JPH0418646B2 - - Google Patents

Info

Publication number
JPH0418646B2
JPH0418646B2 JP60131284A JP13128485A JPH0418646B2 JP H0418646 B2 JPH0418646 B2 JP H0418646B2 JP 60131284 A JP60131284 A JP 60131284A JP 13128485 A JP13128485 A JP 13128485A JP H0418646 B2 JPH0418646 B2 JP H0418646B2
Authority
JP
Japan
Prior art keywords
light
tco layer
conductive oxide
oxide layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60131284A
Other languages
Japanese (ja)
Other versions
JPS61288314A (en
Inventor
Kenji Murata
Yasuo Kishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60131284A priority Critical patent/JPS61288314A/en
Priority to US06/872,684 priority patent/US4732621A/en
Publication of JPS61288314A publication Critical patent/JPS61288314A/en
Publication of JPH0418646B2 publication Critical patent/JPH0418646B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Light Receiving Elements (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は酸化インジウムスズ(ITO)、酸化ス
ズ(SnOx)等の透光性導電酸化物層の加工方法
に関し、例えば光起電力装置や光導電装置等の光
電変換デバイスやその他のオプテイカルデバイス
の受光面電極として利用される。
[Detailed description of the invention] (a) Industrial application field The present invention relates to a method for processing a transparent conductive oxide layer such as indium tin oxide (ITO) or tin oxide (SnOx), and is applicable to, for example, a photovoltaic device or a photovoltaic device. It is used as a light-receiving surface electrode for photoelectric conversion devices such as photoconductive devices and other optical devices.

(ロ) 従来の技術 ITOやSnOxに代表される透光性導電酸化物
(以下TCOと称す)層は上述の如く光起電力装置
や光導電装置等のオプテイカルデバイスに於ける
受光面電極として利用されている。特に光起電力
装置や光導電装置の如く半導体活性層の光変換作
用を利用する光電変換デバイスにあつては斯る半
導体活性層に入射する光を可及的に多くすること
が肝要であり、そのために昭和60年春季応用物理
学会予稿集第439頁29p−U−14に開示された如
く受光面電極として用いられるTCO層もその表
面がほぼ平坦なものから凹凸なものに移行しつつ
ある。即ち、TCO層の表面に凹凸な粗面状を呈
すると斯る凹凸表面上に形成される半導体光活性
層との接触界面も自ずと凹凸となり、この接触界
面に於ける入射光の反射量の減少が図れる結果、
半導体活性層に入射する光量が増大する。
(b) Conventional technology Transparent conductive oxide (hereinafter referred to as TCO) layers such as ITO and SnOx are used as light-receiving surface electrodes in optical devices such as photovoltaic devices and photoconductive devices as described above. It's being used. In particular, for photoelectric conversion devices such as photovoltaic devices and photoconductive devices that utilize the light conversion effect of a semiconductor active layer, it is important to increase the amount of light that enters the semiconductor active layer as much as possible. For this reason, as disclosed in 1985 Spring Proceedings of the Japan Society of Applied Physics, page 439, 29p-U-14, the surface of the TCO layer used as a light-receiving surface electrode is changing from a substantially flat surface to an uneven surface. In other words, when the surface of the TCO layer has an uneven surface, the contact interface with the semiconductor photoactive layer formed on the uneven surface naturally becomes uneven, and the amount of reflection of incident light at this contact interface decreases. As a result,
The amount of light incident on the semiconductor active layer increases.

上記先行技術に開示されたTCO層の凹凸化は、
ほぼ平坦な表面を持つ透光性支持基板を準備し、
その表面に先ず半球状のSiO2粒子を埋込み該基
板表面に凹凸を付与した後、斯る凹凸基板表面に
TCO層が被着されることにより実現される。
The unevenness of the TCO layer disclosed in the above-mentioned prior art is
Prepare a transparent support substrate with a nearly flat surface,
First, hemispherical SiO 2 particles are embedded in the surface of the substrate to give the substrate surface an uneven surface, and then the uneven substrate surface is
This is achieved by applying a TCO layer.

然し乍ら、斯る方法によればTCO層の成膜に
先立つて基板表面に凹凸を微細に加工することが
非常に困難であり、特に光起電力装置や光導電装
置等の光電変換作用を利用した光電変換デバイス
の受光面電極として要求される適切な凹凸化は難
しく、量産性の欠如は免れない。
However, according to such a method, it is extremely difficult to finely process irregularities on the substrate surface prior to forming the TCO layer, and it is particularly difficult to process fine irregularities on the substrate surface prior to forming the TCO layer. It is difficult to create the appropriate unevenness required for the light-receiving surface electrode of a photoelectric conversion device, which inevitably leads to a lack of mass production.

(ハ) 発明が解決しようとする問題点 本発明は上述の如く特に光電変換デバイスの受
光面電極として要求される適切な凹凸化が難し
く、量産性の欠如を解決しようとするものであ
る。
(c) Problems to be Solved by the Invention As mentioned above, the present invention is intended to solve the problem that it is difficult to form appropriate irregularities particularly required for the light-receiving surface electrode of a photoelectric conversion device, and the lack of mass productivity.

(ニ) 問題点を解決するための手段 本発明は上記問題点を解決するためにほぼ平坦
な表面に沿つてTCO層が一様に形成された透光
性支持基板を準備し、上記TCO層をその露出面
方向からその途中までエツチング処理を施すこと
により、上記TCO層の露出面に、凸部と凸部と
の間の間隔が約2000〜10000Å、凸部と凹部との
高低差が約1000〜5000Åである凹凸を付与したも
のである。
(d) Means for Solving the Problems In order to solve the above problems, the present invention prepares a translucent support substrate on which a TCO layer is uniformly formed along a substantially flat surface, and By performing etching treatment from the direction of the exposed surface to the middle of the exposed surface, the exposed surface of the TCO layer has a spacing of approximately 2,000 to 10,000 Å between the convex portions and a height difference between the convex portions and the concave portions of approximately It has irregularities of 1000 to 5000 Å.

(ホ) 作 用 上述の如く透光性支持基板のほぼ平坦面に沿つ
て形成さえたTCO層をその露出面からその途中
までエツチング処理を施すことによつて、斯るエ
ツチング処理は、上記TCO層の露出面に、凸部
と凸部との間の間隔が約2000〜10000Å、凸部と
凹部との高低差が約1000〜5000Åである、微細な
反射量の少ない凹凸を形成する。
(E) Effect By etching the TCO layer formed along the substantially flat surface of the transparent support substrate as described above from the exposed surface to the middle of the surface, such etching treatment can remove the TCO layer. Fine, low-reflection unevenness is formed on the exposed surface of the layer, with a distance between the protrusions of about 2,000 to 10,000 Å, and a height difference between the protrusions and the depressions of about 1,000 to 5,000 Å.

(ヘ) 実施例 第1図乃至第3図は本発明加工方法を模式的に
表わしている。先ず第1図の工程では、絶縁性の
ほぼ平坦な表面に沿つてTCO層1が一様に形成
されたガラス等の透光性支持基板2が準備され
る。上記TCO層1は例えばITO、SnOxからな
り、周知の電子ビーム蒸着法、真空蒸着法、スパ
ツタ法、CVD法、スプレー法等により形成され
ている。より具体的には基板温度300℃、酸素分
圧4×10-4Torrの形成条件に基づいて電子ビー
ム蒸着法により得られた平均粒径約500〜2000Å、
膜厚約1500〜7000Åの5%SnOxをドープした
ITOからなるTCO層1を、ガラス製支持基板2
に予め被着したものを準備する。
(f) Example FIGS. 1 to 3 schematically represent the processing method of the present invention. First, in the process shown in FIG. 1, a transparent support substrate 2 made of glass or the like is prepared, on which a TCO layer 1 is uniformly formed along an insulating, substantially flat surface. The TCO layer 1 is made of, for example, ITO or SnOx, and is formed by a well-known electron beam evaporation method, vacuum evaporation method, sputtering method, CVD method, spray method, or the like. More specifically, the average particle diameter is about 500 to 2000 Å, which is obtained by electron beam evaporation based on the formation conditions of a substrate temperature of 300°C and an oxygen partial pressure of 4 × 10 -4 Torr.
Doped with 5% SnOx with a film thickness of approximately 1500 to 7000 Å
A TCO layer 1 made of ITO is placed on a glass supporting substrate 2.
Prepare the material covered in advance.

第2図の工程では上記支持基板2のほぼ平坦面
に被着されていたTCO層1がその露出面から支
持基板2に向かつてエツチング処理が施される。
使用されるエツチング液としては上記ITOの
TCO層1に対してHCl:H2O:FeCl3=500c.c.:
600c.c.:100gのものが好適であり、他に王水も利
用可能である。斯るエツチング処理に於いて、
TCO層1はその露出面から順次エツチング除去
されるもののTCO層1のエツチングレートの異
方性に起因して、先ず第2図に示す如くエツチン
グレートの高い部分からエツチングが始まるため
に、断面台形状となる。
In the process shown in FIG. 2, the TCO layer 1, which has been deposited on the substantially flat surface of the support substrate 2, is etched from its exposed surface toward the support substrate 2.
The etching solution used is the above ITO.
HCl: H2O : FeCl3 =500c.c. for TCO layer 1:
600c.c.: 100g is suitable, and aqua regia can also be used. In such etching process,
Although the TCO layer 1 is removed by etching sequentially from its exposed surface, due to the anisotropy of the etching rate of the TCO layer 1, etching starts from the high etching rate portion as shown in FIG. It becomes a shape.

第3図は第2図のエツチング処理が終了した状
態を示している。即ち、斯るエツチング処理は
TCO層1の厚み方向の途中までとし、その露出
面が微細な凹凸を持つまで行ない、例えば高低差
約1000〜5000Å、凸部と凸部の間隔約2000〜
10000Åのほぼ三角錐状の凹凸面1texが形成され
る。例えば上記エツチング液、液温約25℃の条件
に於いて20〜40分程度で上記微細な凹凸面1tex
が得られる。
FIG. 3 shows a state in which the etching process shown in FIG. 2 has been completed. That is, such an etching process
The process is carried out until the exposed surface has fine irregularities, e.g., the height difference is about 1000 to 5000 Å, and the distance between the protrusions is about 2000 to 2000.
An approximately triangular pyramid-shaped uneven surface 1 tex of 10000 Å is formed. For example, using the above etching solution at a temperature of about 25°C, the fine uneven surface can be etched by 1 tex in about 20 to 40 minutes.
is obtained.

第4図及び第5図は本発明方法により凹凸化さ
れる前のTCO層1の粒子構造を示す走査顕微鏡
写真であつて、第4図の断面状態であり、第5図
は露出面に対して傾斜角80度の方向から臨んだ状
態で、両者の倍率は等しくなく写真の下段に夫々
のスケールが記してある。第6図及び第7図は上
記第4図及び第5図に示されたTCO層1を本発
明方法により凹凸化した後のTCO層1の粒子構
造を示す走査顕微鏡写真であつて、第6図は第4
図と同倍率の断面状態であり、第7図は第5図と
同倍率の露出面(凹凸面1tex)に対して傾斜角
80度の方向から臨んだ状態である。
Figures 4 and 5 are scanning micrographs showing the grain structure of the TCO layer 1 before it is roughened by the method of the present invention, showing the cross-sectional state of Figure 4, and Figure 5 showing the exposed surface. The two images are viewed from an 80-degree angle of inclination, and the magnifications of both are not equal, and the respective scales are indicated at the bottom of the photo. 6 and 7 are scanning micrographs showing the grain structure of the TCO layer 1 after the TCO layer 1 shown in FIGS. 4 and 5 has been made uneven by the method of the present invention; The figure is number 4
The cross-sectional state is at the same magnification as in the figure, and Figure 7 is at an inclination angle with respect to the exposed surface (uneven surface 1 tex) at the same magnification as in Figure 5.
It is viewed from an 80 degree direction.

尚、参考までに第8図及び第9図に第2図に相
当する凹凸加工の途中状態に於けるTCO層1の
粒子構造の断面状態及び傾斜角80度の方向から臨
んだ状態の走査顕微鏡写真を示す。
For reference, Figures 8 and 9 show the cross-sectional state of the grain structure of the TCO layer 1 in the middle of roughening processing, which corresponds to Figure 2, and the scanning microscope when viewed from a direction with an inclination angle of 80 degrees. Show photos.

この顕微鏡写真からTCO層1の異方性エツチ
ングレートにより、その露出面から支持基板2方
向に均一にエツチング除去されることなく凹凸面
1texが形成されていることは明らかである。
It is clear from this photomicrograph that due to the anisotropic etching rate of the TCO layer 1, an uneven surface 1tex is formed without being uniformly etched away from the exposed surface in the direction of the supporting substrate 2.

この様にして凹凸面1texが付与されたTCO層
1を評価するために、斯る凹凸面1texに特公昭
53−37718号公報に示されたpin接合を有するアモ
ルフアスシリコンの半導体光活性層とアルミニウ
ム電極とを順次積層した光起電力装置を作製し、
その反射率をほぼ可視光帯域に亘つて測定したと
ころ、第10図の反射特性を得た。一方、斯る本
発明方法により凹凸加工されたTCO層1を受光
面電極とした光起電力装置に代つて、第1図及び
第6図、第7図に示した凹凸加工する以前の
TCO層1を受光面電極とした光起電力装置の反
射特性を測定し、その結果が第11図に示してあ
る。斯る第11図の反射特性を見ると、約450n
m、約650nm以上の波長に対して断続的に20%
以上の反射率を呈していたのに対し、本発明によ
るTCO層1を用いた光起電力装置に於いては約
400〜800nmの可視光帯域に亘つてほぼ一定した
10%以下の反射率を呈するに止まつた。この反射
率の低域は光電変換作用をなす半導体光活性層内
に多くの光を入射せしめることを意味し、光起電
力装置にあつては光電変換効率を上昇せしめるこ
とができる。
In order to evaluate the TCO layer 1 provided with the uneven surface 1 tex in this way, the uneven surface 1 tex was
A photovoltaic device was fabricated in which an amorphous silicon semiconductor photoactive layer having a pin junction and an aluminum electrode were sequentially laminated as shown in Publication No. 53-37718,
When the reflectance was measured over almost the visible light band, the reflection characteristics shown in FIG. 10 were obtained. On the other hand, instead of a photovoltaic device in which the TCO layer 1, which has been textured by the method of the present invention, is used as a light-receiving surface electrode, the TCO layer 1, which has been textured by the method of the present invention, can be replaced with
The reflection characteristics of a photovoltaic device using the TCO layer 1 as a light-receiving surface electrode were measured, and the results are shown in FIG. Looking at the reflection characteristics in Figure 11, it is approximately 450n.
m, 20% intermittently for wavelengths above approximately 650 nm
In contrast, the photovoltaic device using the TCO layer 1 according to the present invention had a reflectance of about
Almost constant over the visible light band from 400 to 800 nm
The reflectance remained below 10%. This low range of reflectance means that a large amount of light is allowed to enter the semiconductor photoactive layer that performs a photoelectric conversion function, and in the case of a photovoltaic device, the photoelectric conversion efficiency can be increased.

第12図は乃至第15図は本発明の比較例とし
て従来の技術の項で述べた支持基板2に予め凹凸
表面2texを付与し、その凹凸表面2tex上に
TCO層1を形成したものを示し、第12図は模
式的断面図、第13図はそのTCO層1の粒子構
造の断面状態を示す走査顕微鏡写真、第14図は
同じく粒子構造を傾斜角80度の方向から臨んだ走
査顕微鏡写真及び第15図は斯る粒子構造の
TCO層1を光起電力装置の受光面電極としたと
きの反射特性図である。斯る走査顕微鏡写真の倍
率は、第13図は第4図及び第6図と同じであ
り、第14図は第5図及び第7図と同一である。
また反射特性を測定する光起電力装置の半導体活
性層及びアルミニウム電極とともに第10図、第
11図のものと同時に形成されている。従つて、
この先行技術に開示されたTCO層1を光起電力
装置の受光面電極として用いても本発明方法によ
り凹凸加工された光起電力装置の反射特性に対し
て特に600nmの長波長帯域で劣つていることが
明らかである。
12 to 15 show, as comparative examples of the present invention, the supporting substrate 2 described in the prior art section is provided with an uneven surface 2tex in advance, and the uneven surface 2tex is
Fig. 12 is a schematic cross-sectional view, Fig. 13 is a scanning micrograph showing the cross-sectional state of the grain structure of the TCO layer 1, and Fig. 14 shows the grain structure formed at an inclination angle of 80°. The scanning micrograph and Figure 15 taken from the direction of the angle show the grain structure.
FIG. 2 is a reflection characteristic diagram when the TCO layer 1 is used as a light-receiving surface electrode of a photovoltaic device. The magnification of such scanning micrographs is the same in FIG. 13 as in FIGS. 4 and 6, and in FIG. 14 as in FIGS. 5 and 7.
Furthermore, the semiconductor active layer and aluminum electrode of the photovoltaic device whose reflection characteristics are to be measured are formed at the same time as those shown in FIGS. 10 and 11. Therefore,
Even if the TCO layer 1 disclosed in this prior art is used as a light-receiving surface electrode of a photovoltaic device, it is inferior to the reflection characteristics of the photovoltaic device textured by the method of the present invention, especially in the long wavelength band of 600 nm. It is clear that there are.

(ト) 発明の効果 本発明方法は以上の説明から明らかな如く、透
光性支持基板のほぼ平坦面に沿つて形成された
TCO層をその露出面からその途中までエツチン
グ処理を施し、凸部と凸部との間の間隔が約2000
〜10000Å、凸部と凹部との高低差が約1000〜
5000Åである凹凸を形成することによつて、光起
電力装置や光導電装置等の光電変換デバイスやそ
の他のオプテイカルデバイスの受光面電極として
利用するに最適に、種々の波長の光に対して反射
量の少ない微細な凹凸を形成することができ、し
かも斯る凹凸の形成は、エツチング液組成、液
温、エツチング時間を適宜に選択することにより
容易に制御することが可能であり、上記凹凸面を
量産性良く得ることができる。
(G) Effects of the Invention As is clear from the above description, the method of the present invention allows for the formation of a material along a substantially flat surface of a transparent support substrate.
The TCO layer is etched from its exposed surface to the middle, and the distance between the protrusions is approximately 2,000 mm.
~10000Å, height difference between convex and concave parts is approximately 1000~
By forming the unevenness of 5000 Å, it is ideal for use as a light-receiving surface electrode for photovoltaic devices, photoconductive devices, and other photoelectric conversion devices and other optical devices. It is possible to form fine irregularities with a small amount of reflection, and the formation of such irregularities can be easily controlled by appropriately selecting the composition of the etching solution, the liquid temperature, and the etching time. surface can be obtained with good mass production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明加工方法を説明する
ための状態別模式的断面図、第4図及び第5図は
凹凸化される前の透光性導電酸化物の粒子構造の
断面状態及び傾斜角80度の方向から臨んだ状態を
示す走査顕微鏡写真、第6図及び第7図は本発明
加工方法により凹凸化された後の透光性導電酸化
物の粒子構造の断面状態及び傾斜角80度の方向か
ら臨んだ状態を示す走査顕微鏡写真、第8図及び
第9図は第2図に相当する凹凸加工の途中状態に
於ける透光性導電酸化物の粒子構造の断面状態及
び傾斜角80度の方向から臨んだ状態の走査顕微鏡
写真、第10図は本発明加工方法により加工され
た透光性導電酸化物を受光面電極として組込んだ
光起電力装置の反射特性図、第11図は従来の透
光性導電酸化物を受光面電極として光起電力装置
の反射特性図、第12図は本発明加工方法の比較
例の模式的断面図、第13図及び第14図は上記
第12図に示した本発明比較例に於ける透光性導
電酸化物の粒子構造の断面状態及び傾斜角80度の
方向から臨んだ状態を示す走査顕微鏡写真、第1
5図は斯る比較例を受光面電極とした光起電力装
置の反射特性図、を夫々示している。 1……透光性導電酸化物(TCO)層、1tex…
…凹凸面、2……透光性支持基板。
FIGS. 1 to 3 are schematic cross-sectional views of each state for explaining the processing method of the present invention, and FIGS. 4 and 5 are cross-sectional states of the particle structure of the translucent conductive oxide before it is roughened. 6 and 7 show the cross-sectional state and inclination of the particle structure of the translucent conductive oxide after it has been made uneven by the processing method of the present invention. Scanning micrographs showing the state viewed from an 80-degree angle, and FIGS. 8 and 9 show the cross-sectional state of the particle structure of the translucent conductive oxide in the middle of roughening processing, which corresponds to FIG. A scanning micrograph taken from a direction with an inclination angle of 80 degrees; FIG. 10 is a reflection characteristic diagram of a photovoltaic device incorporating a light-transmitting conductive oxide processed by the processing method of the present invention as a light-receiving surface electrode; FIG. 11 is a reflection characteristic diagram of a photovoltaic device using a conventional light-transmitting conductive oxide as a light-receiving surface electrode, FIG. 12 is a schematic cross-sectional view of a comparative example of the processing method of the present invention, and FIGS. 13 and 14. 1 is a scanning micrograph showing the cross-sectional state of the particle structure of the transparent conductive oxide in the comparative example of the present invention shown in FIG.
FIG. 5 shows reflection characteristic diagrams of a photovoltaic device using such a comparative example as a light-receiving surface electrode. 1...transparent conductive oxide (TCO) layer, 1tex...
...Uneven surface, 2...Transparent support substrate.

Claims (1)

【特許請求の範囲】 1 ほぼ平坦な表面に沿つて透光性導電酸化物層
が一様に形成された透光性支持基板を準備し、上
記透光性導電酸化物層をその露出面方向からその
途中までエツチング処理を施してこの透光性導電
酸化物層の露出面に、凸部と凸部との間の間隔が
約2000〜10000Å、凸部と凹部との高低差が約
1000〜5000Åである凹凸を付与したことを特徴と
する透光性導電酸化物層の加工方法。 2 上記透光性導電酸化物層は酸化インジウムス
ズであることを特徴とした特許請求の範囲第1項
記載の透光性導電酸化物の加工方法。
[Claims] 1. A light-transmitting support substrate on which a light-transmitting conductive oxide layer is uniformly formed along a substantially flat surface is prepared, and the light-transmitting conductive oxide layer is oriented in the direction of its exposed surface. An etching process is applied to the exposed surface of the transparent conductive oxide layer from the beginning to the middle, so that the distance between the convex parts is about 2,000 to 10,000 Å, and the height difference between the convex parts and the concave parts is about
1. A method for processing a light-transmitting conductive oxide layer, characterized in that an unevenness of 1000 to 5000 Å is provided. 2. The method of processing a light-transmitting conductive oxide according to claim 1, wherein the light-transmitting conductive oxide layer is made of indium tin oxide.
JP60131284A 1985-06-17 1985-06-17 Working of light transmitting conducting oxide layer Granted JPS61288314A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60131284A JPS61288314A (en) 1985-06-17 1985-06-17 Working of light transmitting conducting oxide layer
US06/872,684 US4732621A (en) 1985-06-17 1986-06-10 Method for producing a transparent conductive oxide layer and a photovoltaic device including such a layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60131284A JPS61288314A (en) 1985-06-17 1985-06-17 Working of light transmitting conducting oxide layer

Publications (2)

Publication Number Publication Date
JPS61288314A JPS61288314A (en) 1986-12-18
JPH0418646B2 true JPH0418646B2 (en) 1992-03-27

Family

ID=15054350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60131284A Granted JPS61288314A (en) 1985-06-17 1985-06-17 Working of light transmitting conducting oxide layer

Country Status (1)

Country Link
JP (1) JPS61288314A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1100130B3 (en) * 1998-06-01 2008-10-29 Kaneka Corporation Silicon-base thin-film photoelectric device
JP2002287906A (en) * 2001-03-23 2002-10-04 Mitsubishi Chemicals Corp Touch panel
EP1443527A4 (en) 2001-10-19 2007-09-12 Asahi Glass Co Ltd Substrate with transparent conductive oxide film and production method therefor, and photoelectric conversion element
EP2091053B1 (en) 2003-11-18 2011-08-10 Nippon Sheet Glass Co., Ltd. Transparent substrate with transparent conductive film
JP5235315B2 (en) * 2007-03-05 2013-07-10 株式会社カネカ Manufacturing method of substrate with transparent electrode
JP5890760B2 (en) * 2011-07-15 2016-03-22 日本板硝子株式会社 Glass plate with light incident surface having light scattering function and reflection suppressing function

Also Published As

Publication number Publication date
JPS61288314A (en) 1986-12-18

Similar Documents

Publication Publication Date Title
JP2504378B2 (en) Method for manufacturing solar cell substrate
JP3526308B2 (en) Light receiving element
JP5012793B2 (en) Substrate with transparent conductive oxide film and photoelectric conversion element
US4732621A (en) Method for producing a transparent conductive oxide layer and a photovoltaic device including such a layer
EP0234222B1 (en) Solar battery
US4644091A (en) Photoelectric transducer
WO1999063600A1 (en) Silicon-base thin-film photoelectric device
JP3706835B2 (en) Thin film photoelectric converter
EP0102204A1 (en) An optically enhanced photovoltaic device
EP2351092B1 (en) Multiple-junction photoelectric device and its production process
JP2013529845A (en) Substrate provided with transparent conductive oxide film and method for manufacturing the same
JP2002299661A (en) THIN-FILM CRYSTALLINE Si SOLAR CELL
JPH0328073B2 (en)
JP5127925B2 (en) Thin film solar cell and manufacturing method thereof
JPH0418646B2 (en)
JP2663414B2 (en) Amorphous semiconductor solar cell
JP2682658B2 (en) Semiconductor device
JPS62209872A (en) Photoelectric conversion element
JP2000223724A (en) Amorphous silicon solar battery and its manufacture
KR102574926B1 (en) Perovskite silicon tandem solar cell and method for manufacturing the same
WO2012176467A1 (en) Glass sheet with transparent conductive membrane and manufacturing method therefor
JP2892921B2 (en) Photovoltaic device
JP3609147B2 (en) Photoelectric conversion device
JP2004031648A (en) Photoelectric conversion element having optical confinement layer, photoelectric conversion device and solar battery having the device
JPS6288927A (en) Color sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term