easy to microfabricate.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(c)は本発明の第1の実施例な説明す
るための工程順断面ズである。
FIGS. 1(a) to 1(c) are cross-sectional views of a first embodiment of the present invention in the order of steps for explaining it.

(a)表面に高濃度不純物領域2を有するシリコン基板
1上に層間絶縁膜3を約0.5形成した後、リングラフ
イー工程を経てピアホール4を形成する。素子分離領域
や素子の形成は省略されている。
(a) After forming about 0.5 of an interlayer insulating film 3 on a silicon substrate 1 having a high-concentration impurity region 2 on its surface, a pier hole 4 is formed through a ring graphie process. Formation of element isolation regions and elements is omitted.

(b)  スパッタ法によりチタン膜5を約0.1μm
、窒化チタン膜を約0.1μm形成する。
(b) The titanium film 5 is approximately 0.1 μm thick by sputtering.
, a titanium nitride film with a thickness of about 0.1 μm is formed.

(c)六弗化タングステンガスと水素ガスを用いてCV
D法によりタングステン膜7を約01μm形成する。
(c) CV using tungsten hexafluoride gas and hydrogen gas
A tungsten film 7 with a thickness of about 0.1 μm is formed by method D.

(d)  スパッタ法によりタングステン膜8を約0.
5μm形成する。
(d) Sputtering the tungsten film 8 to about 0.00 mm.
Form 5 μm.

(e)  リソグラフィー工程を経てバターニングを行
なう。
(e) Buttering is performed through a lithography process.

このようにして形成されたタングステン配線は、高濃度
不純物領域2とチタン膜5が接しているのでピアホール
の接続抵抗が小さく、チタン膜5とタングステン膜7の
間に存在する窒化チタン膜6が高濃度不純物領域2の表
面にシリコンがタングステン膜7およびタングステン膜
8の中へ拡散するのを防いでいるので安定したピアホー
ル構造となっている。また、CVDタングステン膜7の
膜厚が約0.1μmと薄いので表面の凹凸は小さく、し
かもCVDタングステン膜7上にスパッタタングステン
膜8を形成しているのでスパッタタングステン膜8の比
抵抗は小さくなっている。
In the tungsten wiring formed in this way, the connection resistance of the peer hole is low because the high concentration impurity region 2 and the titanium film 5 are in contact with each other, and the titanium nitride film 6 existing between the titanium film 5 and the tungsten film 7 has a high Silicon on the surface of the concentrated impurity region 2 is prevented from diffusing into the tungsten film 7 and the tungsten film 8, resulting in a stable peer hole structure. Furthermore, since the CVD tungsten film 7 has a thin film thickness of about 0.1 μm, the surface unevenness is small, and since the sputtered tungsten film 8 is formed on the CVD tungsten film 7, the specific resistance of the sputtered tungsten film 8 is small. ing.

したがって低抵抗でありかつ微細加工性に優れた配線構
造になっている。
Therefore, the wiring structure has low resistance and excellent microfabriability.

第2図(a)〜(e)は本発明の第2の実施例を説明す
るための工程順断面図である。本実施例は第1の実施例
に引き続いて第2層タングステン配線を形成したもので
ある。
FIGS. 2(a) to 2(e) are step-by-step sectional views for explaining a second embodiment of the present invention. In this example, a second layer of tungsten wiring was formed following the first example.

(、)  第1の実施例で示したように第1層タングス
テン配線を形成する。
(,) A first layer tungsten wiring is formed as shown in the first embodiment.

(b)  層間絶縁膜9を約0.5μm形成した後、リ
ソグラフィー工程を経てピアホール10を形成する。
(b) After forming an interlayer insulating film 9 of about 0.5 μm, a pier hole 10 is formed through a lithography process.

(c)  六弗化タングステンガスと水素ガスを用いて
CVD法によりタングステン膜11を約0.1μm形成
する。
(c) A tungsten film 11 having a thickness of approximately 0.1 μm is formed by CVD using tungsten hexafluoride gas and hydrogen gas.

(d)スパッタ法によりタングステンff112ヲ約0
.5μm形成する。
(d) Approximately 0 tungsten ff112 by sputtering method
.. Form 5 μm.

(e)  リソグラフィー工程を経てパターニングを行
なう。
(e) Patterning is performed through a lithography process.

このように形成された第2層タングステン配線は、CV
Dタングステン膜11の膜厚が約0.1μmと薄いので
表面の凹凸が小さい。しかも、CVDタングステン膜1
1上にスパッタタングステン膜12を形成しているので
スパッタタングステン膜12の比抵抗は小さくなってい
る。したがって、低抵抗でありかつ微細加工性に優れた
配線構造になっている。
The second layer tungsten wiring formed in this way has a CV
Since the thickness of the D tungsten film 11 is as thin as approximately 0.1 μm, surface irregularities are small. Moreover, CVD tungsten film 1
Since the sputtered tungsten film 12 is formed on the sputtered tungsten film 1, the specific resistance of the sputtered tungsten film 12 is small. Therefore, the wiring structure has low resistance and excellent microfabriability.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、CVD法により高融点金
属膜を形成し引き続いてスパッタ法により同種の高融点
金属膜を形成する方法により配線の金属膜を形成してい
るので、配線の表面の凹凸が小さく微細加工性に優れた
配線を提供することができる。しかも、スパッタタング
ステン膜の比抵抗を小さくすることができ、低抵抗の配
線を提供することができる。
As explained above, in the present invention, the metal film of the wiring is formed by the method of forming a high melting point metal film by CVD method and then forming the same kind of high melting point metal film by sputtering method. It is possible to provide wiring with small irregularities and excellent microfabricability. Moreover, the specific resistance of the sputtered tungsten film can be reduced, and low-resistance wiring can be provided.

したがって本発明によれば、エレクトロマイグレーショ
ン耐性やストレスマイグレーション耐性に優れ、低抵抗
であり、かつ、微細加工の容易な配線を提供することが
できるので半導体装置の微細化および高密度化を進める
効果を有する。
Therefore, according to the present invention, it is possible to provide wiring that has excellent electromigration resistance and stress migration resistance, has low resistance, and is easy to microfabricate, so that it is possible to provide wiring that is easy to microfabricate and is effective in promoting miniaturization and high density of semiconductor devices. have

尚、実施例においては高融点金属膜としてタングステン
膜を用いているが、モリブデン膜等の他の高融点金属膜
を用いても同様の効果を有することは明らかである。
In the embodiment, a tungsten film is used as the high melting point metal film, but it is clear that the same effect can be obtained even if other high melting point metal films such as a molybdenum film are used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の第1の実施例を説明す
るための工程順断面図であり、第2図(a)〜(e)は
本発明の第2の実施例を説明するための工程順断面図で
ある。 1・・・・・・シリコン基板、2・・・・・・高濃度不
純物領域、3・・・・・・層間絶縁膜、4・・・・・・
ピアホール、5・・・・・・チタン膜、6・・・・・・
窒化チタン膜、7・・・・・CVDタングステン膜、8
・・・・・・スパッタタングステン膜、9・・・・・・
層間絶縁膜、10・・・・・・ピアホール、11・・・
・・CVDタングステン膜、12・・・・・・スパッタ
タングステン膜。 代理人 弁理士  内 原   晋 第1図 第2 図
FIGS. 1(a) to (e) are step-by-step sectional views for explaining the first embodiment of the present invention, and FIGS. 2(a) to (e) are sectional views of the second embodiment of the present invention. FIG. 3 is a step-by-step sectional view for explaining the process. 1...Silicon substrate, 2...High concentration impurity region, 3...Interlayer insulating film, 4...
Pier hole, 5...Titanium film, 6...
Titanium nitride film, 7...CVD tungsten film, 8
...Sputtered tungsten film, 9...
Interlayer insulating film, 10... Pier hole, 11...
...CVD tungsten film, 12...sputtered tungsten film. Agent: Susumu Uchihara, patent attorney Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体装置の配線を形成する工程において、化学気相成
長法により高融点金属膜を形成する工程と、引き続きマ
グネトロンスパッタリング法により前記高融点金属膜と
同種の高融点金属膜を形成する工程とを有することを特
徴とする半導体装置の製造方法。
The process of forming wiring for a semiconductor device includes the steps of forming a high melting point metal film by chemical vapor deposition, and subsequently forming a high melting point metal film of the same type as the high melting point metal film by magnetron sputtering. A method for manufacturing a semiconductor device, characterized in that:
JP31533790A 1990-11-20 1990-11-20 Manufacture of semiconductor device Pending JPH04186730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31533790A JPH04186730A (en) 1990-11-20 1990-11-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31533790A JPH04186730A (en) 1990-11-20 1990-11-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04186730A true JPH04186730A (en) 1992-07-03

Family

ID=18064198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31533790A Pending JPH04186730A (en) 1990-11-20 1990-11-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04186730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010077743A (en) * 2000-02-08 2001-08-20 박종섭 Bit line and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010077743A (en) * 2000-02-08 2001-08-20 박종섭 Bit line and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH07307385A (en) Formation of multilayer metal wiring of semiconductor element
JPH04229618A (en) Integrated circuit device contact and formation method thereof
JPS60115221A (en) Manufacture of semiconductor device
JPH04186730A (en) Manufacture of semiconductor device
JPS59167058A (en) Semiconductor device
JP3109269B2 (en) Method for manufacturing semiconductor device
JP3085745B2 (en) Method for manufacturing semiconductor device
KR930001896B1 (en) Metal line structure of semiconductor apparatus and building method thereof
JPH065544A (en) Manufacture of semiconductor device
JPH0338832A (en) Wiring structure of semiconductor device
JPH04348548A (en) Semiconductor device and its production
US6350676B1 (en) Method of forming high-stability metallic contacts in an integrated circuit with one or more metallized layers
JPH01225336A (en) Manufacture of semiconductor device
JPH036045A (en) Manufacture of semiconductor device
JPH08250585A (en) Manufacture of semiconductor device
JPH01309356A (en) Wiring structure of semiconductor device and its formation
JP2706388B2 (en) Method for manufacturing semiconductor device
JPH03296219A (en) Semiconductor device
JPH0629237A (en) Semiconductor device and its manufacture
JPH04207054A (en) Manufacture of semiconductor device
JPH03157925A (en) Manufacture of semiconductor device
JPS61196554A (en) Semiconductor integrated circuit device
JPH0341734A (en) Semiconductor device and manufacture thereof
JPH08274098A (en) Semiconductor device and its manufacture
JPH06275721A (en) Thin film forming method