JP2017089277A - Rubber plate cushioning mechanism, and air levitation-type base isolation device - Google Patents

Rubber plate cushioning mechanism, and air levitation-type base isolation device Download PDF

Info

Publication number
JP2017089277A
JP2017089277A JP2015221849A JP2015221849A JP2017089277A JP 2017089277 A JP2017089277 A JP 2017089277A JP 2015221849 A JP2015221849 A JP 2015221849A JP 2015221849 A JP2015221849 A JP 2015221849A JP 2017089277 A JP2017089277 A JP 2017089277A
Authority
JP
Japan
Prior art keywords
foundation
rubber plate
peripheral side
air
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015221849A
Other languages
Japanese (ja)
Other versions
JP6152406B2 (en
Inventor
田 章 和
Akira Wada
田 章 和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansei Air Danshin System kk
Original Assignee
Sansei Air Danshin System kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansei Air Danshin System kk filed Critical Sansei Air Danshin System kk
Priority to JP2015221849A priority Critical patent/JP6152406B2/en
Publication of JP2017089277A publication Critical patent/JP2017089277A/en
Application granted granted Critical
Publication of JP6152406B2 publication Critical patent/JP6152406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rubber plate cushioning mechanism and an air levitation-type base isolation device, the cushioning mechanism being small in displacement and offering high braking performance, and the base isolation system absorbing impact on an upper foundation even when a lower foundation slides at a time of earthquake, thereby suppressing positional deviation of a building.SOLUTION: An air levitation-type base isolation device includes: a lower foundation 4 and an upper foundation 6; a metallic seal plate 22 having an upper end fixed air-tightly to the upper foundation 6 and a bottom end contacting the lower foundation 4 elastically, to form an air pressure chamber 30; an air supply unit provided with a pressurized air tank and supplying compressed air to the air pressure chamber 30 when having detected a quake of an earthquake; a storage part installed on top of the upper foundation 6, housing the air supply unit inside, and having a building mounted on a top thereof; and a rubber plate cushioning mechanism 46 provided either on the lower foundation 4 or the upper foundation 6 and including a rubber plate 44 and a covered protruded shaft 45, the rubber plate comprising an annular high-damping rubber having an opening at a center, having different plate thicknesses on an inner peripheral side and an outer peripheral side, and having top and bottom surfaces inclined toward the inner peripheral side or the outer peripheral side, and the protruded shaft being inserted into the opening at the center.SELECTED DRAWING: Figure 7

Description

本発明は、ゴム板緩衝機構及び空気浮揚式免震装置に係り、より詳しくは、高減衰ゴムからなり、上面と下面がともに傾斜した環状のゴム板緩衝機構と、該ゴム板緩衝機構を備えた空気浮揚式免震装置に関する。   The present invention relates to a rubber plate cushioning mechanism and an air levitation type seismic isolation device. More specifically, the present invention includes an annular rubber plate cushioning mechanism made of high-attenuation rubber and having both an upper surface and a lower surface inclined, and the rubber plate cushioning mechanism It relates to an air levitation type seismic isolation device.

建物を地震の揺れから防ぐため、空気で建物を浮揚させる空気浮揚式免震装置(特許文献1参照)がある。これによれば、上基礎と下基礎の間に空気を注入し、上基礎と建物を浮揚させるので、地震の振動を効果的に遮断できる。また、位置ずれ修復装置(特許文献2参照)がある。これによれば、下基礎に設置した支持棒にタイヤを取り付けると共に、タイヤを上基礎で挟み込む構造により、地震で下基礎の支持棒が当初の位置から動いても、地震後にタイヤに空気を注入することによって、空気の圧力で上基礎と建物の位置を修正できる。   In order to prevent a building from shaking due to an earthquake, there is an air levitation type seismic isolation device (see Patent Document 1) that levitates a building with air. According to this, since air is inject | poured between an upper foundation and a lower foundation and an upper foundation and a building are levitated, the vibration of an earthquake can be interrupted | blocked effectively. There is also a misalignment repair device (see Patent Document 2). According to this, the tire is attached to the support bar installed on the lower foundation, and the tire is sandwiched between the upper foundation, so even if the support bar on the lower foundation moves from its original position in the earthquake, air is injected into the tire after the earthquake. By doing so, the position of the upper foundation and the building can be corrected by air pressure.

特許文献1、2を適用し、建物の空気浮揚式免震装置としても次のような問題がある。地震の際、上基礎と下基礎の間に空気が注入され上基礎が浮揚するので、下基礎の揺れは上基礎に直に伝わらない。しかしながら、(a)上基礎と下基礎の位置関係がずれるので、地震後に「位置ずれ修復装置」のタイヤに空気を入れて、空気圧で位置ずれを修復する必要がある。これには手間がかかるので建物の位置ずれを小さく抑制できる緩衝機構が望まれる。(b)また、構造が簡単な緩衝機構が望まれる。   Patent Documents 1 and 2 are also applied, and there are the following problems as an air levitation type seismic isolation device for a building. In the event of an earthquake, air is injected between the upper foundation and the lower foundation, and the upper foundation floats, so that the shaking of the lower foundation is not transmitted directly to the upper foundation. However, since (a) the positional relationship between the upper foundation and the lower foundation is shifted, it is necessary to restore the positional shift with air pressure by putting air into the tire of the “misalignment repair device” after the earthquake. Since this takes time, a buffering mechanism that can suppress the displacement of the building to be small is desired. (B) Further, a buffer mechanism with a simple structure is desired.

実用新案登録第3119675号公報Utility Model Registration No. 3119675 特開2008−208696号公報JP 2008-208696 A

本発明の目的は、変位が小さく制動性のよいゴム板緩衝機構を提供すること、及び、地震の際、下基礎がスライドしても上基礎に与える衝撃を吸収して、建物の位置ずれを小さく抑制できる空気浮揚式免震装置を提供することにある。   An object of the present invention is to provide a rubber plate cushioning mechanism that has a small displacement and good braking performance, and absorbs an impact applied to the upper foundation even when the lower foundation slides in the event of an earthquake, thereby shifting the position of the building. The object is to provide an air levitation type seismic isolation device that can be suppressed to a small size.

本発明によるゴム板緩衝機構は、中央開口部を有する環状の高減衰ゴムからなり、内周側と外周側で板厚が異なり、上面と下面がともに内周側又は外周側に向かって傾斜したゴム板と、前記中央開口部に挿入されるように設けられる突出軸と、からなることを特徴とする。   The rubber plate cushioning mechanism according to the present invention is composed of an annular high-attenuation rubber having a central opening, the plate thickness is different on the inner peripheral side and the outer peripheral side, and both the upper surface and the lower surface are inclined toward the inner peripheral side or the outer peripheral side. It consists of a rubber plate and a protruding shaft provided so as to be inserted into the central opening.

前記ゴム板は、前記突出軸に複数枚が重ねて使用されることを特徴とする。   A plurality of the rubber plates are used by being stacked on the protruding shaft.

本発明による空気浮揚式免震装置は、下基礎と、前記下基礎の上に設置される上基礎と、上端が前記上基礎に気密に固定され、下端が前記下基礎に弾性的に接して空気圧力室を形成する金属シール板と、加圧空気タンクを備え、センサで地震の揺れを感知すると、バルブを開いて、前記金属シール板で囲まれた前記空気圧力室に圧縮空気を供給して前記上基礎を浮揚させる空気供給ユニットと、前記上基礎の上部に設置され、内部に前記空気供給ユニットが収納され、上部に建物が載置される収納部と、前記下基礎又は前記上基礎の一方に設けられ、中央開口部を有する環状の高減衰ゴムからなり、内周側と外周側で板厚が異なり、上面と下面がともに内周側又は外周側に向かって傾斜したゴム板と、前記下基礎又は前記上基礎の他方に設けられ、前記中央開口部に挿入される蓋付きの突出軸と、からなるゴム板緩衝機構と、が備えられることを特徴とする。   An air levitation type seismic isolation device according to the present invention includes a lower foundation, an upper foundation installed on the lower foundation, an upper end airtightly fixed to the upper foundation, and a lower end elastically contacting the lower foundation. It is equipped with a metal seal plate that forms an air pressure chamber and a pressurized air tank. When a sensor detects a shake of an earthquake, the valve is opened and compressed air is supplied to the air pressure chamber surrounded by the metal seal plate. An air supply unit for levitating the upper base, a storage unit installed at an upper part of the upper base, in which the air supply unit is stored and a building is placed, and the lower base or the upper base A rubber plate that is provided on one of the two sides and is made of an annular high-attenuation rubber having a central opening, the plate thickness is different on the inner peripheral side and the outer peripheral side, and the upper surface and the lower surface are both inclined toward the inner peripheral side or the outer peripheral side. , Provided on the other of the lower foundation or the upper foundation It is a protrusion shaft with a lid which is inserted into the central opening, and a rubber plate buffering mechanism consisting, characterized in that is provided.

本発明によるゴム板緩衝機構によれば、中央開口部を有する環状の高減衰ゴムからなり、上面と下面がともに内周側又は外周側に向かって傾斜したゴム板を設けたので、小さな荷重では変位が大きく、大きな荷重では変位を小さくできる。バネのように荷重に比例した変位とはならない。ゴム板が、環状で上面と下面がともに内周側又は外周側に向かって傾斜しているので、板厚が一定で、内周側に軟らかいゴム層を設け、外周側により硬いゴム層を設けたものと同様に変位させることができる。高減衰ゴムは、エネルギーの吸収作用があるので減衰効果が大きく、地震による衝撃を効果的に緩和できる。   According to the rubber plate cushioning mechanism of the present invention, the rubber plate is made of an annular high-attenuation rubber having a central opening, and the upper surface and the lower surface are both inclined toward the inner peripheral side or the outer peripheral side. The displacement is large and the displacement can be reduced with a large load. It does not change in proportion to the load like a spring. Since the rubber plate is annular and the upper and lower surfaces are both inclined toward the inner or outer peripheral side, the plate thickness is constant, a soft rubber layer is provided on the inner peripheral side, and a hard rubber layer is provided on the outer peripheral side It can be displaced in the same way as High-damping rubber has an energy-absorbing action, so it has a large damping effect and can effectively mitigate shocks caused by earthquakes.

本発明による空気浮揚式免震装置によれば、下基礎と上基礎の隙間に圧縮空気を供給し、上基礎と建物を浮揚させるので、上基礎と下基礎が遮断され、下基礎の地震による振動の建物への影響を少なくできる。(2)ゴム板緩衝機構を備えたので、例えば下基礎が地震でスライドしても、その衝撃を吸収でき、また上基礎が大きく変位しないようにできる。上基礎が大きく変位しないから、建物が大きな位置ずれを起こさない。(3)ゴム板緩衝機構は、突出軸が蓋を備えているので、突出軸を上基礎に取り付けた場合、蓋を上基礎の上面に接触させて固定することができ、空気圧力室の空気が漏れないようにできる。   According to the air levitation type seismic isolation device of the present invention, the compressed air is supplied to the gap between the lower foundation and the upper foundation, and the upper foundation and the building are levitated. The influence of vibration on the building can be reduced. (2) Since the rubber plate cushioning mechanism is provided, for example, even if the lower foundation slides due to an earthquake, the impact can be absorbed and the upper foundation can be prevented from being greatly displaced. Since the upper foundation is not greatly displaced, the building will not be displaced greatly. (3) Since the protruding shaft is provided with a lid, the rubber plate cushioning mechanism can be fixed by bringing the lid into contact with the upper surface of the upper foundation when the protruding shaft is attached to the upper foundation. Can be prevented from leaking.

本発明によるゴム板緩衝機構(構成例1)の斜視図である。It is a perspective view of the rubber-plate buffer mechanism (configuration example 1) by this invention. 図1で突出軸を水平に変位させ、突出軸で押圧されるゴム板にかかる荷重との関係を示すグラフである。It is a graph which shows the relationship with the load concerning the rubber plate which displaces a protrusion axis | shaft horizontally in FIG. 1 and is pressed by a protrusion axis | shaft. 図1のゴム板が、複数枚使用される場合の断面図である。It is sectional drawing when the rubber plate of FIG. 1 is used in multiple numbers. 本発明によるゴム板緩衝機構(構成例2)の斜視図である。It is a perspective view of the rubber-plate buffer mechanism (configuration example 2) by this invention. 図4のゴム板が、複数枚使用される場合の断面図である。FIG. 5 is a cross-sectional view when a plurality of rubber plates of FIG. 4 are used. 本発明による空気浮揚式免震装置の正面図である。1 is a front view of an air levitation type seismic isolation device according to the present invention. ゴム板緩衝機構の取付図(例1)である。It is an attachment figure (example 1) of a rubber plate buffer mechanism. ゴム板緩衝機構の突出軸の斜視図である。It is a perspective view of the protrusion shaft of a rubber plate buffer mechanism. 図6のV−V断面図である。It is VV sectional drawing of FIG. ゴム板緩衝機構の取付図(例2)である。It is an attachment figure (example 2) of a rubber plate buffer mechanism. ゴム板緩衝機構の取付図(例3)である。It is an attachment figure (example 3) of a rubber plate buffer mechanism.

以下、図面を参照して、本発明によるゴム板緩衝機構及び空気浮揚式免震装置について詳しく説明する。   Hereinafter, a rubber plate cushioning mechanism and an air levitation type seismic isolation device according to the present invention will be described in detail with reference to the drawings.

図1は、本発明によるゴム板緩衝機構46(構成例1)の斜視図である。構成例1のゴム板緩衝機構46は、環状の高減衰ゴムからなるゴム板44と、鋼鉄製の突出軸45からなる。ゴム板44は、中央に円形の中央開口部43を有する。図1の右下の断面図に示すように、内周側より外周側の板厚が厚い。また、ゴム板44は、上面と下面がともに内周側に向かって下がるように傾斜する傾斜面47を有する。突出軸45は、中央開口部43に挿入されるように設けられる。中央開口部43の径は、突出軸45の径より大きく、隙間の長さは、一側で30〜70cm程度である。高減衰ゴムは、ゴムに、周期表の14族のシリカ又はカーボンと、樹脂を配合したもので、これにより、減衰作用が格段に向上させることができる。免震ゴムとして知られる。   FIG. 1 is a perspective view of a rubber plate cushioning mechanism 46 (configuration example 1) according to the present invention. The rubber plate buffer mechanism 46 of the configuration example 1 includes a rubber plate 44 made of an annular high damping rubber and a steel protruding shaft 45. The rubber plate 44 has a circular central opening 43 at the center. As shown in the lower right cross-sectional view of FIG. 1, the outer peripheral side is thicker than the inner peripheral side. The rubber plate 44 has an inclined surface 47 that is inclined so that both the upper surface and the lower surface are lowered toward the inner peripheral side. The protruding shaft 45 is provided so as to be inserted into the central opening 43. The diameter of the central opening 43 is larger than the diameter of the protruding shaft 45, and the length of the gap is about 30 to 70 cm on one side. The high-damping rubber is obtained by blending rubber with a 14-group silica or carbon of the periodic table and a resin, whereby the damping action can be remarkably improved. Known as seismic isolation rubber.

図2は、図1で突出軸を水平に変位させ、突出軸で押圧されるゴム板にかかる荷重との関係を示すグラフである。ゴム板44は、外側が固定されているものとする。また、突出軸45は中央開口部43の中心にあるとする。突出軸45を右方向(+)に変位させると、突出軸45が中央開口部43の隙間内にある場合は、ゴム板にかかる荷重はゼロである。突出軸45がゴム板44の内周に接触した後は、内周側のゴム板44の板厚が薄いので小さな荷重でも変位する。さらに突出軸45を押すと、ゴム板44の板厚が厚いため、大きな荷重がかかり変位が抑えられる。このような構造のため、突出軸45でゴム板44に衝撃を与えた場合、ゴム板44の中央開口部43が縮んで衝撃が吸収される。突出軸45を左方向(−)に変位させる場合の荷重と変位の関係も、図2のグラフに示す。   FIG. 2 is a graph showing the relationship between the load applied to the rubber plate pressed horizontally by the protrusion shaft in FIG. The rubber plate 44 is assumed to be fixed on the outside. Further, it is assumed that the protruding shaft 45 is at the center of the central opening 43. When the protruding shaft 45 is displaced in the right direction (+), when the protruding shaft 45 is in the gap of the central opening 43, the load applied to the rubber plate is zero. After the protruding shaft 45 comes into contact with the inner periphery of the rubber plate 44, the rubber plate 44 on the inner peripheral side is thin, so that it is displaced even with a small load. When the protruding shaft 45 is further pushed, since the rubber plate 44 is thick, a large load is applied to suppress the displacement. Due to such a structure, when an impact is applied to the rubber plate 44 by the protruding shaft 45, the central opening 43 of the rubber plate 44 is contracted to absorb the impact. The relationship between the load and displacement when the protruding shaft 45 is displaced in the left direction (-) is also shown in the graph of FIG.

図3は、図1のゴム板44が、複数枚使用される場合の断面図である。例として、ゴム板44を3枚で構成すると、同じ荷重を突出軸にかけても、1枚のゴム板44には、1/3の荷重しかかからないので、変位を小さくできる。このような構成は、ゴム板44を水平面に多数設置できず、変位を小さく抑えたい場合などに適用できる。   FIG. 3 is a cross-sectional view when a plurality of rubber plates 44 of FIG. 1 are used. As an example, if the rubber plate 44 is composed of three pieces, even if the same load is applied to the protruding shaft, only one third of the load is applied to the single rubber plate 44, so that the displacement can be reduced. Such a configuration can be applied to a case where a large number of rubber plates 44 cannot be installed on a horizontal plane and the displacement is to be kept small.

図4は、本発明によるゴム板緩衝機構46(構成例2)の斜視図である。構成例2のゴム板緩衝機構46は、環状のゴム板44と、鋼鉄製の突出軸45からなる。ゴム板44は円形で、中央開口部43に突出軸45が隙間なしで取り付けられる。図4の右下の断面図に示すように、内周側より外周側の板厚が薄い。また、ゴム板44は、上面と下面がともに外周側に向かって下がるように傾斜する傾斜面47を有する。ゴム板44の外側には壁が設けられ、壁とゴム板44の隙間の長さは、一側で30〜70cm程度である。   FIG. 4 is a perspective view of the rubber plate cushioning mechanism 46 (configuration example 2) according to the present invention. The rubber plate buffer mechanism 46 of the configuration example 2 includes an annular rubber plate 44 and a steel protruding shaft 45. The rubber plate 44 is circular, and the protruding shaft 45 is attached to the central opening 43 without a gap. As shown in the lower right sectional view of FIG. 4, the plate thickness on the outer peripheral side is thinner than the inner peripheral side. The rubber plate 44 has an inclined surface 47 that is inclined so that both the upper surface and the lower surface are lowered toward the outer peripheral side. A wall is provided outside the rubber plate 44, and the length of the gap between the wall and the rubber plate 44 is about 30 to 70 cm on one side.

図5は、図4のゴム板44が、複数枚使用される場合の断面図である。例として、ゴム板44を3枚で構成した場合を示す。構成例1のゴム板44と構成例2のゴム板44を比較すると、構成例2の方が構成例1より材料が少なくて済む。これは、半径方向のゴムの部分の長さを同じとした場合、構成例1では、中央開口部43の大きさだけ、ゴム板44を大きくしなくてはならないことによる。   FIG. 5 is a cross-sectional view when a plurality of rubber plates 44 of FIG. 4 are used. As an example, a case where the rubber plate 44 is composed of three sheets is shown. Comparing the rubber plate 44 of the configuration example 1 and the rubber plate 44 of the configuration example 2, the configuration example 2 requires less material than the configuration example 1. This is because, in the configuration example 1, the rubber plate 44 must be enlarged by the size of the central opening 43 when the lengths of the rubber portions in the radial direction are the same.

図6は、本発明による空気浮揚式免震装置100の正面図である。空気浮揚式免震装置100は、下基礎4と、下基礎4の上に設置される上基礎6と、空気供給ユニット8と、金属シール板22と、空気供給ユニット8の収納部52と、を含んで構成される。金属シール板22は、本実施例では、上基礎6の側面全周に気密に固定され、下端が下基礎4に弾性的に接するとした。これに限らず、上基礎6を複数に区画し、その周囲を金属シール板22で囲んでもよい。これによれば、建物の重量が偏っていても、バランスさせて水平に浮揚させることができる。建物58は、建物の底部54が、収納部52の上に組み置かれる。収納部52には、H鋼56からなる支脚が設けられる堅固な構造とした。なお、建物58は、ゴム板緩衝機構46を備える。詳細は図7〜11に述べる。建物58は、例えば木造建築では、重量が20トン程度である。床面積を20坪として、60(=3.3平方メートル×20)で割ると約300kgf/m2である。建物の重量が30トンなら、圧力は約500kgf/m2である。   FIG. 6 is a front view of an air levitation type seismic isolation device 100 according to the present invention. The air levitation type seismic isolation device 100 includes a lower foundation 4, an upper foundation 6 installed on the lower foundation 4, an air supply unit 8, a metal seal plate 22, a storage portion 52 of the air supply unit 8, It is comprised including. In this embodiment, the metal seal plate 22 is hermetically fixed to the entire side surface of the upper base 6 and its lower end elastically contacts the lower base 4. Not limited to this, the upper base 6 may be divided into a plurality of parts, and the periphery thereof may be surrounded by the metal seal plate 22. According to this, even if the weight of the building is uneven, it can be balanced and floated horizontally. In the building 58, the bottom 54 of the building is assembled on the storage unit 52. The storage portion 52 has a solid structure provided with support legs made of H steel 56. The building 58 includes a rubber plate buffer mechanism 46. Details will be described in FIGS. The building 58 has a weight of about 20 tons in a wooden building, for example. When the floor area is 20 tsubo, dividing by 60 (= 3.3 square meters × 20) is about 300 kgf / m 2. If the weight of the building is 30 tons, the pressure is about 500 kgf / m2.

下基礎4は、矩形状で、コンクリートで形成することができる。下基礎4は、金属シール板22が接する上面に平滑表面部12を有する。地震の際、振動で下基礎4がスライドしても、金属シール板22は、底部から空気が大きく漏れることを防止する。平滑表面部12は下基礎4の上面の全体としても、所定の幅、例えば60cm〜120cmとしてもよい。平滑表面部12は、エンジン式回転鏝による研摩によって実現できる。ステンレスの金属板で被覆してもよいし、樹脂板も採用可能である。平滑表面部12は、平滑さを凹凸の最大高低差で示す場合、±1mm以内であることが好ましい。下基礎4は、地盤より高くして、塵や雨水などが入り込まないようにする。   The lower foundation 4 is rectangular and can be formed of concrete. The lower base 4 has a smooth surface portion 12 on the upper surface with which the metal seal plate 22 contacts. In the event of an earthquake, even if the lower foundation 4 slides due to vibration, the metal seal plate 22 prevents a large amount of air from leaking from the bottom. The smooth surface portion 12 may have a predetermined width, for example, 60 cm to 120 cm, as the entire upper surface of the lower base 4. The smooth surface portion 12 can be realized by polishing with an engine-type rotary rod. It may be covered with a stainless steel metal plate, or a resin plate may be employed. The smooth surface portion 12 is preferably within ± 1 mm when the smoothness is indicated by the maximum height difference of the unevenness. The lower foundation 4 is made higher than the ground so that no dust or rainwater enters.

図6に示すように、本実施例では、上基礎6の側面に金属シール板22を取付けた。金属シール板22は空気圧力室30の空気が漏れないようにシールする。金属シール板22は、上端が上基礎6にボルト20で固定され、切り欠き溝18内に挿入される。金属シール板22は、撓んで弾性力が付勢され、下端が平滑表面部12に当接する。金属シール板22は、弾性力、強度、耐食性の点でステンレス板が好ましい。金属シール板22は、例として、長さが1〜3m、幅が15〜25cm、厚さが0.15〜0.6mmのものを使用できる。   As shown in FIG. 6, in this embodiment, a metal seal plate 22 is attached to the side surface of the upper base 6. The metal seal plate 22 seals the air in the air pressure chamber 30 so as not to leak. An upper end of the metal seal plate 22 is fixed to the upper base 6 with a bolt 20 and is inserted into the notch groove 18. The metal sealing plate 22 is bent and elastic force is applied, and the lower end abuts on the smooth surface portion 12. The metal seal plate 22 is preferably a stainless steel plate in terms of elasticity, strength, and corrosion resistance. For example, the metal seal plate 22 having a length of 1 to 3 m, a width of 15 to 25 cm, and a thickness of 0.15 to 0.6 mm can be used.

図6に示すように、上基礎6の上に収納部52が設けられる。ここに空気供給ユニット8が収納される。収納部52の上には、建物58が構築される。空気供給ユニット8は、空気供給管24、加圧空気タンク26、バルブ28、加速度センサ32、高さセンサ33、制御部34などを含んで構成される。空気供給ユニット8を収納部52に収納したので、地震の時、空気供給管24が震動することがなく、配管のずれや損傷が防止できる。なお、上下水道管などは、建物の外部に接続されるのでフレキシブル管が使用される。空気供給管24は、上基礎6の上面から下面に貫通させる。内径は15〜30mmである。加圧空気タンク26の圧縮空気は、下基礎4と上基礎6の間の空気圧力室30に送られる。圧縮空気の圧力で上基礎6が浮揚される。すなわち、下基礎4の揺れが空気によって遮断されるので、断震効果が発揮される。   As shown in FIG. 6, a storage portion 52 is provided on the upper base 6. The air supply unit 8 is accommodated here. A building 58 is constructed on the storage unit 52. The air supply unit 8 includes an air supply pipe 24, a pressurized air tank 26, a valve 28, an acceleration sensor 32, a height sensor 33, a control unit 34, and the like. Since the air supply unit 8 is stored in the storage portion 52, the air supply pipe 24 does not vibrate in the event of an earthquake, and displacement and damage of the piping can be prevented. In addition, since a water and sewage pipe etc. are connected to the exterior of a building, a flexible pipe is used. The air supply pipe 24 is penetrated from the upper surface to the lower surface of the upper base 6. The inner diameter is 15-30 mm. The compressed air in the pressurized air tank 26 is sent to the air pressure chamber 30 between the lower foundation 4 and the upper foundation 6. The upper foundation 6 is levitated by the pressure of the compressed air. That is, since the shaking of the lower foundation 4 is blocked by air, a seismic effect is exhibited.

地震発生時、加速度センサ32が、地震の揺れである初期微動を感知すると制御部34に知らせる。制御部34は、所定の揺れ幅を検知してバルブ28を開く。例えば、震度3の揺れでバルブ28を開く。これにより、圧縮空気が空気供給管24を介して、空気圧力室30に2秒程度の時間で送り込まれ、上基礎6が浮揚する。なお、地震の早い段階で、圧縮空気を空気圧力室30に送り込んでもよい。空気圧力室30の圧力は、例えば建物58の重量にも拠るが、300〜500kgf/m2程度である。制御部34は、例えば、高さセンサ33が、上基礎6が所定の高さを検知するとバルブ28を閉じる。空気は、空気圧力室30から若干漏れるので、地震が長く続く場合は、再度バルブ28が開かれ、圧縮空気が空気圧力室30に供給される。符号Yは、空気圧力室の高さで、地震の際は、圧縮空気の注入により、高さが3〜5cmに上昇される。   When an earthquake occurs, the acceleration sensor 32 informs the control unit 34 when it detects an initial tremor that is a shaking of the earthquake. The control unit 34 detects the predetermined swing width and opens the valve 28. For example, the valve 28 is opened by shaking with a seismic intensity of 3. Thereby, compressed air is sent into the air pressure chamber 30 through the air supply pipe 24 in about 2 seconds, and the upper foundation 6 is levitated. Note that compressed air may be fed into the air pressure chamber 30 at an early stage of the earthquake. The pressure in the air pressure chamber 30 is about 300 to 500 kgf / m 2, for example, depending on the weight of the building 58. For example, the control unit 34 closes the valve 28 when the height sensor 33 detects the predetermined height of the upper base 6. Since air leaks slightly from the air pressure chamber 30, when the earthquake continues for a long time, the valve 28 is opened again, and compressed air is supplied to the air pressure chamber 30. Reference symbol Y denotes the height of the air pressure chamber. In the event of an earthquake, the height is increased to 3 to 5 cm by injection of compressed air.

図7は、空気浮揚式免震装置100に設けられるゴム板緩衝機構46の取付図(例1)である。図7では、上基礎6が圧縮空気により浮揚した状態にあるとする。ゴム板44は下基礎4の溝42内に設けられる。ゴム板44は、環状で円形の中央開口部43を有し、内周側より外周側の板厚が厚く、上面と下面がともに傾斜している。一方、突出軸45は、上基礎6の貫通孔40に挿入されて取り付けられ、下端部が中央開口部43に挿入される。突出軸45には、蓋48が一体に設けられている。蓋48は、ボルト50で空気圧力室30が気密となるように上基礎6の上部に取り付けられる。なお、これに限らず、突出軸45を下基礎4に固定するように取り付け、上基礎6にゴム板44を取り付けてもよい。   FIG. 7 is an attachment diagram (example 1) of the rubber plate cushioning mechanism 46 provided in the air levitation type seismic isolation device 100. In FIG. 7, it is assumed that the upper base 6 is in a state of being floated by compressed air. The rubber plate 44 is provided in the groove 42 of the lower base 4. The rubber plate 44 has an annular and circular central opening 43, the outer peripheral side is thicker than the inner peripheral side, and the upper surface and the lower surface are both inclined. On the other hand, the protruding shaft 45 is inserted and attached to the through hole 40 of the upper base 6, and the lower end portion is inserted into the central opening 43. A lid 48 is integrally provided on the protruding shaft 45. The lid 48 is attached to the upper portion of the upper base 6 so that the air pressure chamber 30 is airtight with the bolt 50. However, the present invention is not limited thereto, and the protruding shaft 45 may be attached to the lower base 4 and the rubber plate 44 may be attached to the upper base 6.

地震を検知して、上基礎6が空気圧力室30に注入された圧縮空気で上昇するとする。この状態で下基礎4が左右に振動したとする。下基礎4に固定されたゴム板44が左右に動いても、ゴム板44の中央開口部が突出軸45と接触しない範囲では、ゴム板44と突出軸45が相互作用しない。ゴム板44がさらに大きく動いても、ゴム板44の中央開口部が突出軸45に接触して変形するので、衝撃が緩和される。想定以上に下基礎4がスライドすれば、上基礎6が突出軸45を介してスライドされることになる。その場合でも衝撃は小さくなって、建物58はゆっくりと動く。下基礎4がどの程度スライドするかは、実際の地震波から推察できる。これに基いてゴム板44の寸法を決めることができる。このように、地震鎮静後、下基礎4と上基礎6は、所定範囲の位置関係にあるので、位置ずれを改めて修復する必要がない。   It is assumed that an earthquake is detected and the upper foundation 6 rises with compressed air injected into the air pressure chamber 30. Assume that the lower foundation 4 vibrates left and right in this state. Even if the rubber plate 44 fixed to the lower foundation 4 moves left and right, the rubber plate 44 and the protruding shaft 45 do not interact in a range where the central opening of the rubber plate 44 does not contact the protruding shaft 45. Even if the rubber plate 44 moves further, the central opening of the rubber plate 44 contacts the protruding shaft 45 and deforms, so that the impact is alleviated. If the lower foundation 4 slides more than expected, the upper foundation 6 is slid through the protruding shaft 45. Even in that case, the impact is reduced and the building 58 moves slowly. The extent to which the lower foundation 4 slides can be inferred from actual seismic waves. Based on this, the size of the rubber plate 44 can be determined. Thus, after the earthquake is calmed down, the lower foundation 4 and the upper foundation 6 are in a predetermined range of positional relationship, so there is no need to repair the misalignment again.

図8は、図6のゴム板緩衝機構46の突出軸45の斜視図である。突出軸45は蓋48に一体に固定されており、取り付け孔41にボルト50を挿入し上基礎6に固定できる。下基礎4に突出軸45を固定する場合は、向きを逆にして、蓋48を下基礎4の凹部に固定する。   FIG. 8 is a perspective view of the protruding shaft 45 of the rubber plate cushioning mechanism 46 of FIG. The protruding shaft 45 is integrally fixed to the lid 48 and can be fixed to the upper base 6 by inserting a bolt 50 into the mounting hole 41. When fixing the protruding shaft 45 to the lower foundation 4, the direction is reversed and the lid 48 is fixed to the recess of the lower foundation 4.

図9は、図6のV−V断面図である。本実施例では4個のゴム板緩衝機構46を備えた。空気供給管24は5カ所に設けた。点線は、金属シール板22である。角部Aでは縦と横の金属シール板22、22を互いに重ね、空気漏れを防止している。重ねた金属シール板22の側部にゴムシートを貼着してもよい。   9 is a cross-sectional view taken along the line VV in FIG. In this embodiment, four rubber plate buffer mechanisms 46 are provided. Air supply pipes 24 were provided at five locations. The dotted line is the metal seal plate 22. At the corner A, the vertical and horizontal metal seal plates 22 and 22 are overlapped with each other to prevent air leakage. A rubber sheet may be attached to the side portion of the stacked metal seal plate 22.

図10は、ゴム板緩衝機構46の取付図(例2)である。図10は、複数のゴム板44が、下基礎4の溝42内に設けられる場合である。突出軸45は、上基礎6の貫通孔40に挿入されて取り付けられ、突出軸45には、蓋48が一体に設けられている。   FIG. 10 is an attachment diagram (example 2) of the rubber plate cushioning mechanism 46. FIG. 10 shows a case where a plurality of rubber plates 44 are provided in the groove 42 of the lower base 4. The protruding shaft 45 is inserted into and attached to the through hole 40 of the upper base 6, and a lid 48 is integrally provided on the protruding shaft 45.

図11は、ゴム板緩衝機構46の取付図(例3)である。図11では、突出軸45は、下基礎4の溝42に設けられる。一方、複数のゴム板44が上基礎6の貫通孔40に取り付けられる。   FIG. 11 is an attachment diagram (example 3) of the rubber plate cushioning mechanism 46. In FIG. 11, the protruding shaft 45 is provided in the groove 42 of the lower foundation 4. On the other hand, a plurality of rubber plates 44 are attached to the through holes 40 of the upper base 6.

本発明のゴム板緩衝機構は360度のどの方向にも制動でき、建物の基礎に組み込むことで、大きな地震の際に建物の位置ずれを小さく抑制できる空気浮揚式免震装置を提供できる。   The rubber plate shock-absorbing mechanism of the present invention can provide an air levitation type seismic isolation device that can brake in any direction of 360 degrees and can be incorporated into the foundation of a building to suppress the displacement of the building to a small size in the event of a large earthquake.

4 下基礎
6 上基礎
8 空気供給ユニット
12 平滑表面部
18 切り欠き溝
20 ボルト
22 金属シール板
24 空気供給管
26 加圧空気タンク
28 バルブ
30 空気圧力室
32 加速度センサ
33 高さセンサ
34 制御部
40 貫通孔
41 取り付け孔
42 溝
43 中央開口部
44 ゴム板
44a 軟らかいゴム層
44b 硬いゴム層
45 突出軸
46 ゴム板緩衝機構
47 傾斜面
48 蓋
50 ボルト
52 収納部
54 建物の底部
56 H鋼
58 建物
100 空気浮揚式免震装置
A 角部
B 直線部
Y 空気圧力室の高さ
4 Lower foundation 6 Upper foundation 8 Air supply unit 12 Smooth surface portion 18 Notched groove 20 Bolt 22 Metal seal plate 24 Air supply pipe 26 Pressurized air tank 28 Valve 30 Air pressure chamber 32 Acceleration sensor 33 Height sensor 34 Control unit 40 Through hole 41 Mounting hole 42 Groove 43 Central opening 44 Rubber plate 44a Soft rubber layer 44b Hard rubber layer 45 Projection shaft 46 Rubber plate cushioning mechanism 47 Inclined surface 48 Lid 50 Bolt 52 Storage portion 54 Bottom of building 56 H steel 58 Building 100 Air levitation type seismic isolation device A Corner B Straight line Y Height of air pressure chamber

Claims (3)

中央開口部を有する環状の高減衰ゴムからなり、内周側と外周側で板厚が異なり、上面と下面がともに内周側又は外周側に向かって傾斜したゴム板と、前記中央開口部に挿入されるように設けられる突出軸と、からなることを特徴とするゴム板緩衝機構。
A rubber plate made of an annular high-attenuation rubber having a central opening, with different thicknesses on the inner peripheral side and outer peripheral side, and an upper surface and a lower surface both inclined toward the inner peripheral side or outer peripheral side, and the central opening A rubber plate cushioning mechanism comprising: a projecting shaft provided to be inserted.
前記ゴム板は、前記突出軸に複数枚が重ねて使用されることを特徴とする請求項1に記載のゴム板緩衝機構。
The rubber plate cushioning mechanism according to claim 1, wherein a plurality of the rubber plates are used on the protruding shaft.
下基礎と、
前記下基礎の上に設置される上基礎と、
上端が前記上基礎に気密に固定され、下端が前記下基礎に弾性的に接して空気圧力室を形成する金属シール板と、
加圧空気タンクを備え、センサで地震の揺れを感知すると、バルブを開いて、前記金属シール板で囲まれた前記空気圧力室に圧縮空気を供給して前記上基礎を浮揚させる空気供給ユニットと、
前記上基礎の上部に設置され、内部に前記空気供給ユニットが収納され、上部に建物が載置される収納部と、
前記下基礎又は前記上基礎の一方に設けられ、中央開口部を有する環状の高減衰ゴムからなり、内周側と外周側で板厚が異なり、上面と下面がともに内周側又は外周側に向かって傾斜したゴム板と、前記下基礎又は前記上基礎の他方に設けられ、前記中央開口部に挿入される蓋付きの突出軸と、からなるゴム板緩衝機構と、が備えられることを特徴とする空気浮揚式免震装置。
Under the foundation,
An upper foundation installed on the lower foundation;
A metal seal plate having an upper end hermetically fixed to the upper base and a lower end elastically contacting the lower base to form an air pressure chamber;
An air supply unit that includes a pressurized air tank and opens a valve to supply compressed air to the air pressure chamber surrounded by the metal seal plate to lift the upper foundation when a sensor detects a shake of an earthquake. ,
A storage unit installed at an upper part of the upper foundation, in which the air supply unit is stored, and a building is placed on the upper part;
It is provided on one of the lower foundation or the upper foundation and is made of an annular high-attenuation rubber having a central opening. The plate thickness differs between the inner peripheral side and the outer peripheral side, and the upper surface and the lower surface are both on the inner peripheral side or the outer peripheral side. A rubber plate cushioning mechanism comprising: a rubber plate inclined toward the bottom; and a protruding shaft with a lid provided on the other of the lower base and the upper base and inserted into the central opening. Air levitation type seismic isolation device.
JP2015221849A 2015-11-12 2015-11-12 Rubber plate shock absorber and air levitation type seismic isolation device Active JP6152406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015221849A JP6152406B2 (en) 2015-11-12 2015-11-12 Rubber plate shock absorber and air levitation type seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015221849A JP6152406B2 (en) 2015-11-12 2015-11-12 Rubber plate shock absorber and air levitation type seismic isolation device

Publications (2)

Publication Number Publication Date
JP2017089277A true JP2017089277A (en) 2017-05-25
JP6152406B2 JP6152406B2 (en) 2017-06-21

Family

ID=58769829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015221849A Active JP6152406B2 (en) 2015-11-12 2015-11-12 Rubber plate shock absorber and air levitation type seismic isolation device

Country Status (1)

Country Link
JP (1) JP6152406B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112727975A (en) * 2020-12-21 2021-04-30 兰州空间技术物理研究所 Space micro-impact butt joint vibration reduction device and method
JP2022062376A (en) * 2020-10-08 2022-04-20 株式会社三誠Air断震システム Air slider in air floating type vibration control device
JP2022162492A (en) * 2021-04-12 2022-10-24 株式会社空気圧工学研究所 Air floating type seismic isolation device and air supply unit of air floating type seismic isolation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49138287U (en) * 1973-03-31 1974-11-28
JP2015059391A (en) * 2013-09-20 2015-03-30 欣司 稲葉 Air vibration-cutting architectural structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49138287U (en) * 1973-03-31 1974-11-28
JP2015059391A (en) * 2013-09-20 2015-03-30 欣司 稲葉 Air vibration-cutting architectural structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022062376A (en) * 2020-10-08 2022-04-20 株式会社三誠Air断震システム Air slider in air floating type vibration control device
CN112727975A (en) * 2020-12-21 2021-04-30 兰州空间技术物理研究所 Space micro-impact butt joint vibration reduction device and method
CN112727975B (en) * 2020-12-21 2022-12-23 兰州空间技术物理研究所 Space micro-impact butt joint vibration reduction device and method
JP2022162492A (en) * 2021-04-12 2022-10-24 株式会社空気圧工学研究所 Air floating type seismic isolation device and air supply unit of air floating type seismic isolation device

Also Published As

Publication number Publication date
JP6152406B2 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
US20150076315A1 (en) Three-dimensional shock-absorbing device
JP6152406B2 (en) Rubber plate shock absorber and air levitation type seismic isolation device
KR101967360B1 (en) Air floatation vibration control system
JP6372033B2 (en) Anti-vibration vibration reduction device
CN103711990A (en) Metal rubber-disc spring all-metal three-way composite support for piping vibration isolation and impact resistance
KR101701810B1 (en) Seismic equipment
JP2019173940A (en) Air levitation type vibration control system
JP2016080110A (en) Support structure of compressor and air conditioner
JP2011099544A (en) Base isolation device
JP2011202769A (en) Levitation type base isolation device
JP5013295B2 (en) Seismic isolation slider box.
KR101795642B1 (en) Structure Support Device
JP2015148095A (en) seismic isolation structure
JP2013142440A (en) Base isolation structure
JP5662923B2 (en) Seismic isolation device
JP6836481B2 (en) Sliding pendulum type seismic isolation device
JP4546290B2 (en) Base isolation structure and construction method for structures
JP6161979B2 (en) Seismic isolation structure
JP2010230057A (en) Base isolation device having damping device and base isolation structure with damping device
JP2012077876A (en) Base isolation structure
JP2007070857A (en) Base isolation structure of building
KR101699282B1 (en) A vibrating suction device
JP2002021918A (en) Vibration isolation device
JP2016000932A (en) Means and method for resuming to home position of base isolation structure, and improved ground provided with the means
KR200360336Y1 (en) Bearing for high damping elastomers

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170529

R150 Certificate of patent or registration of utility model

Ref document number: 6152406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250