JPH04182578A - Earthquake-proof building - Google Patents

Earthquake-proof building

Info

Publication number
JPH04182578A
JPH04182578A JP31160390A JP31160390A JPH04182578A JP H04182578 A JPH04182578 A JP H04182578A JP 31160390 A JP31160390 A JP 31160390A JP 31160390 A JP31160390 A JP 31160390A JP H04182578 A JPH04182578 A JP H04182578A
Authority
JP
Japan
Prior art keywords
bearing
seismic isolation
pressure plate
support
pressure fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31160390A
Other languages
Japanese (ja)
Inventor
Hidemi Oyama
秀美 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP31160390A priority Critical patent/JPH04182578A/en
Publication of JPH04182578A publication Critical patent/JPH04182578A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To enable it to set the proper period of a building freely by installing a controller, keeping an interspace constant, in a high pressure fluid feeder connected to the interspace between a bearing pressure plate and a bearing of the building, and setting up a spring element or the like in an interval between the structure and a foundation bed. CONSTITUTION:A high pressure fluid feeder and an earthquake-proof bearing (a) consisting of its controller are installed in a seal space 4 formed in an interval between a bearing 3 supported on a structure 1 and a bearing pressure plate 2 set up in a foundation bed. In addition, a spring element (b) consisting of a tension coil spring and a damping element (c) consisting of a viscous damper 16 both are interposed between the structure 1 and the foundation bed. Then, a distance between the bearing 3 and the bearing pressure plate 2 is detected by a controller of the earthquake-proof bearing (a), while a high pressure fluid is properly fed to the inside of the space 4 by means of the high pressure fluid feeder, thus a clearance in the space 4 is kept constant.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主に中低層建物を対象とした、水平方向の地
震入力を経済的に減少させる、免震構造物に係るもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a seismic isolation structure that economically reduces horizontal seismic input, mainly aimed at medium- and low-rise buildings.

(従来の技術) 従来、免震構造物の支承部には、多くは支承とばね要素
の機能を合わせ持つ積層ゴムを用いており、また少数で
はあるが滑り支承を採用しているものもある。
(Conventional technology) Conventionally, most of the support parts of seismic isolation structures have used laminated rubber that has both the functions of a support and a spring element, and a few have also adopted sliding bearings. .

(発明が解決しようとする課題) しかしながら、積層ゴムにおいては、次のような問題点
があった。
(Problems to be Solved by the Invention) However, the laminated rubber has the following problems.

i)ゴム材料の特性や装置の設計上、免N建物の固有周
期が1〜3秒になり、このため地盤のあまり良くない敷
地には採用できない。
i) Due to the characteristics of the rubber material and the design of the equipment, the natural period of the N-free building is 1 to 3 seconds, so it cannot be used on sites with poor ground conditions.

11)  装置の高さが数十〇あり、無駄な空間ができ
る。
11) The height of the equipment is several tens of meters high, creating wasted space.

1ii)  受注生産、オーダーメイドのためコストが
高く、製作期間も掛かる。
1ii) Because it is made to order and made to order, the cost is high and the production period is long.

また、滑り支承においては、次のような問題点があった
Additionally, sliding bearings have the following problems.

i) 摩擦係数や摩擦力が、材料特性の経時変化、積載
重量の変化等により変動する可能性が大きく、設計にお
ける余裕度、周到な維持管理が不可欠である。
i) There is a large possibility that the coefficient of friction and frictional force will fluctuate due to changes in material properties over time, changes in loading weight, etc., so margins in design and careful maintenance are essential.

1i)ff擦力が常に働いているために、装置が作動し
た後で元の位置に復帰しない可能性がある。
1i) ff Since the friction force is always working, there is a possibility that the device will not return to its original position after being activated.

本発明は、前記従来技術の存する問題点に鑑みて提案さ
れるもので、その目的とするところは、建物の固有周期
を自由に設定でき、従ってどのような地盤にも免震建物
を建設することが可能であり、無駄な空間の生しるのを
極力排除した。設置費、維持費を節減し、さらには、定
期、不定期の維持管理が容易な免震構造物を提供する点
にある。
The present invention has been proposed in view of the problems of the prior art described above, and its purpose is to allow the natural period of a building to be set freely, and therefore to construct a seismically isolated building on any ground. This made it possible to eliminate wasted space as much as possible. The object of the present invention is to provide a seismic isolation structure that reduces installation costs and maintenance costs, and which is easy to maintain on a regular and irregular basis.

(課題を解決するための手段) 前記の目的を達成するため、本発明に係る免震構造物は
、3芝に設置された支圧板と構造物の支承との間に形成
されたノール空間に、高圧流体供給装置を接続するとと
もに、同供給装置に前記支圧板及び支承間の間隙を一定
に保持する制御装置を設けてなる免震支承と、構造物と
基盤との間に介装されたばね要素及び減衰要素とから構
成されている。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the base isolation structure according to the present invention provides a base isolation structure in which a base isolation structure is installed in a noll space formed between a bearing plate installed on three lawns and a support of the structure. , a seismic isolation support connected to a high-pressure fluid supply device and provided with a control device for maintaining a constant gap between the bearing pressure plate and the support; and a spring interposed between the structure and the foundation. It is composed of a damping element and a damping element.

(作用) 本発明は前記したように構成されているので、前記免震
支承における基盤に設置された支圧板と、構造物の支承
との間に形成されたシール空間に、高圧流体供給装置を
介して高圧流体を封入することによって、構造物を流体
圧で支持する。
(Function) Since the present invention is configured as described above, the high pressure fluid supply device is installed in the seal space formed between the bearing plate installed on the base of the seismic isolation bearing and the support of the structure. The structure is hydraulically supported by enclosing high pressure fluid through the structure.

而して前記シール空間に高圧流体を封入することによっ
て、前記支圧板と支承との間隔が広がりすぎてシールが
破れないように、前記高圧流体供給装置に設けられた制
御装置を介して、前記空間に対する圧力流体の流入量を
制御することによって、前記支承と支圧板との間隔を一
定に保持する。
By sealing the high-pressure fluid in the seal space, a control device provided in the high-pressure fluid supply device is used to prevent the gap between the bearing pressure plate and the support from becoming too wide and the seal to be broken. By controlling the amount of pressure fluid flowing into the space, the distance between the support and the bearing pressure plate is maintained constant.

このように前記免震支承においては、支圧板と構造物の
支承との間に流体のみ介在しているため、摩擦力が殆ん
ど働かず鉛直力のみを支持するように働き、更に前記免
震支承は高さを低くすることができるため、設置高さは
積層ゴム程必要としない。
In this way, in the seismic isolation bearing, since only the fluid is present between the bearing pressure plate and the support of the structure, almost no frictional force acts and only the vertical force is supported. Earthquake bearings can be lowered in height, so they do not require as much installation height as laminated rubber.

また前記構造物と基礎との間に介装されたばね要素によ
って免震構造物の固有周期がほぼ決定され、従って前記
ばね要素のばね定数を調整することによって、どのよう
な地盤上にも免震建物を建設することができる。また前
記したように免震支承には摩擦力が働かないため、前記
ばね要素によって地震終了後、構造物は旧位に復帰する
Furthermore, the natural period of the seismic isolation structure is approximately determined by the spring element interposed between the structure and the foundation, and therefore, by adjusting the spring constant of the spring element, seismic isolation can be achieved on any ground. Buildings can be constructed. Further, as described above, since no frictional force acts on the seismic isolation bearing, the structure returns to its original position after the earthquake due to the spring element.

更に前記減衰装置によって、免震構造物の1開度位が抑
制され、同構造物の揺れが速やかに減衰される。
Furthermore, the damping device suppresses the opening of the seismic isolation structure by about one degree, and the shaking of the structure is quickly damped.

(実施例) 以下本発明を図示の実施例について説明する。(Example) The present invention will be described below with reference to the illustrated embodiments.

1は構造物で、基盤との間に、夫々独立した機能ををす
る免震支承a、ばね要素す及び減衰要素Cが介装されて
いる。
Reference numeral 1 denotes a structure in which a seismic isolation bearing a, a spring element, and a damping element C, each of which has an independent function, are interposed between the structure and the foundation.

第3図及び第4図は前記免震支承aの詳細を示し、構造
物1に設置された支承3と支圧板2との間に形成された
シール空間4に、エアーコンプレッサー5が、途中に自
動制御弁6が介装された空気配管7を介して接続され、
前記支承3と支圧板2との間の距離を距離センサー8で
検知し、この検知信号を幅増器9で増幅して自動制御弁
6に送り、開弁6を開閉制御することによって前記シー
ル空間4の間隙を一定に保持する。
FIGS. 3 and 4 show details of the seismic isolation bearing a, in which an air compressor 5 is placed in the seal space 4 formed between the bearing 3 installed in the structure 1 and the bearing pressure plate 2. An automatic control valve 6 is connected via an interposed air pipe 7,
The distance between the support 3 and the bearing pressure plate 2 is detected by a distance sensor 8, and this detection signal is amplified by a width amplifier 9 and sent to the automatic control valve 6, which controls the opening and closing of the opening valve 6 to close the seal. The gap in space 4 is kept constant.

なお前記エアーコンプレッサー5及び空気配管7が前記
高圧流体供給装置を構成し、前記距離センサー8、増幅
器9及び自動制御弁6が前記支圧板及び支承の間隙を一
定に保持する制御装置を構成するものである。
The air compressor 5 and air piping 7 constitute the high-pressure fluid supply device, and the distance sensor 8, amplifier 9, and automatic control valve 6 constitute a control device that maintains a constant gap between the bearing pressure plate and the support. It is.

10は前記シール空間4の外周部に配設されたボールブ
ロックで、ボールブロック同士をつなぐ円筒磁石の製作
が難しい場合には、図示の如き棒磁石11が使用される
Reference numeral 10 denotes a ball block disposed on the outer periphery of the seal space 4. If it is difficult to manufacture a cylindrical magnet for connecting the ball blocks, a bar magnet 11 as shown is used.

図示の実施例では本装置を円形としているが、方形でも
よい。
In the illustrated embodiment, the device is circular, but it may also be square.

一方、磁性流体12は磁性流体補給装置13によってシ
ール空間4の周縁部に補給される0図中14は磁性流体
補給管である。
On the other hand, the magnetic fluid 12 is supplied to the periphery of the seal space 4 by a magnetic fluid replenishing device 13. Reference numeral 14 in FIG. 1 is a magnetic fluid replenishing pipe.

磁性流体のシール部分において、支圧板2を鋼等の磁性
体で構成することによって、ボールブロツク10のエツ
ジ部の磁場が強くなったところに磁性流体12が強く吸
引され、シール空間4の気密が保持される。
By constructing the bearing plate 2 of a magnetic material such as steel in the magnetic fluid sealing portion, the magnetic fluid 12 is strongly attracted to the area where the magnetic field at the edge portion of the ball block 10 is strong, and the sealing space 4 is airtight. Retained.

また前記支圧板2上には免震支承aと間隔を存して粘弾
性体よりなるストッパー15が突設されている。
Further, a stopper 15 made of a viscoelastic material is provided protrudingly on the bearing pressure plate 2 at a distance from the seismic isolation bearing a.

また前記構造物1と基盤との間には前記ばね要素すを構
成する引張コイルばねが介装されるとともに、前記減衰
要素Cを構成する粘性ダンパーが介装されている。図中
16は粘性体である。
Further, a tension coil spring constituting the spring element C is interposed between the structure 1 and the base, and a viscous damper constituting the damping element C is interposed. In the figure, 16 is a viscous body.

現在実施されている免震構造物の設計は第5図に示すよ
うに、良質地盤上で大きな地震力を受ける構造物をその
固有周期をシフトして地震入力が小さくなるようにして
いるが、第6図に示す如き軟弱地盤では、従来の積層ゴ
ムを用いた免震構造物では効果はないが、本発明に係る
免震lim造物は軟弱地盤でも有効であることが示され
ている。
As shown in Figure 5, the currently implemented design of seismic isolation structures is to shift the natural period of a structure that receives a large seismic force on good quality ground to reduce the seismic input. On soft ground as shown in FIG. 6, conventional seismic isolation structures using laminated rubber are not effective, but the seismic isolation rim structure according to the present invention has been shown to be effective even on soft ground.

(発明の効果) 本発明によれば前記したように、基盤に設置された支圧
板と構造物の支承との間に形成されたシール空間に、高
圧流体供給装置を接続するとともに、同供給装置に前記
支圧板及び支承間の間隙を一定に保持する制御装置を設
けてなる免震支承が設けられているので、前記支承と支
圧板との間の流体圧が構造物の鉛直荷重を支持し、前記
支承と支圧板との間には流体のみ介在しているので摩擦
力が殆んど働かず、鉛直力のみを支持するように働き、
またこの免震支承は高さを低くすることができ、設置高
さは従来の積層ゴム程必要としない。
(Effects of the Invention) According to the present invention, as described above, a high-pressure fluid supply device is connected to the seal space formed between the bearing plate installed on the base and the support of the structure, and the supply device Since the seismic isolation bearing is provided with a control device that maintains the bearing pressure plate and the gap between the bearings constant, the fluid pressure between the bearing and the bearing pressure plate supports the vertical load of the structure. , since only fluid is present between the bearing and the bearing pressure plate, almost no frictional force acts, and it acts to support only vertical force;
Moreover, this seismic isolation support can be made low in height, and does not require as much installation height as conventional laminated rubber.

更に常時は殆んど稼動しなくて済むため、圧力流体供給
用コンプレッサーの容量は小さくて済み、設置費、維持
費が節減される。一方、前記免震支承は摩耗部、変形部
がないので、定期、不定期の維持管理が容易である。
Furthermore, since it is not necessary to operate almost all the time, the capacity of the compressor for supplying pressure fluid can be small, and installation costs and maintenance costs can be reduced. On the other hand, since the seismic isolation bearing has no worn parts or deformed parts, regular or irregular maintenance is easy.

更に構造物と基盤との間にばね要素が介装されているこ
とによって、同ばね要素により免震構造物の固有周期が
ほぼ決定され、従って前記ばね要素のばね定数の調整に
よって、どのような地盤にも免震構造物を建設できる。
Furthermore, since a spring element is interposed between the structure and the foundation, the natural period of the seismic isolation structure is approximately determined by the spring element, and therefore, by adjusting the spring constant of the spring element, Seismic isolation structures can also be constructed on the ground.

また前記免震支承には摩擦力が働かないため、ばね要素
の働きにより、地震終了後、構造物は元の位置に復帰す
ることができる。
Further, since no frictional force acts on the seismic isolation bearing, the structure can return to its original position after the earthquake due to the action of the spring element.

更にまた、前記構造物と基盤との間に減衰要素が介装さ
れたことによって、免震装置階の眉間変位を抑制し、且
つ構造物の揺れを速やかに減衰させるものである。
Furthermore, by interposing a damping element between the structure and the foundation, the glabellar displacement of the seismic isolation device floor is suppressed, and the shaking of the structure is quickly damped.

請求項2の発明は、前記支承板を磁性金属より構成し、
同支圧板と前記構造物の支承との間に形成されたシール
空間周縁部を磁性流体を介してシールすることによって
、前記支圧板と支承との間のシール空間に流体のみが介
在するようにして、摩擦力が殆んど働かず、鉛直力のみ
働くようにしたものであり、更に前記支圧板上に支承と
間隔を存して粘弾性体よりなるストッパーを設けたこと
によって、予想外の過大な変形が生じたとき、この変形
を抑制するものである。
The invention according to claim 2 is characterized in that the support plate is made of a magnetic metal,
By sealing the periphery of the seal space formed between the pressure bearing plate and the support of the structure through a magnetic fluid, only fluid is present in the seal space between the pressure bearing plate and the support. Therefore, almost no frictional force acts, and only vertical force acts.Furthermore, by providing a stopper made of a viscoelastic material with a support and a gap on the bearing plate, an unexpected unexpected This is to suppress excessive deformation when it occurs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る免震構造物の一実施例を示す平面
図、第2図は第1図の矢視A−A図、第3図は免震支承
の縦断面図、第4図はその部分平面図、第5図は現在行
なわれている免震構造物の設計における概念図、第6図
は軟弱地盤における従来の積層ゴムを用いた免震構造物
と本発明に係る免震構造物の免震効果の比較図である。 a・・・免震支承、    b・・・ばね要素、C・・
・減衰要素、   l・・・構造物、2・・・支圧板、
    3・・・支承、4・・・シール空間、  5・
・・ニアコンプレッサー、6・・・自動制御弁、   
7・・・空気配管、8・・・距離センサー、  9・・
・増幅器、10・・・ボールブロック、11・・・棒磁
石、12・・・磁性流体、   13・・・磁性流体補
給装置、14・・・磁性流体補給管、15・・・ストッ
パー、16・・・粘性体。 代理人 弁理士 岡 本 重 文 外1名 I4:@恒j犯を補給管 第4図
FIG. 1 is a plan view showing one embodiment of the seismic isolation structure according to the present invention, FIG. 2 is a view taken along arrow A-A in FIG. The figure is a partial plan view of the structure, Figure 5 is a conceptual diagram of the current design of seismic isolation structures, and Figure 6 is a seismic isolation structure using conventional laminated rubber on soft ground and the seismic isolation structure of the present invention. It is a comparison diagram of the seismic isolation effects of seismic structures. a... Seismic isolation bearing, b... Spring element, C...
- Damping element, l... structure, 2... bearing plate,
3...Support, 4...Seal space, 5.
...Near compressor, 6...Automatic control valve,
7...Air piping, 8...Distance sensor, 9...
・Amplifier, 10... Ball block, 11... Bar magnet, 12... Magnetic fluid, 13... Magnetic fluid supply device, 14... Magnetic fluid supply tube, 15... Stopper, 16... ... Viscous body. Agent: Patent attorney Shige Okamoto, 1 person outside of Fumiaki I4: @ Kouj criminal supply pipe Figure 4

Claims (1)

【特許請求の範囲】 1、基盤に設置された支圧板と構造物の支承との間に形
成されたシール空間に、高圧流体供給装置を接続すると
ともに、同供給装置に前記支圧板及び支承間の間隙を一
定に保持する制御装置を設けてなる免震支承と、構造物
と基盤との間に介装されたばね要素及び減衰要素とから
なることを特徴とする免震構造物。 2、前記支圧板は磁性金属より構成され、同支圧板と前
記構造物の支承との間に形成されたシール空間周縁部は
、磁性流体を介してシールされ、前記支圧板上には支承
と間隔を存して粘弾性体よりなるストッパーを配設した
請求項1記載の免震構造物。
[Claims] 1. A high-pressure fluid supply device is connected to the seal space formed between the bearing pressure plate installed on the base and the support of the structure, and the supply device is connected to the seal space formed between the bearing pressure plate installed on the base and the support of the structure. 1. A seismic isolation structure comprising: a seismic isolation bearing provided with a control device that maintains a constant gap; and a spring element and a damping element interposed between the structure and the foundation. 2. The bearing pressure plate is made of magnetic metal, and the peripheral edge of the seal space formed between the bearing pressure plate and the support of the structure is sealed via a magnetic fluid, and the bearing and the support plate are formed on the bearing pressure plate. 2. The seismic isolation structure according to claim 1, further comprising stoppers made of a viscoelastic material arranged at intervals.
JP31160390A 1990-11-19 1990-11-19 Earthquake-proof building Pending JPH04182578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31160390A JPH04182578A (en) 1990-11-19 1990-11-19 Earthquake-proof building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31160390A JPH04182578A (en) 1990-11-19 1990-11-19 Earthquake-proof building

Publications (1)

Publication Number Publication Date
JPH04182578A true JPH04182578A (en) 1992-06-30

Family

ID=18019240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31160390A Pending JPH04182578A (en) 1990-11-19 1990-11-19 Earthquake-proof building

Country Status (1)

Country Link
JP (1) JPH04182578A (en)

Similar Documents

Publication Publication Date Title
US5689919A (en) Base isolated building of wind resisting type
US3578278A (en) Vibration-isolated self-leveling platform and method
JP3216607U (en) Air floating vibration control system
JP2019173940A (en) Air levitation type vibration control system
JP2019015310A (en) Vibration damping device for structure
JPH04182578A (en) Earthquake-proof building
JP2004263430A (en) Semi-fixing device of base isolation structure
TW202214972A (en) Air slider in air floating type vibration control device
JP4426877B2 (en) Seismic isolation structure
JP2791718B2 (en) Seismic isolation device
JP2511320B2 (en) Seismic isolation support
US5799681A (en) Safety shut off valve and method of automatic flow restoration
JP2706366B2 (en) Seismic isolation device using liquefaction characteristics of sand
JPH0563580B2 (en)
JPH05256046A (en) Structure preventing propagation of earthquake motion
CN108868278B (en) Viscous fluid damper with self-detection performance
JP3197746B2 (en) Anti-vibration device
JPH06185193A (en) Floor base isolation system
JPH04169666A (en) Support device for structure
JPH0674671B2 (en) Seismic isolation device
JP2005248520A (en) Base isolation damper, base isolation structure and base isolation method of structure
JPH0433480Y2 (en)
JPH10227153A (en) Static pressure type building supporter
JP2552361B2 (en) Damper for liquid storage tank
JP3115586B2 (en) Three-dimensional seismic isolation device for structures using spherical rubber bearings