JPH04185877A - Response control bearing - Google Patents

Response control bearing

Info

Publication number
JPH04185877A
JPH04185877A JP31422990A JP31422990A JPH04185877A JP H04185877 A JPH04185877 A JP H04185877A JP 31422990 A JP31422990 A JP 31422990A JP 31422990 A JP31422990 A JP 31422990A JP H04185877 A JPH04185877 A JP H04185877A
Authority
JP
Japan
Prior art keywords
bearing
support
response control
space
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31422990A
Other languages
Japanese (ja)
Other versions
JP2511320B2 (en
Inventor
Hidemi Oyama
秀美 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP31422990A priority Critical patent/JP2511320B2/en
Publication of JPH04185877A publication Critical patent/JPH04185877A/en
Application granted granted Critical
Publication of JP2511320B2 publication Critical patent/JP2511320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Floor Finish (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To make it possible to construct a response control structure when response control is not required by making pressure-fit of high-pressure fluid between a bearing board and a bearing to bear the structure in the case of response control, and bringing the bearing into contact with the bearing board by reducing fluid pressure in the case of response control to bring the bearing into contact with the bearing board. CONSTITUTION:A high-pressure fluid supply device is connected to a seal space 4 formed between a bearing board 2 and a bearing 3, and ball blocks 12 and magnetic fluid (b) provided to the bearing 3 are provided to the peripheral surface edge of the space 4. In the case of response control, air is supplied from an air supply pipe 7 to the space 4, and when the space 4 reaches a specific height within range of the availability of a seal from the magnetic fluid (b), it is detected by a distance sensor 8 to close an automatic control valve 6, and an interval between the bearing 3 and bearing board 2 is held. When the state is changed to response control, the control valve 6 is connected to an air exhausting air supply pipe 7' to reduce air-pressure in the space 4, and the bearing 3 is brought into contact with the bearing board 2 so that frictional force can work between both of them.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主に中低層建物を対象に水平方向の地震入力
を経済的に減少させる免震建物、あるいはコンピュータ
ー等を設置する床を免震する免震床等において、強風時
や、その他必要な時に随時IF免震構造となし得る、免
震支承に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is mainly aimed at low- and medium-rise buildings, and is aimed at seismic isolation buildings that economically reduce horizontal earthquake input, or isolating floors on which computers, etc. are installed. This article relates to a seismic isolation support that can be used as an IF seismic isolation structure at times of strong winds or other times when it is necessary, such as on seismic isolation floors.

(従来の技術) 従来、免震建物においては、強風時等に不快な揺れを感
しないような配慮、検討が必要であり、多くは金属ダン
パーの剛性によってこの間Hに対処していた。また免震
床においては、作業等による外力で妄りに揺動しないよ
う、ある一定板上の外力が加わった時に免震装置が作動
するように、トリガー装置を設置したりばね機構に工夫
を凝らしかしながら、金属ダンパーの剛性や、ばね機構
に工夫を加えること等によって、小さな外力によるふら
つきを免れようとするために、交通振動や小地震などの
微振動、小振動に対しては免震効果があまり得られなか
ったり、トリガー装置を用いているときには地震後に、
トリガー装置を元の状態に復帰する必要があった。
(Prior Art) Conventionally, in seismically isolated buildings, it has been necessary to consider and consider ways to avoid unpleasant shaking during strong winds, etc., and in many cases H has been dealt with by the rigidity of metal dampers. In addition, in order to prevent seismic isolation floors from swinging uncontrollably due to external forces caused by work, etc., a trigger device is installed or a spring mechanism is devised so that the seismic isolation device is activated when a certain external force is applied to the board. However, by increasing the rigidity of the metal damper and adding innovations to the spring mechanism, it is possible to avoid wobbling due to small external forces, so the seismic isolation effect is not effective against small vibrations such as traffic vibrations and small earthquakes. If you don't get much or are using a trigger device, after an earthquake,
It was necessary to restore the trigger device to its original state.

本発明は、前記従来技術の有する問題に[−!zで提案
されるもので、その目的とするところは、強風の長時間
に亘る振動源に対しでや、その他、免震を必要としない
場合には非免震構造とすることが可能な免震支承を提供
する点にある。
The present invention solves the problems of the prior art described above. The purpose of this is to create an isolation structure that can be used as a non-seismic isolation structure for long-term vibration sources of strong winds, or for other cases where seismic isolation is not required. Its purpose is to provide seismic support.

(課題を解決するための手段) 前記の目的を達成するため、本発明に係る免震支承は、
基盤に設置された支圧板と構造物の支承との間に形成さ
れたシール空間に、高圧流体供給装置を接続するととも
に、前記シール空間外周縁に、前記支承に装架されたポ
ールブロック及び磁性流体によるシール部を設けてなる
構造物の支持構造において、前記ポールブロック先端部
が前記支承より引込んだ状態から所定長突出する範囲内
で前記支承に可摺動的に装架されている。
(Means for solving the problem) In order to achieve the above object, the seismic isolation bearing according to the present invention has the following features:
A high-pressure fluid supply device is connected to the seal space formed between the bearing plate installed on the base and the support of the structure, and a pole block mounted on the support and a magnetic In a support structure for a structure provided with a fluid seal, the tip of the pole block is slidably mounted on the support within a range in which it projects a predetermined length from a retracted state from the support.

(作用〕 本発明は前記したように構成されているので、免震時に
は前記基盤上の支圧板と構造物の支承との間に形成され
たシール空間に、高圧流体を圧入することによって構造
fりを、・ン体圧で支持する。
(Function) Since the present invention is configured as described above, during seismic isolation, high-pressure fluid is injected into the seal space formed between the bearing plate on the foundation and the support of the structure. Support the body with body pressure.

この際、前記ソール空間にタノする高圧流体の圧入に件
ってシールが破れないようムこ、前記支承に装架された
ポールブロックと磁性流体とによって、前記シール空間
外周縁をシールする。
At this time, the outer periphery of the seal space is sealed by the magnetic fluid and the pole block mounted on the support to prevent the seal from breaking when the high-pressure fluid is forced into the sole space.

従って前記支圧板と支承との間には流体のみ介在してい
るので摩擦力が殆んど作用せず鉛直力のみ支持する。
Therefore, since only fluid exists between the bearing pressure plate and the bearing, almost no frictional force acts and only vertical force is supported.

また非免震とする場合は、前記シール空間の流体圧を低
減しで、前記支承と支圧板とを接触させ、両汗間に摩擦
力を生起せしめるものである。
In the case of non-seismic isolation, the fluid pressure in the seal space is reduced to bring the bearing and the bearing pressure plate into contact with each other to generate a frictional force between them.

而して前記ポールブロック先端が前記支承より引込んだ
状すから所定長突出する範囲内で可摺動的二:’A架さ
れているので、シール空間内の流体圧、 の増減に佳う
前記支承と支圧板との間の距離の変化に対応してポール
ブロックが支承に対して摺動するものである。
Since the tip of the pole block is retracted from the support, the pole block is slidably mounted within a range where it protrudes by a predetermined length, so that it is suitable for increasing or decreasing the fluid pressure in the seal space. The pole block slides relative to the support in response to a change in the distance between the support and the bearing pressure plate.

(実施例) 以下本発明をL4云の実施例について説明する。(Example) The present invention will be described below with reference to an embodiment of L4.

1は構造物で、基礎に設置された支圧板2上に、本発明
の免震支承aを介して支持されている。
Reference numeral 1 denotes a structure, which is supported on a bearing plate 2 installed on a foundation via a seismic isolation bearing a of the present invention.

前記免震支承aにおける構造物】に設置された支承3と
支圧板2との間に形成されたシール空間4には、ニアコ
ンプレッサー5が途中に自動制御弁6が介装された空気
配管7を介して接続され、前記支承3と支圧板2との距
離を距離センサー8で検知し、この検知信号を増幅器9
で増輻して自動制御弁6に送り、開弁6に供給される外
部入力データ10と併せて、前記シール空間4の間隙を
、後述の磁性流体のシールが切れない範囲内で、−定に
保持するように前記制御弁6を制するものである。
In the seal space 4 formed between the bearing 3 and the bearing pressure plate 2 installed in the above-mentioned structure in the seismic isolation bearing a, a near compressor 5 is connected to an air pipe 7 in which an automatic control valve 6 is interposed in the middle. A distance sensor 8 detects the distance between the support 3 and the bearing plate 2, and this detection signal is sent to an amplifier 9.
In conjunction with the external input data 10 that is increased in intensity and sent to the automatic control valve 6 and supplied to the valve opening 6, the gap in the seal space 4 is adjusted to a - This controls the control valve 6 so as to maintain the same.

図中11は距離センサー8から前記制御弁6に送られる
距離データ、7′は同制御弁6に接続されたシール空間
4内の高圧空気を放出する空気配管である。
In the figure, reference numeral 11 indicates distance data sent from the distance sensor 8 to the control valve 6, and reference numeral 7' indicates an air pipe connected to the control valve 6 and discharging high-pressure air within the seal space 4.

12は前記シール空間4の外周部に配設されたポールブ
ロックで、同ボールプロ゛ンク12の先端部が、前記支
承3より引込んだ状態から所定長突出する範囲内で、前
記支承3に可摺動的に装架されていなおポールブロック
12同士をつなぐ円筒磁石の製作が難しい場合には、棒
磁石13が使用される。
Reference numeral 12 denotes a pole block disposed on the outer periphery of the seal space 4, and the tip of the ball block 12 extends from the support 3 by a predetermined distance from the retracted state. If it is difficult to manufacture a cylindrical magnet that connects pole blocks 12 that are not slidably mounted, bar magnets 13 are used.

更に適宜磁性流体補給装置よりシール空間4の外周縁に
磁性流体すが供給され、同シール空間4がシールされる
ようになっている。
Furthermore, a magnetic fluid supply device appropriately supplies magnetic fluid to the outer peripheral edge of the seal space 4, so that the seal space 4 is sealed.

なお図中14はストッパーで、ポールブロック12部分
がスライドするので、所定位置に止るように配設された
ものである。
In the figure, reference numeral 14 denotes a stopper, which is arranged so that the pole block 12 portion slides and stops at a predetermined position.

図示の実施例は前記したように構成されているので、免
震する際には、第1図に示すように、空気配管7を介し
てシール空間4に空気を送り込み、磁性流体すによるシ
ールが切れない範囲内で前記空間4が所定の高さになっ
たとき距離センサー8で検知して、自動制御弁6を閉じ
ることによって、支承3と支圧板2との間隔を一定に保
持する。
Since the illustrated embodiment is configured as described above, when performing seismic isolation, air is sent into the sealing space 4 through the air piping 7 and the sealing by the magnetic fluid is performed as shown in FIG. When the space 4 reaches a predetermined height within an unbroken range, the distance sensor 8 detects this and closes the automatic control valve 6 to maintain a constant distance between the support 3 and the bearing pressure plate 2.

この状態から非免震とする時には、前記制御弁6と空気
放出用の空気配管7′とを接続してシール空間4内の空
気圧を減することによって、第2図に示すように支承3
と支圧4!i2とを接触させて、両打開に摩擦力が動く
ようにする。
To make the base isolation non-seismic from this state, by connecting the control valve 6 and the air pipe 7' for air release to reduce the air pressure in the seal space 4, the support 3
And bearing pressure 4! i2, so that the frictional force moves on both sides.

この際、前記ポールブロック12は支承3に対して摺動
することによって、支承3の移動を妨げない。
At this time, the pole block 12 slides on the support 3 and does not hinder the movement of the support 3.

また前記支承3と支圧板2との摩擦力を大きくするとき
は、双方、若しくはいずれか一方の接触面を粗面に形成
する。
Further, when increasing the frictional force between the support 3 and the bearing pressure plate 2, the contact surfaces of either or both of them are formed to have a rough surface.

第4図は本発明の他の実施例を示し、支承3を鉄等の磁
性体より構成してポールブロック12と支承3との間を
非磁性体シール15でシールしている。
FIG. 4 shows another embodiment of the present invention, in which the support 3 is made of a magnetic material such as iron, and the space between the pole block 12 and the support 3 is sealed with a non-magnetic seal 15.

またポールブロックI2を支承3の外側に配置して磁性
流体の管理を行ないやすくしている。
Furthermore, the pole block I2 is arranged outside the support 3 to facilitate the management of the magnetic fluid.

なお前記ポールブロック12は端部が支承3より突出し
ない状態で同支承3に固着されてもよい。
Note that the pole block 12 may be fixed to the support 3 in such a manner that the end thereof does not protrude beyond the support 3.

なお前記実施例では円形の支承が示されているが、方形
に構成されてもよい。
Note that although the above-mentioned embodiment shows a circular support, it may also be constructed in a rectangular shape.

(発明の効果) 本発明に係る免震支承は、前記したように、基盤の支圧
板と構造物の支承との間に形成されたシール空間に、高
圧流体供給装置を接続するとともに、同ノール空間の外
周Hに前記支承に装架されたポールブロック及び磁性流
体によるシール部を設けたことによって、前記シール空
間内の流体圧によって構造物の鉛直荷重を支持する。こ
のように同シール空間内に流体のみ存在することによっ
て摩擦力が殆んど働かず、鉛直力のみを支持するように
働き、水平力が人力しないので、優れた免震効果が発揮
されるものである。
(Effects of the Invention) As described above, the seismic isolation bearing according to the present invention connects the high pressure fluid supply device to the seal space formed between the bearing pressure plate of the foundation and the support of the structure, and By providing the pole block mounted on the support and the magnetic fluid seal on the outer periphery H of the space, the vertical load of the structure is supported by the fluid pressure within the seal space. In this way, since only fluid exists within the same seal space, there is almost no frictional force, and only vertical force is supported, and horizontal force does not require human effort, so it exhibits an excellent seismic isolation effect. It is.

またノ1免震時には、前記シール空間のlA体圧を低下
させ、前記支承と支圧板とを接触させることによって、
両者間に摩擦力を生起せしめるものであって、この際、
同摩擦力によって構造物の不要なi工れを防止するもの
である。
In addition, during seismic isolation (No. 1), by lowering the lA body pressure in the seal space and bringing the bearing and the bearing pressure plate into contact,
This creates a frictional force between the two, and in this case,
This frictional force prevents unnecessary damage to the structure.

の一実施例の免震時並に非免震時の状態を示す縦断面図
、第3図はその部分横断平面図、第4図は!・・・構造
物、     2・・・支圧板、3・・・支承、   
    4・・・ソール空間、5・・・ニアコンプレッ
サ、6・・・自動制御弁、7.7′・・・空気配管、 
 8・・距離センサー、12・・・ポールブロック。
Fig. 3 is a longitudinal sectional view showing the state of one embodiment of the invention when seismically isolated and when it is not seismically isolated, Fig. 3 is a partial cross-sectional plan view thereof, and Fig. 4 is ! ...Structure, 2...Bearing plate, 3...Support,
4... Sole space, 5... Near compressor, 6... Automatic control valve, 7.7'... Air piping,
8... Distance sensor, 12... Pole block.

代理人 弁理士 岡 本 重 文 外1名 第1図 / :斗箕追物     11:距離テータ2:支圧板
    /2:ポールプロ・ツタ8:支承    /3
:棒穏石 4:シール空間  /4:ストッパー 7:空気配管  b:磁性流体 8 :ヱ巨痢臣→2ンサー 第2図 第3図 第4図 第5図
Agent Patent attorney Shige Okamoto 1 other person Fig. 1 / : Tokinoomono 11: Distance theta 2: Bearing plate / 2: Pole pro ivy 8: Bearing / 3
:Bōnseki 4:Seal space /4:Stopper 7:Air piping b:Magnetic fluid 8:Ekeigureshin → 2 sensors Fig. 2 Fig. 3 Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】 1、基盤に設置された支圧板と構造物の支承との間に形
成されたシール空間に、高圧流体供給装置を接続すると
ともに、前記シール空間外周縁に、前記支承に装架され
たポールブロック及び磁性流体によるシール部を設けて
なる構造物の支持構造において、前記ポールブロック先
端部が前記支承より引込んだ状態から所定長突出する範
囲内で前記支承に可摺動的に装架されたことを特徴とす
る免震支承。 2、前記ポールブロック端部が支承より突出しない状態
で同支承に固定された請求項1記載の免震支承。
[Claims] 1. A high-pressure fluid supply device is connected to the seal space formed between the bearing plate installed on the base and the support of the structure, and a high-pressure fluid supply device is connected to the outer periphery of the seal space to the support. In a support structure for a structure comprising a mounted pole block and a magnetic fluid seal, the tip of the pole block is movably slidable on the support within a range in which it protrudes a predetermined length from a retracted state from the support. A seismic isolation bearing characterized by being mounted on a base. 2. The seismic isolation support according to claim 1, wherein the pole block end is fixed to the support without protruding from the support.
JP31422990A 1990-11-21 1990-11-21 Seismic isolation support Expired - Lifetime JP2511320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31422990A JP2511320B2 (en) 1990-11-21 1990-11-21 Seismic isolation support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31422990A JP2511320B2 (en) 1990-11-21 1990-11-21 Seismic isolation support

Publications (2)

Publication Number Publication Date
JPH04185877A true JPH04185877A (en) 1992-07-02
JP2511320B2 JP2511320B2 (en) 1996-06-26

Family

ID=18050841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31422990A Expired - Lifetime JP2511320B2 (en) 1990-11-21 1990-11-21 Seismic isolation support

Country Status (1)

Country Link
JP (1) JP2511320B2 (en)

Also Published As

Publication number Publication date
JP2511320B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
CN105492710A (en) Seismic isolator
JPH04185877A (en) Response control bearing
US6830125B1 (en) Vibratory energy dissipation and isolation with magnetically biased rolling members
JP2002147058A (en) Base isolation structure for building
KR101928017B1 (en) Vibration Isolation Device
JP2000234646A (en) Vibration control device
JPH0578620B2 (en)
JP2014177963A (en) Air spring device and vibration-proof device
JP3197746B2 (en) Anti-vibration device
KR20210029350A (en) Seismic Isolation System with Horizontal Adjustment
JP2005256325A (en) Base-isolation structure
JPH065472Y2 (en) Anti-vibration base isolation damper
JP2000046105A (en) Base isolation bed
KR102448177B1 (en) The seismic isolation function double floor
JPH02209526A (en) Anti-seismic mechanism of building
JPS6339282Y2 (en)
JP5649259B1 (en) Steel ball seismic isolation device.
JPH01145441A (en) Earthquake-isolating supporting device
JP2007205544A (en) Vibration cancellation device
JPH04182578A (en) Earthquake-proof building
JPH01234636A (en) Antiseismic construction
JPS6132180Y2 (en)
JP3212371U (en) Spherical rolling bearing
JP3441034B2 (en) Seismic isolation device
JPH04169666A (en) Support device for structure