JP2663414B2 - Amorphous semiconductor solar cell - Google Patents

Amorphous semiconductor solar cell

Info

Publication number
JP2663414B2
JP2663414B2 JP63335343A JP33534388A JP2663414B2 JP 2663414 B2 JP2663414 B2 JP 2663414B2 JP 63335343 A JP63335343 A JP 63335343A JP 33534388 A JP33534388 A JP 33534388A JP 2663414 B2 JP2663414 B2 JP 2663414B2
Authority
JP
Japan
Prior art keywords
solar cell
amorphous semiconductor
insulating film
layer
semiconductor solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63335343A
Other languages
Japanese (ja)
Other versions
JPH02180081A (en
Inventor
俊雄 三宿
聡 高桑
一朗 金井
英世 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP63335343A priority Critical patent/JP2663414B2/en
Publication of JPH02180081A publication Critical patent/JPH02180081A/en
Application granted granted Critical
Publication of JP2663414B2 publication Critical patent/JP2663414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光の照射により起電力を発生する、金属基
板を用いた非晶質半導体太陽電池に関する。
Description: TECHNICAL FIELD The present invention relates to an amorphous semiconductor solar cell using a metal substrate, which generates an electromotive force by light irradiation.

[従来の技術] 従来のこの種の非晶質半導体太陽電池は、可撓性を得
るために薄いステンレス等の金属板を基板として用いて
いた。その従来の金属基板太陽電池を、第3図により説
明すると、可撓性を有するステンレス等の金属基板1の
表面に、絶縁膜層2を設けてステンレス表面を絶縁化
し、その絶縁膜2の上にステンレスやクロム等の金属を
スパッタリング法により蒸着し、背面電極6が形成され
る。さらに、同背面電極6の上に非晶質シリコン層3と
p層、i層、n層あるいは、n層、i層、p層の順に形
成する。さらに、その上に酸化インジウム錫(以下ITO
と略称す)等の透明導電膜4を形成し、その上に透光性
の樹脂剤からなる保護膜5を施されている。
[Prior Art] A conventional amorphous semiconductor solar cell of this type uses a thin metal plate such as stainless steel as a substrate in order to obtain flexibility. The conventional metal substrate solar cell will be described with reference to FIG. 3. An insulating film layer 2 is provided on the surface of a flexible metal substrate 1 such as stainless steel to insulate the stainless steel surface. Then, a metal such as stainless steel or chromium is deposited by a sputtering method to form the back electrode 6. Further, an amorphous silicon layer 3 and a p-layer, an i-layer, and an n-layer, or an n-layer, an i-layer, and a p-layer are formed on the back electrode 6 in this order. In addition, indium tin oxide (hereinafter ITO)
, Etc.), and a protective film 5 made of a translucent resin agent is provided thereon.

前記ステンレス基板1の絶縁化は、予め同基板1を表
面研磨し、基板上にポリイミド樹脂を塗布して焼き付
け、耐熱性樹脂層2を形成することにより行われてい
た。さらにその他に、鏡面研摩されていないステンレス
基板上に、有機シリケートを主成分とするコーティング
材を硬化させたシリカ被膜や、有機金属化合物を主成分
とするコーティング材を硬化させた金属酸化被膜透によ
り絶縁する手段も実施されていた。
Insulation of the stainless steel substrate 1 has been performed by polishing the surface of the stainless steel substrate 1 in advance, applying and baking a polyimide resin on the substrate, and forming a heat-resistant resin layer 2. In addition, on a stainless steel substrate that has not been mirror-polished, a silica coating obtained by curing a coating material containing an organic silicate as a main component or a metal oxide coating obtained by curing a coating material containing an organometallic compound as a main component is applied. Means for insulation were also implemented.

[発明が解決しようとする課題] 前記従来の金属基板を用いた非晶質半導体太陽電池
は、ガラス基板を用いた非晶質半導体太陽電池に比較
し、その変換効率が低いという問題点があった。
[Problem to be Solved by the Invention] The conventional amorphous semiconductor solar cell using a metal substrate has a problem that its conversion efficiency is lower than that of an amorphous semiconductor solar cell using a glass substrate. Was.

金属基板を用いて、その上に非晶質半導体をp層、i
層、n層と積層した場合、i層の内部における正孔の移
動距離が長くなり、電子、正孔の再結合の確率が増加し
たり、トラップ準位に捕獲される確率が増加する。従っ
て、光−電力変換効率が低下することになるのである。
Using a metal substrate, an amorphous semiconductor is formed on the p-layer, i
When the layer is stacked with the n-layer, the moving distance of holes inside the i-layer increases, and the probability of recombination of electrons and holes increases, and the probability of being trapped by trap levels increases. Therefore, the light-power conversion efficiency is reduced.

また、非晶質半導体のn層の窓材として適切なものが
なく、光吸収損失の多いことにもよる。非晶質半導体を
n層、i層、p層の順で積層した場合は、p層に広いバ
ンドギャップのSiCを窓材として使用できるが、n−i
−pジャンクションとすると、p−i界面に欠陥が多く
なることや、i層の中性化が行いにくいなどの理由によ
り、やはり変換効率が低くなる。
In addition, there is no suitable window material for the n-layer of the amorphous semiconductor, which results in large light absorption loss. When an amorphous semiconductor is laminated in the order of an n-layer, an i-layer, and a p-layer, a wide band gap SiC can be used as a window material for the p-layer.
In the case of the −p junction, the conversion efficiency is also lowered because of a large number of defects at the pi interface and a difficulty in neutralizing the i-layer.

ここにおいて、本発明の目的は、前記従来技術の問題
点を解決できる非晶質半導体太陽電池を提供することに
ある。
Here, an object of the present invention is to provide an amorphous semiconductor solar cell that can solve the problems of the conventional technology.

[課題を解決するための手段] すなわち、本発明は前記目的を達成するため、金属基
板1上に絶縁膜2、背面電極6、非晶質半導体層3、透
明導電膜4、保護膜5を順次形成してなる非晶質半導体
太陽電池において、前記絶縁膜2が有機シリケートを主
成分とするコーティング材の中に平均粒径0.1μm〜0.9
μmの絶縁性微粒子を含む原料を硬化させたシリカ被膜
からなることを特徴とする非晶質半導体太陽電池を提供
する。
[Means for Solving the Problems] That is, according to the present invention, in order to achieve the above object, an insulating film 2, a back electrode 6, an amorphous semiconductor layer 3, a transparent conductive film 4, and a protective film 5 are formed on a metal substrate 1. In the amorphous semiconductor solar cell formed sequentially, the insulating film 2 has an average particle diameter of 0.1 μm to 0.9 μm in a coating material containing an organic silicate as a main component.
An amorphous semiconductor solar cell comprising a silica coating obtained by curing a raw material containing insulating fine particles of μm.

なお、前記絶縁膜2のコーティング材の中に含まれる
絶縁性微粒子が、TiO2、Al2O3、ZrO2、SiO2の中の少な
くとも一つからなっていることが好ましい。
The insulating fine particles contained in the coating material of the insulating film 2 are preferably made of at least one of TiO 2 , Al 2 O 3 , ZrO 2 , and SiO 2 .

[作用] 上記のように構成した非晶質半導体太陽電池では、金
属基板1上に形成された絶縁膜2の表面に金属酸化物透
の微粒子による凹凸が形成される。その凹凸の上に非晶
質半導体太陽電池を構成すると、太陽電池に入射した光
は特に裏面側の凹凸により散乱をおこし、非晶質半導体
層3の中に閉じ込められる。換言すると、太陽電池への
入射光が、半導体のジャンクション部分に十分に吸収さ
れ、光電流を大幅に増加させ、変換効率を向上させるこ
とが可能となる。
[Operation] In the amorphous semiconductor solar cell configured as described above, the surface of the insulating film 2 formed on the metal substrate 1 has irregularities due to fine particles of metal oxide. When an amorphous semiconductor solar cell is formed on the unevenness, light incident on the solar cell is scattered by unevenness particularly on the back surface side, and is confined in the amorphous semiconductor layer 3. In other words, the light incident on the solar cell is sufficiently absorbed by the junction of the semiconductor, the photocurrent is greatly increased, and the conversion efficiency can be improved.

[実 施 例] 以下、本発明の非晶質半導体太陽電池の実施例を、添
付した図面を参照しながら説明する。
EXAMPLES Hereinafter, examples of the amorphous semiconductor solar cell of the present invention will be described with reference to the accompanying drawings.

第1図は、本発明の非晶質半導体太陽電池の一実施例
を示す構成である。本実施例では、金属基板1として厚
さ0.1mm、表面粗さRmax≒0.3μmのステンレス板(SUS3
04)を用いた。同可撓性非透光金属基板1の上に、水12
g、ブチルアルコール50g、テトラエトキシシラン100g、
塩化錫1gを混合したエチルシリケートを基剤とするコー
ティング剤に直径0.3μmの球状のTiO2微粒子を20g添加
した絶縁材を塗布する。そして、温度80℃で5分間予備
乾燥を行い、次いで温度300℃で20分間焼成して、上記
絶縁材を焼き付け、絶縁膜2を形成した。
FIG. 1 is a configuration showing an embodiment of the amorphous semiconductor solar cell of the present invention. In this embodiment, a stainless steel plate (SUS3) having a thickness of 0.1 mm and a surface roughness Rmax ≒ 0.3 μm is used as the metal substrate 1.
04) was used. Water 12 is placed on the flexible non-translucent metal substrate 1.
g, butyl alcohol 50 g, tetraethoxysilane 100 g,
An insulating material obtained by adding 20 g of spherical TiO 2 fine particles having a diameter of 0.3 μm to a coating agent based on ethyl silicate mixed with 1 g of tin chloride is applied. Then, preliminary drying was performed at a temperature of 80 ° C. for 5 minutes, and then baking was performed at a temperature of 300 ° C. for 20 minutes to bake the insulating material, thereby forming an insulating film 2.

前記のようにして得られた絶縁膜2は厚さが約10μm
で、その表面には平均粒子径0.3μmの半球状の凹凸が
形成される。
The thickness of the insulating film 2 obtained as described above is about 10 μm.
Thus, hemispherical irregularities having an average particle diameter of 0.3 μm are formed on the surface.

次いで、既知の方法により前記絶縁膜2の表面に非晶
質半導体太陽電池を構成する。すなわち、背面電極6と
して膜厚約5000オングストロームのステンレス層をスパ
ッタリング法により形成し、その上に非晶質半導体層3
を、例えばp層はホストガスとしてモノシランガス(Si
H4)を、ドーピングガスとしてジボランガス(B2H6
を、希釈ガスとして水素ガス(H2)を各々使用し、約50
0オングストローム厚膜を形成する。次に、i層として
モノシランガスと希釈用の水素ガスを使用し、5000オン
グストロームの厚膜を形成する。次に、ホストガスとし
てモノシランガスを、ドービングガスとしてホスフィン
ガス(PH3)を、希釈ガスとして水素ガスを各々使用
し、約100オングストロームのn層を形成する。前記半
導体層3は、p、i、n層の順に積層される。
Next, an amorphous semiconductor solar cell is formed on the surface of the insulating film 2 by a known method. That is, a stainless layer having a thickness of about 5000 Å is formed as a back electrode 6 by a sputtering method, and an amorphous semiconductor layer 3 is formed thereon.
For example, a monolayer gas (Si
H 4 ) with diborane gas (B 2 H 6 ) as doping gas
Using hydrogen gas (H 2 ) as the diluent gas
A 0 angstrom thick film is formed. Next, using a monosilane gas and a hydrogen gas for dilution as an i-layer, a 5,000 Å thick film is formed. Next, a monosilane gas is used as a host gas, a phosphine gas (PH 3 ) is used as a doping gas, and a hydrogen gas is used as a diluent gas, thereby forming an n-layer of about 100 angstroms. The semiconductor layer 3 is laminated in the order of p, i, and n layers.

さらに、前記半導体層3の上に透明導電膜4として、
ITOを700オングストロームの厚さにスパッタリング法等
により蒸着する。最後に透明な樹脂をスクリーン印刷し
て保護膜5を形成し、太陽電池とする。
Further, as a transparent conductive film 4 on the semiconductor layer 3,
ITO is deposited to a thickness of 700 angstroms by a sputtering method or the like. Finally, a transparent resin is screen-printed to form a protective film 5 to obtain a solar cell.

このようにして得られた非晶質半導体太陽電池の受光
面積は1cm2となり、その変換効率は9.4%であった。
The light-receiving area of the amorphous semiconductor solar cell thus obtained was 1 cm 2 , and the conversion efficiency was 9.4%.

さらに、前記絶縁膜2に添加するTiO2微粒子の粒子径
を、0.1μm〜2.0μmの間で変えて、それらを用いた太
陽電池の交換効率を測定した。測定結果を第2図に示
す。添加する微粒子材をTiO2からAl2O3、ZrO2に変え
て、同様の試験を行ったが、その変換効率の測定結果も
ほぼ同様であった。本件発明者等が量産している従来の
第3図に示す非晶質半導体太陽電池の変換効率を、比較
のため第2図中に○印をもって示した。従来の太陽電
池、本発明になる試作太陽電池のそれぞれ数十個の試料
中から、ランダムに十個ずつ抽出し、同様の条件で光を
照射し測定した値の平均値を示したものである。
Further, the particle diameter of the TiO 2 fine particles added to the insulating film 2 was changed between 0.1 μm and 2.0 μm, and the exchange efficiency of a solar cell using them was measured. FIG. 2 shows the measurement results. A similar test was performed by changing the added fine particle material from TiO 2 to Al 2 O 3 and ZrO 2, and the measurement results of the conversion efficiency were almost the same. The conversion efficiency of the conventional amorphous semiconductor solar cell shown in FIG. 3 mass-produced by the present inventors is shown by a circle in FIG. 2 for comparison. A conventional solar cell, each of several tens of samples of the prototype solar cell according to the present invention, randomly extracted ten by ten, shows the average value of values measured by irradiating light under the same conditions. .

第2図に示されているように、本発明例では、絶縁膜
2への添加粒子の粒径が0.3μm付近における変動効率
が最も良く約9.4%である。従来の絶縁膜2に絶縁性微
粒子を添加しないものの変換効率は約8.1%で、本発明
のものが遥かに優れている。粒子径0.1μm〜0.9μmの
範囲外では変換効率向上の効果が得られない。
As shown in FIG. 2, in the example of the present invention, the fluctuation efficiency is about 9.4% when the particle diameter of the particles added to the insulating film 2 is around 0.3 μm. The conversion efficiency of the conventional insulating film 2 in which no insulating fine particles are added is about 8.1%, and the one of the present invention is far superior. If the particle diameter is outside the range of 0.1 μm to 0.9 μm, the effect of improving the conversion efficiency cannot be obtained.

本件発明は、従来の非晶質半導体太陽電池の特性測定
過程において、絶縁膜の表面に凹凸のある試料が変換効
率の高いことに着目し、種々検討した結果、凹凸を付け
ると、同凹凸により太陽電池に入射した光が散乱し、非
晶質半導体層に閉じ込められ、十分に吸収されることが
分ったことから発生したものである。従って、前記凹凸
は非晶質半導体層に感度の高い領域の入射光に対して散
乱をおこすような大きさ、形状にすることが好ましい。
The present invention focuses on the fact that a sample having irregularities on the surface of an insulating film has a high conversion efficiency in the process of measuring the characteristics of a conventional amorphous semiconductor solar cell. This was generated because light incident on the solar cell was found to be scattered, confined in the amorphous semiconductor layer, and sufficiently absorbed. Therefore, it is preferable that the irregularities have a size and a shape that cause scattering of incident light in a region having high sensitivity to the amorphous semiconductor layer.

前記、半導体層の感度の高い入射光領域(可視光領
域)で散乱を起こすような、絶縁膜への添加絶縁粒子の
粒径は前記試験結果から分けるように0.1μm〜0.9μm
で、絶縁膜の表面は光の散乱が生じるような、所定の入
射角を持たせることが好ましい。これも実験によれば、
絶縁膜表面の形状は無数のピラミット状、あるいは半球
状等の凸部を形成させるのが良い。しかし、ピラミット
状にすると頂部が尖っていて薄膜を堆積し難く、ピンホ
ールやリークの原因となるので、特性は良くならない。
この様な実験結果から、本発明では、絶縁膜2の表面が
多数の半球を形成するようにした。
The particle size of the insulating particles added to the insulating film that causes scattering in the highly sensitive incident light region (visible light region) of the semiconductor layer is 0.1 μm to 0.9 μm as separated from the test results.
It is preferable that the surface of the insulating film has a predetermined incident angle such that light scattering occurs. According to experiments,
The surface of the insulating film is preferably formed with a number of pyramid-like or hemispherical convex portions. However, in the case of a pyramid shape, the top is sharp and it is difficult to deposit a thin film, which causes pinholes and leaks, so that the characteristics are not improved.
From such experimental results, in the present invention, the surface of the insulating film 2 is formed to have a large number of hemispheres.

また、本発明の太陽電池の入射光反射率は、積分球を
用いて測定した結果、従来の太陽電池に比し大幅に減少
していた。この事も交換効率の向上に寄与している。
The incident light reflectance of the solar cell of the present invention was measured using an integrating sphere, and as a result, was significantly reduced as compared with the conventional solar cell. This also contributes to the improvement of the exchange efficiency.

なお、絶縁膜2に添加する絶縁性微粒子は、実施例及
び実験例では金属酸化物であるTiO2、Al2O3、ZrO2を使
用したが、その他の絶縁物SiO2を用いても、同様の効果
が得られる。
In addition, as the insulating fine particles added to the insulating film 2, TiO 2 , Al 2 O 3 , and ZrO 2 which are metal oxides are used in Examples and Experimental Examples, but other insulating materials such as SiO 2 may be used. Similar effects can be obtained.

[発明の効果] 前記説明から明らかなように、本発明の非晶質半導体
太陽電池は、絶縁膜2にTiO2、Al2O3、ZrO2等の金属酸
化物、あるいはSiO2等の無機絶縁性酸化物からなる微粒
子を添加することにより、その絶縁膜2の表面に微粒子
の大きさに応じた凹凸が形成される。その上に構成され
た非晶質半導体太陽電池に光が入ると、前記凹凸により
入射光は散乱し、非晶質半導体層3に閉じ込められ、そ
の結果、入射光は十分に吸収され光電流に変換されるの
で変換効率が向上する。
[Effects of the Invention] As is apparent from the above description, in the amorphous semiconductor solar cell of the present invention, the insulating film 2 is made of a metal oxide such as TiO 2 , Al 2 O 3 , ZrO 2 , or an inorganic material such as SiO 2. By adding fine particles made of an insulating oxide, irregularities corresponding to the size of the fine particles are formed on the surface of the insulating film 2. When light enters the amorphous semiconductor solar cell formed thereon, the incident light is scattered by the irregularities and is confined in the amorphous semiconductor layer 3. As a result, the incident light is sufficiently absorbed and converted into a photocurrent. Since the conversion is performed, the conversion efficiency is improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の非晶質半導体太陽電池の一実施例の
構成を示す要部縦断面図、第2図はその太陽電池の変換
効率を示す特性図、第3図は、従来の非晶質半導体太陽
電池の構成を示す縦断面図である。 1……金属基板、2……絶縁膜、3……非晶質半導体
層、4……透明導電膜、5……保護膜、6……背面電極
FIG. 1 is a longitudinal sectional view showing a main part of an amorphous semiconductor solar cell according to one embodiment of the present invention, FIG. 2 is a characteristic diagram showing the conversion efficiency of the solar cell, and FIG. It is a longitudinal section showing the composition of an amorphous semiconductor solar cell. DESCRIPTION OF SYMBOLS 1 ... Metal substrate, 2 ... Insulating film, 3 ... Amorphous semiconductor layer, 4 ... Transparent conductive film, 5 ... Protective film, 6 ... Back electrode

フロントページの続き (72)発明者 飯田 英世 東京都台東区上野6丁目16番20号 太陽 誘電株式会社内 (56)参考文献 特開 昭63−168056(JP,A) 特開 昭60−246683(JP,A) 特開 昭56−152275(JP,A)Continuation of the front page (72) Inventor Hideyo Iida 6-16-20 Ueno, Taito-ku, Tokyo Taiyo Yuden Co., Ltd. (56) References JP-A-63-168056 (JP, A) JP-A-60-246683 ( JP, A) JP-A-56-152275 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属基板上に絶縁膜、背面電極、非晶質半
導体層、透明導電膜、保護膜を順次形成してなる非晶質
半導体太陽電池において、前記絶縁膜が有機シリケート
を主成分とするコーティング材の中に平均粒径0.1μm
〜0.9μmの絶縁性微粒子を含む原料を硬化させたシリ
カ被膜からなることを特徴とする非晶質半導体太陽電
池。
1. An amorphous semiconductor solar cell in which an insulating film, a back electrode, an amorphous semiconductor layer, a transparent conductive film, and a protective film are sequentially formed on a metal substrate, wherein the insulating film is mainly composed of an organic silicate. 0.1μm average particle size in the coating material
An amorphous semiconductor solar cell, comprising a silica coating obtained by curing a raw material containing insulating fine particles of about 0.9 μm.
【請求項2】絶縁膜のコーティング材に含まれる絶縁性
微粒子が、TiO2、Al2O3、ZrO2、SiO2の少なくとも一つ
からなることを特徴とする特許請求の範囲第1項記載の
非晶質半導体太陽電池。
2. The method according to claim 1, wherein the insulating fine particles contained in the coating material of the insulating film are made of at least one of TiO 2 , Al 2 O 3 , ZrO 2 , and SiO 2. Amorphous semiconductor solar cell.
JP63335343A 1988-12-30 1988-12-30 Amorphous semiconductor solar cell Expired - Lifetime JP2663414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63335343A JP2663414B2 (en) 1988-12-30 1988-12-30 Amorphous semiconductor solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63335343A JP2663414B2 (en) 1988-12-30 1988-12-30 Amorphous semiconductor solar cell

Publications (2)

Publication Number Publication Date
JPH02180081A JPH02180081A (en) 1990-07-12
JP2663414B2 true JP2663414B2 (en) 1997-10-15

Family

ID=18287458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63335343A Expired - Lifetime JP2663414B2 (en) 1988-12-30 1988-12-30 Amorphous semiconductor solar cell

Country Status (1)

Country Link
JP (1) JP2663414B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756050B2 (en) * 1992-03-03 1998-05-25 キヤノン株式会社 Photovoltaic device
US5230746A (en) * 1992-03-03 1993-07-27 Amoco Corporation Photovoltaic device having enhanced rear reflecting contact
DE4337694A1 (en) * 1993-11-04 1995-05-11 Siemens Solar Gmbh Solar module with improved use of light
AUPP699798A0 (en) * 1998-11-06 1998-12-03 Pacific Solar Pty Limited Thin films with light trapping
AU764832B2 (en) 1999-05-31 2003-09-04 Kaneka Corporation Solar battery module
JP4526197B2 (en) * 2000-07-18 2010-08-18 日新製鋼株式会社 Method for manufacturing insulating substrate for thin film polycrystalline silicon solar cell
JP4526198B2 (en) * 2000-08-23 2010-08-18 日新製鋼株式会社 Manufacturing method of insulating substrate for thin film polycrystalline silicon solar cell having excellent heat resistance
JP4676686B2 (en) * 2003-09-01 2011-04-27 新日本製鐵株式会社 Stainless steel foil coated with silica-based inorganic polymer film and method for producing the same
DE102004032810B4 (en) * 2004-07-07 2009-01-08 Saint-Gobain Glass Deutschland Gmbh Photovoltaic solar cell with a layer of light-scattering properties and solar module
DE202004021784U1 (en) * 2004-09-24 2011-01-05 Saint-Gobain Glass Deutschland Gmbh Photovoltaic silicon solar cell and solar module
WO2006046397A1 (en) * 2004-10-28 2006-05-04 Kaneka Corporation Substrate for thin film photoelectric converter and integrated thin film photoelectric converter employing it
US20100229938A1 (en) 2009-03-11 2010-09-16 Fujifilm Corporation Aluminum alloy substrate and solar cell substrate
JP5251904B2 (en) * 2010-03-08 2013-07-31 新日鐵住金株式会社 Stainless foil coated with silica-based inorganic polymer film and silicon thin film solar cell using the same

Also Published As

Publication number Publication date
JPH02180081A (en) 1990-07-12

Similar Documents

Publication Publication Date Title
JP2663414B2 (en) Amorphous semiconductor solar cell
JP2504378B2 (en) Method for manufacturing solar cell substrate
JP2814361B2 (en) Manufacturing method of photodetector
JP2862174B2 (en) Substrates for solar cells
US4104084A (en) Solar cells having integral collector grids
US4554727A (en) Method for making optically enhanced thin film photovoltaic device using lithography defined random surfaces
JP5121203B2 (en) Solar cell module
JP3247876B2 (en) Glass substrate with transparent conductive film
KR101618895B1 (en) Substrate for thin-film photoelectric conversion device, thin-film photoelectric conversion including the same, and method for producing substrate for thin-film photoelectric conversion device
US4644091A (en) Photoelectric transducer
JP2006128478A (en) Photoelectric converter
JP2000223724A (en) Amorphous silicon solar battery and its manufacture
JPS6034076A (en) Amorphous silicon solar cell
JPH11135817A (en) Photoelectric conversion element and its manufacture
JPH06125103A (en) Solar battery module
JPS61288473A (en) Photovoltaic device
JPS6088482A (en) Photoelectric conversion device
JPS61241983A (en) Photovoltaic device
KR102075687B1 (en) Architectural glass panel with uniform color
JPS6144476A (en) Semiconductor photoelectric conversion device
JP4780951B2 (en) Photoelectric conversion device
TW201316532A (en) Hin film solar cell module and method for manufacturing thin film solar cell module
JP2994716B2 (en) Photovoltaic device
JPS59125669A (en) Solar battery
JPS59152673A (en) Manufacture of photoelectric converter