JPH0328073B2 - - Google Patents

Info

Publication number
JPH0328073B2
JPH0328073B2 JP60131285A JP13128585A JPH0328073B2 JP H0328073 B2 JPH0328073 B2 JP H0328073B2 JP 60131285 A JP60131285 A JP 60131285A JP 13128585 A JP13128585 A JP 13128585A JP H0328073 B2 JPH0328073 B2 JP H0328073B2
Authority
JP
Japan
Prior art keywords
light
receiving surface
surface electrode
tco
photovoltaic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60131285A
Other languages
Japanese (ja)
Other versions
JPS61288473A (en
Inventor
Kenji Murata
Yasuo Kishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60131285A priority Critical patent/JPS61288473A/en
Priority to US06/872,684 priority patent/US4732621A/en
Publication of JPS61288473A publication Critical patent/JPS61288473A/en
Publication of JPH0328073B2 publication Critical patent/JPH0328073B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は光照射を受けると起電力を発生する光
起電力装置に関し、例えば太陽光発電等に利用さ
れる。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a photovoltaic device that generates electromotive force when irradiated with light, and is used, for example, in solar power generation.

(ロ) 従来の技術 ガラス等の透光性基板上に受光面電極、半導体
光活性層及び背面電極をこの順序で積層せしめた
光起電力装置は例えば特公昭53−37718号公報や
米国特許第4281208号明細書に開示された如く既
に知られている。通常上記受光面電極として電子
ビーム蒸着法、真空蒸着法、スパツタ法、CVD
法、スプレー法等によつて形成される酸化インジ
ウムスズ(ITO)、酸化スズ(SnOx)等に代表
される透光性導電酸化物(以下TOCと称す)の
単層或いは積層構造が用いられる。
(b) Prior art A photovoltaic device in which a light-receiving surface electrode, a semiconductor photoactive layer, and a back electrode are laminated in this order on a transparent substrate such as glass is disclosed in, for example, Japanese Patent Publication No. 53-37718 and U.S. Pat. This is already known as disclosed in No. 4281208. Usually, the above light-receiving surface electrode is made by electron beam evaporation, vacuum evaporation, sputtering, CVD.
A single layer or a laminated structure of a translucent conductive oxide (hereinafter referred to as TOC), typified by indium tin oxide (ITO), tin oxide (SnOx), etc., formed by a method such as a method or a spray method is used.

然し乍ら、斯るTCOから受光面電極を形成す
ると、このTCOの屈折率は約2.0前後であるのに
対し、それと接する半導体光活性層の屈折率は上
記2.0より大きく例えばアモルフアスシリコン、
アモルフアスシリコンカーバイト、アモルフアス
シリコンゲルマニウム等のアモルフアスシリコン
系半導体にあつては約4.0前後であるために、支
持基板側から入射した光は上記屈折率の差に基づ
き受光面電極と光活性層との界面に於いて反射
し、光電変換動作する光活性層に入射する光量を
減少せしめる原因となつていた。
However, when a light-receiving surface electrode is formed from such TCO, the refractive index of this TCO is around 2.0, whereas the refractive index of the semiconductor photoactive layer in contact with it is higher than 2.0, such as amorphous silicon, etc.
In the case of amorphous silicon-based semiconductors such as amorphous silicon carbide and amorphous silicon germanium, the value is around 4.0, so the light incident from the support substrate side is connected to the light-receiving surface electrode based on the difference in refractive index. The light is reflected at the interface with the layer, causing a decrease in the amount of light incident on the photoactive layer that performs photoelectric conversion.

昭和60年春季応用物理学会予稿集第439頁29p
−U−14に開示された先行技術は、受光面電極と
光活性層との界面に於ける反射特性が、界面形状
に著しく影響される点に鑑み受光面電極の受光面
側界面を凹凸状となし光活性層に入射する光量の
増大を図ることを提案している。
1985 Spring Proceedings of the Japan Society of Applied Physics No. 439, p. 29
In the prior art disclosed in U-14, the light-receiving surface side interface of the light-receiving surface electrode is shaped into an uneven shape in view of the fact that the reflection characteristics at the interface between the light-receiving surface electrode and the photoactive layer are significantly influenced by the shape of the interface. It is proposed to increase the amount of light incident on the photoactive layer.

一方、上述の如き一般的なTCOの形成技術に
よれば、形成するTCOの平均粒径によつて受光
面電極の表面形状が決定されるために、斯る
TCOの平均粒径が約500〜2000Å程度であること
からして、従来の受光面電極の表面形状は凹凸の
高低差約200〜11000Å、凸部と凸部との間隔約
500〜2000Åと小さな凹凸形状を呈するに止まつ
ていた。
On the other hand, according to the general TCO formation technology described above, the surface shape of the light-receiving surface electrode is determined by the average particle size of the TCO to be formed.
Considering that the average particle size of TCO is about 500 to 2000 Å, the surface shape of the conventional light-receiving surface electrode has a height difference of about 200 to 11000 Å and a distance between the protrusions of about 200 to 11000 Å.
The surface only exhibited a small uneven shape of 500 to 2000 Å.

従つて、一般的なTCOを受光面電極とした光
起電力装置にあつては、斯るTCOの受光面電極
と光活性層との界面に於ける反射損失が大きく、
光電変換効率を低下せしめる要因となつていた。
Therefore, in a photovoltaic device using a general TCO as a light-receiving surface electrode, the reflection loss at the interface between the TCO light-receiving surface electrode and the photoactive layer is large;
This was a factor that reduced photoelectric conversion efficiency.

そこで、更に大きな凹凸を形成するために、
TCOの粒径を大きくすることが試みられた。例
えばTCOの平均粒径を約2000〜10000Åとする
と、凹凸の高低差約1000〜5000Å、凸部と凸部と
の間隔約2000〜10000Åの凹凸形状が得られるも
のの、この凹凸形状を実現するためには平均粒径
の大きなTCOを使用しなければならず、比抵抗
の増大、光透過率の減少及び支持基板との密着力
の低下を招く原因となり、光起電力装置の受光面
電極としては不適切である。
Therefore, in order to form even larger irregularities,
Attempts have been made to increase the particle size of TCO. For example, if the average particle size of TCO is about 2000 to 10000 Å, an uneven shape with a height difference of about 1000 to 5000 Å and an interval between protrusions of about 2000 to 10000 Å can be obtained. It is necessary to use TCO with a large average particle size, which causes an increase in specific resistance, a decrease in light transmittance, and a decrease in adhesion to the support substrate, making it difficult to use as a light-receiving surface electrode of a photovoltaic device. Inappropriate.

これに対し、上記応用物理学会予稿集に開示さ
れた先行技術によれば支持基板表面に予め凹凸を
設け、その凹凸表面に沿つてTCOを形成するこ
とによつて、通常の粒径のTCOを用いても大き
な凹凸面を持つ受光面電極が得られる。ところ
が、今度は支持基板表面を受光面電極として要求
される数1000Åのオーダに凹凸加工することが非
常に難しく量産性が低いと云う欠点である。
On the other hand, according to the prior art disclosed in the above-mentioned Proceedings of the Japan Society of Applied Physics, by providing unevenness on the surface of the support substrate in advance and forming TCO along the uneven surface, TCO of normal particle size can be reduced. Even if used, a light-receiving surface electrode with a large uneven surface can be obtained. However, the drawback is that it is very difficult to process the surface of the support substrate to have concavities and convexities on the order of several thousand angstroms, which is required for the light-receiving surface electrode, and mass productivity is low.

(ハ) 発明が解決しようとする問題点 本発明は光起電力装置の受光面電極と半導体光
活性層との界面に於ける入射光の反射損失と、比
抵抗の増大、光透過率の減少及び支持基板との密
着力の低下を同時に解決しようとするものであ
る。
(c) Problems to be solved by the invention The present invention solves the problem of reflection loss of incident light at the interface between the light-receiving surface electrode and the semiconductor photoactive layer of a photovoltaic device, an increase in specific resistance, and a decrease in light transmittance. This is an attempt to simultaneously solve the problem of lower adhesion with the supporting substrate.

(ニ) 問題点を解決するための手段 本発明は上記問題点を解決するために、受光面
電極は平均粒径約500〜2000ÅのTCOからなると
共に、この受光面電極は半導体光活性層との界面
側に高低差約1000〜5000Å、凸部と凸部との間隔
約2000〜10000Åの凹凸面を備えたことを特徴と
する。
(d) Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a light-receiving surface electrode made of TCO with an average grain size of about 500 to 2000 Å, and a semiconductor photoactive layer and a light-receiving surface electrode. It is characterized by having an uneven surface on the interface side with a height difference of about 1000 to 5000 Å and an interval between protrusions of about 2000 to 10000 Å.

(ホ) 作用 上述の如く半導体光活性層との界面側に高低差
約1000〜5000Å、凸部と凸部との間隔乱約2000〜
10000Åの凹凸面を備えた平均粒径約500〜2000Å
のTCOからなる受光面電極を用いることによつ
て、斯る受光面電極は光起電力装置として好適な
凹凸形状を受光面電極と半導体光活性層との界面
側に形成する。
(E) Effect As mentioned above, there is a height difference of about 1000 to 5000 Å on the interface side with the semiconductor photoactive layer, and a distance difference of about 2000 to 500 Å between the convex parts.
Average grain size about 500-2000Å with uneven surface of 10000Å
By using a light-receiving surface electrode made of TCO, the light-receiving surface electrode forms an uneven shape suitable for a photovoltaic device on the interface side between the light-receiving surface electrode and the semiconductor photoactive layer.

(ヘ) 実施例 第1図は本発明光起電力装置の一実施例を模式
的に示す断面図であつて、1はほぼ平担な絶縁表
面を持つ透光性の支持基板、2は上記支持基板の
絶縁表面に沿つて形成されたTCOからなる受光
面電極、3は上記受光面電極2の凹凸面(2tex)
上に例えば前記先行技術に開示された如きプラズ
マCVD法等によりその内部にpin、pn等の周知の
半導体接合が形成されたアモルフアスシリコン系
の半導体光活性層、4はこの光活性層3の背面に
形成されたアルミニウムA1、銀Ag或いは
TCO/Ag等の単層或いは積層構造の背面電極
で、上記光活性層3に支持基板1及び受光面電極
2を透過して光照射がなされると、斯る光活性層
3中に於て光キヤリアが発生し、この光キヤリア
の移動により受光面電極2と背面電極4との間に
起電力が発生する。
(f) Embodiment FIG. 1 is a cross-sectional view schematically showing an embodiment of the photovoltaic device of the present invention, in which 1 is a transparent support substrate having a substantially flat insulating surface, and 2 is the above-mentioned support substrate. A light-receiving surface electrode made of TCO is formed along the insulating surface of the support substrate, and 3 is an uneven surface (2tex) of the light-receiving surface electrode 2.
4 is an amorphous silicon-based semiconductor photoactive layer in which well-known semiconductor junctions such as pin and pn are formed, for example, by the plasma CVD method as disclosed in the above-mentioned prior art; Aluminum A1, silver Ag or
When the photoactive layer 3 is irradiated with light through the supporting substrate 1 and the light-receiving surface electrode 2 using a back electrode with a single-layer or laminated structure such as TCO/Ag, the photoactive layer 3 contains light. Light carriers are generated, and an electromotive force is generated between the light-receiving surface electrode 2 and the back electrode 4 due to the movement of the light carriers.

而して、本発明の特徴は上記支持基板1のほぼ
平担な絶縁表面に配置され光電変換動作する半導
体光活性層3と接する界面側が凹凸面2texをな
す受光面電極2の構造にある。即ち、本発明光起
電力装置の受光面電極2として用いられるTOC
は通常の形成方法により得られる約500〜2000Å
の平均粒径であるにも拘らず、高低差(h)約約1000
〜5000Å、凸部と凸部との間隔(d)約2000〜10000
Åのほぼ三角錐状凹凸面(2tex)を備えている。
The feature of the present invention lies in the structure of the light-receiving surface electrode 2, which is disposed on the substantially flat insulating surface of the support substrate 1 and has an uneven surface 2tex on the interface side in contact with the semiconductor photoactive layer 3 that performs photoelectric conversion. That is, the TOC used as the light-receiving surface electrode 2 of the photovoltaic device of the present invention
is approximately 500 to 2000 Å obtained by conventional formation methods.
Despite the average particle size of , the height difference (h) is approximately 1000
~5000Å, distance between convex parts (d) approx. 2000~10000
It has an approximately triangular pyramidal uneven surface (2 tex).

ここで、受光面電極2の凹凸の高低差約(h)1000
〜5000Åは、半導体光活性層3の通常の膜厚に比
較して大きいものの、凸部と凸部との間隔(d)2000
〜10000Åが、高低差(h)の2〜10倍と広いため、
凸部はそれ程急岐なものとならず、従つて、半導
体光活性層3形成時に、これの膜質に悪影響を与
えることはない。
Here, the height difference of the unevenness of the light-receiving surface electrode 2 is approximately (h) 1000
~5000 Å is larger than the normal film thickness of the semiconductor photoactive layer 3, but the distance (d) between the convex parts is 2000 Å.
~10000Å is as wide as 2 to 10 times the height difference (h),
The convex portions are not so abrupt and therefore do not adversely affect the film quality of the semiconductor photoactive layer 3 when it is formed.

第2図は乃至第4図は斯る凹凸面2texの加工
方法を模式的に表わしている。先ず第2図の如
く、ガラス等の透光性支持基板1のほぼ平担な絶
縁表面に沿つて周知の電子ビーム蒸着法、真空蒸
着法、スパツタ法、CVD法、スプレー法等によ
つて形成された平均粒径約500〜2000ÅのTCO層
5被着した電極基板を準備する。上記TCO層5
は、例えば基板温度300℃、酸素分圧4×
10-4Torrの形成条件に基づいて電子ビーム蒸着
法により得られた5%のSnOxをドープしたITO
からなり、上述の如く約500〜2000Åの平均粒径
を備え、膜厚約1500〜7000Åに被着されている。
FIGS. 2 to 4 schematically show a method of processing such an uneven surface 2tex. First, as shown in FIG. 2, a film is formed along the almost flat insulating surface of a transparent support substrate 1 made of glass or the like by a well-known electron beam evaporation method, vacuum evaporation method, sputtering method, CVD method, spray method, etc. An electrode substrate having a TCO layer 5 deposited thereon having an average particle size of about 500 to 2000 Å is prepared. Above TCO layer 5
For example, the substrate temperature is 300℃, the oxygen partial pressure is 4×
ITO doped with 5% SnOx obtained by electron beam evaporation method based on the formation conditions of 10 -4 Torr.
As mentioned above, it has an average grain size of about 500 to 2000 Å and is deposited to a film thickness of about 1500 to 7000 Å.

第3図の工程では、上記支持基板1のほぼ平坦
面に沿つて被着されていたTCO層5がその露出
面から支持基板1に向つてエツチング処理が施さ
れる。使用されるエツチング液としては上記ITO
のTCO層5に対してHC1:H2O:FeC13=500
c.c.:600c.c.:100gのものが好適であり、他に王水
も利用可能である。斯るエツチング処理に於い
て、TCO層5はその露出面から順次エツチング
除去されるもののTCO層5のエツチングレート
の異方性に起因して、先ず第3図に示す如くエツ
チングレートの高い部分からエツチングが始まる
ために、断面台形状となる。
In the process shown in FIG. 3, the TCO layer 5, which has been deposited along the substantially flat surface of the support substrate 1, is etched from its exposed surface toward the support substrate 1. The etching solution used is the above ITO.
HC1:H 2 O: FeC1 3 = 500 for TCO layer 5 of
cc: 600c.c.: 100g is suitable, and aqua regia can also be used. In such an etching process, the TCO layer 5 is etched away sequentially from its exposed surface, but due to the anisotropy of the etching rate of the TCO layer 5, the portions with a high etching rate are etched first as shown in FIG. As etching begins, the cross section becomes trapezoidal.

第4図は第3図のエツチング処理が終了した状
態を示している。即ち、斯るエツチング処理は
TCO層5の厚み方向の途中までとし、その露出
面が光起電力装置の受光面電極2として好適な微
細な凹凸を持つまで行ない、例えば高低差約100
〜5000Å、凸部と凸部の間隔約2000〜10000Åの
はぼ三角錐状の凹凸面2texが付与された受光面
電極2が形成される。例えば上記エツチング液、
液温約25℃の条件に於いて20〜40分程度で上記微
細な凹凸面2texが得られる。
FIG. 4 shows a state in which the etching process shown in FIG. 3 has been completed. That is, such an etching process
This is done until the TCO layer 5 reaches halfway through its thickness, and the exposed surface has fine irregularities suitable for the light-receiving surface electrode 2 of the photovoltaic device. For example, the height difference is about 100.
A light-receiving surface electrode 2 is formed, which is provided with an uneven surface 2tex in the shape of a triangular pyramid with a thickness of about 5000 Å and an interval of about 2000 to 10000 Å between the protrusions. For example, the above etching solution,
The finely uneven surface 2tex described above can be obtained in about 20 to 40 minutes at a liquid temperature of about 25°C.

第5図及び第6図は上記エツチング処理により
凹凸化される前のTCO層5の粒子構造を示す走
査顕微鏡写真であつて、第5図は断面状態であ
り、第6図は露出面に対して傾斜角80度の方向か
ら臨んだ状態で、両者の倍率は等しくなく写真の
下段に夫々のスケールが記してある。第7図及び
第8図は上記第5図及び第6図に示されたTCO
層5を上記エツチング処理により凹凸化した後の
受光面電極2の粒子構造を示す走査顕微鏡写真で
あつて、第7図は第5図と同倍率の断面状態であ
り、第8図は第6図と同倍率の露出面(凹凸面2
tex)に対して傾斜角80度の方向から臨んだ状態
である。
5 and 6 are scanning micrographs showing the grain structure of the TCO layer 5 before it is made uneven by the etching process, and FIG. 5 shows the cross-sectional state, and FIG. 6 shows the exposed surface. The two images are viewed from an 80-degree angle of inclination, and the magnifications of both are not equal, and the respective scales are indicated at the bottom of the photo. Figures 7 and 8 are the TCO shown in Figures 5 and 6 above.
These are scanning micrographs showing the grain structure of the light-receiving surface electrode 2 after the layer 5 has been made uneven by the etching process, and FIG. 7 is a cross-sectional view at the same magnification as FIG. 5, and FIG. Exposed surface at the same magnification as the figure (uneven surface 2
It is viewed from a direction with an inclination angle of 80 degrees with respect to tex).

尚、参考までに第9図及び第10図に第3図に
相当する凹凸加工の途中状態に於けるTCO層5
の粒子構造の断面状態及び傾斜角80度の方向から
臨んだ状態の走査顕微鏡写真を示す。
For reference, Figures 9 and 10 show the TCO layer 5 in a state in the middle of roughening processing, which corresponds to Figure 3.
A scanning micrograph of the cross-sectional state of the particle structure and the state viewed from a direction with an inclination angle of 80 degrees is shown.

この顕微鏡写真からTCO層5の異方性エツチ
ングレートにより、その露出面から支持基板1方
向に均一にエツチング除去されることなく凹凸面
2texが形成されていることは明らかである。
It is clear from this micrograph that due to the anisotropic etching rate of the TCO layer 5, the uneven surface 2tex is formed without being uniformly etched away from the exposed surface in the direction of the supporting substrate 1.

この様にして凹凸面2texが付与されたTCOの
受光面電極2を組込んだ光起電力装置を評価する
ために、斯る凹凸面2texに上記特公昭53−37718
号公報に示されたpin接合を有するアモルフアス
シリコンの半導体光活性層3とアルミニウム電極
の背面電極4とを順次積層した光起電力装置を作
製し、その反射率をほぼ可視光帯域に亘つて測定
したところ、第11図の反射特性を得た。一方、
斯る本発明の凹凸加工されたTCOを受光面電極
2とした光起電力装置に代つて、第2図及び第7
図、第8図に示した凹凸加工する以前のTCO層
5を受光面電極とした光起電力装置の反射特性を
測定し、その結果が第12図に示してある。斯る
第12図の反射特性を見ると、約450nm、約
650nm以上の波長に対して断続的の20%以上の
反射率を呈していたのに対し、本発明による凹凸
な受光面電極2を用いた光起電力装置に於いては
約400〜800nmの可視光帯域に亘つてほぼ一定し
た10%以下の反射率を呈するに止まつた。この反
射率の低域は光電変換作用をなす半導体光活性層
3内に多くの光を入射せしめることを意味し、こ
の様な光起電力装置にあつては光電変換率を上昇
せしめることができる。
In order to evaluate a photovoltaic device incorporating a TCO light-receiving surface electrode 2 provided with an uneven surface 2tex in this way, the above-mentioned Japanese Patent Publication No. 53-37718
A photovoltaic device was fabricated in which a semiconductor photoactive layer 3 made of amorphous silicon having a pin junction and a back electrode 4 made of an aluminum electrode were sequentially laminated as shown in the publication, and its reflectance was adjusted almost over the visible light band. As a result of measurement, the reflection characteristics shown in FIG. 11 were obtained. on the other hand,
In place of the photovoltaic device using the textured TCO of the present invention as the light-receiving surface electrode 2, FIGS.
The reflection characteristics of a photovoltaic device using the TCO layer 5 shown in FIGS. 8 and 8 as a light-receiving surface electrode before the roughening process were measured, and the results are shown in FIG. Looking at the reflection characteristics in Figure 12, we see that the reflection characteristics are approximately 450 nm, approximately
Whereas the photovoltaic device using the uneven light-receiving surface electrode 2 according to the present invention exhibited an intermittent reflectance of 20% or more for wavelengths of 650 nm or more, visible wavelengths of about 400 to 800 nm were observed. The reflectance remained almost constant at less than 10% over the optical band. This low range of reflectance means that more light is allowed to enter the semiconductor photoactive layer 3 that performs photoelectric conversion, and in such a photovoltaic device, the photoelectric conversion rate can be increased. .

第13図乃至第16図は本発明の比較例として
従来の技術の項で述べた支持基板1に予め凹凸表
面1texを付与し、その凹凸表面1tex上にTCO
層5を形成したものを示し、第13図は模式的断
面図、第14図はそのTCO層5の粒子構造の断
面状態を示す走査顕微鏡写真、第15図は同じく
粒子構造を傾斜角80度の方向から臨んだ走査顕微
鏡写真及び第16図は斯る粒子構造のTCO層5
を光起電力装置の受光面電極としたときの反射特
性図である。斯る走査顕微鏡写真の倍率は、第1
4図は第5図及び第7図と同じであり、第15図
は第6図及び第8図と同一である。また反射特性
を測定する光起電力装置の半導体光活性層3及び
アルミニウムの背面電極4ともに第11図、第1
2図のものと同時に形成されている。従つて、こ
の先行技術に開示されたTCO層5を光起電力装
置の受光面電極として用いても、本発明の凹凸加
工された受光面電極2を備えた光起電力装置の反
射特性に対して特に600nmの長波長帯域で劣つ
ていることが明らかである。
13 to 16 show, as comparative examples of the present invention, the support substrate 1 described in the prior art section is provided with an uneven surface 1tex in advance, and the TCO is applied on the uneven surface 1tex.
Fig. 13 is a schematic cross-sectional view, Fig. 14 is a scanning micrograph showing the cross-sectional state of the grain structure of the TCO layer 5, and Fig. 15 shows the same particle structure with an inclination angle of 80 degrees. The scanning micrograph and Figure 16 taken from the direction of the TCO layer 5 with such a particle structure
FIG. 3 is a reflection characteristic diagram when the light-receiving surface electrode of a photovoltaic device is used. The magnification of such a scanning micrograph is
4 is the same as FIGS. 5 and 7, and FIG. 15 is the same as FIGS. 6 and 8. In addition, both the semiconductor photoactive layer 3 and the aluminum back electrode 4 of the photovoltaic device whose reflection characteristics are measured are shown in FIGS. 11 and 1.
It was formed at the same time as the one in Figure 2. Therefore, even if the TCO layer 5 disclosed in this prior art is used as a light-receiving surface electrode of a photovoltaic device, the reflection characteristics of the photovoltaic device equipped with the textured light-receiving surface electrode 2 of the present invention will be affected. It is clear that it is especially inferior in the long wavelength band of 600 nm.

更に、第17図A乃至Dは、本発明のTCOを
受光面電極2として用いた光起電力装置(以下、
本発明装置という)と、従来の技術の項で述べた
一般的な形成技術により形成したTCOを受光面
電極2として用いた光起電力装置(以下、比較例
という)との出力特性(即ち、最大出力Pmax、
短絡電流Isc、開放電圧Xoc及び曲線因子FF)を
示している。
Furthermore, FIGS. 17A to 17D show a photovoltaic device (hereinafter referred to as
The output characteristics (hereinafter referred to as the device of the present invention) and the photovoltaic device (hereinafter referred to as a comparative example) using a TCO formed by the general forming technique described in the prior art section as the light-receiving surface electrode 2 (i.e., Maximum output Pmax,
short circuit current Isc, open circuit voltage Xoc and fill factor FF).

尚、同図におけるプロツト点は、本発明装置及
び比較例を同時に、受光面電極2以外は全く同じ
条件で10回にわたつて作成した時の、本発明装置
及び比較例の出力特性を示しており、縦軸が本発
明装置の、また横軸が比較例の特性を示してい
る。従つて、プロツト点が、中央の斜線より上に
ある場合、本発明装置の出力特性が、比較例に比
べて優れていることを示す。
The plot points in the figure indicate the output characteristics of the device of the present invention and the comparative example when the device of the present invention and the comparative example were simultaneously produced 10 times under exactly the same conditions except for the light-receiving surface electrode 2. The vertical axis shows the characteristics of the device of the present invention, and the horizontal axis shows the characteristics of the comparative example. Therefore, when the plot point is above the central diagonal line, it indicates that the output characteristics of the device of the present invention are superior to those of the comparative example.

これら各図から明らかなように、本発明装置に
あつては、曲線因子FFにおいてそれ程比較例と
変わらないものの、その他の最大出力、開放電圧
及び短絡電流において、比較例より向上している
ことが分かる。
As is clear from these figures, although the device of the present invention is not much different from the comparative example in fill factor FF, it is improved over the comparative example in other maximum output, open circuit voltage, and short circuit current. I understand.

(ト) 発明の効果 本発明は以上の説明から明らかな如く、半導体
光活性層との界面側に高低差約1000〜5000Å、凸
部と凸部との間隔約2000〜10000Åの凹凸面を備
えた平均粒径約500〜2000ÅのTCOからなる受光
面電極を用いたので、受光面電極と半導体光活性
層との界面に於ける入射光の反射損失と、比抵抗
の増大、光透過率の減少及び支持基板との密着力
の低下を同時に解放することができ、光電変換効
率を総合的に上昇せしめ得る。
(G) Effects of the Invention As is clear from the above description, the present invention has an uneven surface on the interface side with the semiconductor photoactive layer with a height difference of about 1000 to 5000 Å and an interval between protrusions of about 2000 to 10000 Å. Since we used a light-receiving surface electrode made of TCO with an average particle diameter of about 500 to 2000 Å, we were able to reduce the reflection loss of incident light at the interface between the light-receiving surface electrode and the semiconductor photoactive layer, increase in specific resistance, and decrease in light transmittance. It is possible to simultaneously relieve the decrease in adhesion and the decrease in adhesion to the support substrate, and to increase the photoelectric conversion efficiency overall.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明光起電力装置の一実施例を示す
模式的断面図、第2図乃至第4図は本発明光起電
力装置に用いられる受光面電極の凹凸化方法を説
明するための状態別模式的断面図、第5図及び第
6図は凹凸化される前の透光性導電酸化物の粒子
構造の断面状態及び傾斜角80度の方向から臨んだ
状態を示す走査顕微鏡写真、第7図及び第8図は
凹凸化された後の透光性導電酸化物の粒子構造断
面状態及び傾斜角80度の方向から臨んだ状態を示
す走査顕微鏡写真、第9図及び第10図は第3図
に相当する凹凸加工の途中状態に於ける透光性導
電酸化物の粒子構造の断面状態及び傾斜角80度の
方向から臨んだ状態の走査顕微鏡写真、第11図
は本発明光起電力装置の反射特性図、第12図は
従来装置の反射特性図、第13図は本発明の比較
例として用いられた透光性導電酸化物基板の模式
的断面図、第14図及び第15図は上記第13図
に示した本発明比較例に於ける透光性導電酸化物
の粒子構造の断面状態及び傾斜角80度の方向から
臨んだ状態を示す走査顕微鏡写真、第16図は本
発明比較例の反射特性図、第17図は本発明装置
と比較例との出力特性図、を夫々示している。 1……透光性支持基板、2……受光面電極、2
tex……凹凸面、3……半導体光活性層、4……
背面電極。
FIG. 1 is a schematic cross-sectional view showing one embodiment of the photovoltaic device of the present invention, and FIGS. 2 to 4 are diagrams for explaining a method of making the light-receiving surface electrode uneven for use in the photovoltaic device of the present invention. Schematic cross-sectional views by state; FIGS. 5 and 6 are scanning micrographs showing the cross-sectional state of the particle structure of the translucent conductive oxide before it is roughened, and the state viewed from a direction with an inclination angle of 80 degrees; Figures 7 and 8 are scanning micrographs showing the cross-sectional state of the grain structure of the translucent conductive oxide after it has been roughened, and the state viewed from an angle of inclination of 80 degrees, and Figures 9 and 10 are Fig. 3 shows a cross-sectional state of the particle structure of the translucent conductive oxide in the middle of roughening, and a scanning micrograph of the state viewed from a direction with an inclination angle of 80 degrees. 12 is a reflection characteristic diagram of a conventional device; FIG. 13 is a schematic cross-sectional view of a transparent conductive oxide substrate used as a comparative example of the present invention; FIGS. 14 and 15. The figure is a scanning micrograph showing the cross-sectional state of the particle structure of the transparent conductive oxide in the comparative example of the present invention shown in FIG. FIG. 17 shows a reflection characteristic diagram of a comparative example of the invention, and an output characteristic diagram of the apparatus of the present invention and a comparative example. 1... Transparent support substrate, 2... Light-receiving surface electrode, 2
tex...Uneven surface, 3...Semiconductor photoactive layer, 4...
Back electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 透光性支持基板の平坦面に受光面電極、半導
体光活性層及び背面電極をこの順序で積層した光
起電力装置であつて、上記受光面電極は平均粒径
約500〜2000Åの透光性導電酸化物からなると共
に、この受光面電極は半導体活性層との界面側に
高低差約1000〜5000Å、凸部と凸部との間隔約
2000〜10000Åの凹凸面を備えたことを特徴とし
た光起電力装置。
1. A photovoltaic device in which a light-receiving surface electrode, a semiconductor photoactive layer, and a back electrode are laminated in this order on the flat surface of a light-transmitting support substrate, wherein the light-receiving surface electrode has a light-transmitting layer with an average particle size of about 500 to 2000 Å. This light-receiving surface electrode has a height difference of approximately 1,000 to 5,000 Å on the interface side with the semiconductor active layer, and a spacing between convex portions of approximately
A photovoltaic device characterized by having an uneven surface of 2000 to 10000 Å.
JP60131285A 1985-06-17 1985-06-17 Photovoltaic device Granted JPS61288473A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60131285A JPS61288473A (en) 1985-06-17 1985-06-17 Photovoltaic device
US06/872,684 US4732621A (en) 1985-06-17 1986-06-10 Method for producing a transparent conductive oxide layer and a photovoltaic device including such a layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60131285A JPS61288473A (en) 1985-06-17 1985-06-17 Photovoltaic device

Publications (2)

Publication Number Publication Date
JPS61288473A JPS61288473A (en) 1986-12-18
JPH0328073B2 true JPH0328073B2 (en) 1991-04-17

Family

ID=15054375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60131285A Granted JPS61288473A (en) 1985-06-17 1985-06-17 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS61288473A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002043080A1 (en) * 2000-11-21 2002-05-30 Nippon Sheet Glass Co., Ltd. Transparent conductive film and its manufacturing method, and photoelectric transducer comprising it
CN109346556A (en) * 2018-09-21 2019-02-15 中国科学院半导体研究所 A kind of preparation method of optically roughness and electricity flat type transparent conductive substrate

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808462A (en) * 1987-05-22 1989-02-28 Glasstech Solar, Inc. Solar cell substrate
JP2805353B2 (en) * 1989-09-12 1998-09-30 キヤノン株式会社 Solar cell
JP4430194B2 (en) 1999-05-31 2010-03-10 日本板硝子株式会社 Transparent laminate and glass article using the same
JP2001060702A (en) 1999-06-18 2001-03-06 Nippon Sheet Glass Co Ltd Substrate for photoelectric transfer device and photoelectric transfer device using substrate
JP2001060708A (en) 1999-06-18 2001-03-06 Nippon Sheet Glass Co Ltd Transparent laminated and glass article using it
JP2002352956A (en) * 2001-03-23 2002-12-06 Mitsubishi Chemicals Corp Thin-film light emitting substance and manufacturing method therefor
EP1443527A4 (en) 2001-10-19 2007-09-12 Asahi Glass Co Ltd Substrate with transparent conductive oxide film and production method therefor, and photoelectric conversion element
US7608294B2 (en) 2003-11-18 2009-10-27 Nippon Sheet Glass Company, Limited Transparent substrate with transparent conductive film, method of manufacturing the same, and photoelectric conversion element including the substrate
EP1840966A1 (en) * 2006-03-30 2007-10-03 Universite De Neuchatel Transparent, conducting and textured layer and method of fabrication
WO2011161961A1 (en) 2010-06-23 2011-12-29 Jx日鉱日石エネルギー株式会社 Photoelectric conversion element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002043080A1 (en) * 2000-11-21 2002-05-30 Nippon Sheet Glass Co., Ltd. Transparent conductive film and its manufacturing method, and photoelectric transducer comprising it
CN109346556A (en) * 2018-09-21 2019-02-15 中国科学院半导体研究所 A kind of preparation method of optically roughness and electricity flat type transparent conductive substrate
CN109346556B (en) * 2018-09-21 2020-02-21 中国科学院半导体研究所 Preparation method of optically rough and electrically flat transparent conductive substrate

Also Published As

Publication number Publication date
JPS61288473A (en) 1986-12-18

Similar Documents

Publication Publication Date Title
CA1211826A (en) Realization of a thin film solar cell with a detached reflector
US4644091A (en) Photoelectric transducer
JP2504378B2 (en) Method for manufacturing solar cell substrate
JP2908067B2 (en) Substrate for solar cell and solar cell
JP2738557B2 (en) Multilayer solar cell
US4818337A (en) Thin active-layer solar cell with multiple internal reflections
US4732621A (en) Method for producing a transparent conductive oxide layer and a photovoltaic device including such a layer
EP0102204A1 (en) An optically enhanced photovoltaic device
JP3706835B2 (en) Thin film photoelectric converter
JPS6155268B2 (en)
KR20030081662A (en) Solar cell with double layer antireflection coating
JPH0328073B2 (en)
JPS62209872A (en) Photoelectric conversion element
JP2000058892A (en) Silicon based thin film photoelectric converter
KR101658534B1 (en) Solar cell and method for fabricaitng the same
JP2682658B2 (en) Semiconductor device
JPS61278171A (en) Thin film photoelectric conversion device
JP2652087B2 (en) Photovoltaic device and manufacturing method thereof
JPH0418646B2 (en)
JP3342257B2 (en) Photovoltaic element
JPS62247574A (en) Photovoltaic device
JP3196155B2 (en) Photovoltaic device
JP3241234B2 (en) Thin film solar cell and method of manufacturing the same
JPS6288927A (en) Color sensor
JP2892921B2 (en) Photovoltaic device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term