JP2015059391A - Air vibration-cutting architectural structure - Google Patents

Air vibration-cutting architectural structure Download PDF

Info

Publication number
JP2015059391A
JP2015059391A JP2013195344A JP2013195344A JP2015059391A JP 2015059391 A JP2015059391 A JP 2015059391A JP 2013195344 A JP2013195344 A JP 2013195344A JP 2013195344 A JP2013195344 A JP 2013195344A JP 2015059391 A JP2015059391 A JP 2015059391A
Authority
JP
Japan
Prior art keywords
base
air
cylinder
building
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013195344A
Other languages
Japanese (ja)
Inventor
欣司 稲葉
Kinji Inaba
欣司 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGINO TATSUYA
Original Assignee
NAGINO TATSUYA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52817153&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2015059391(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NAGINO TATSUYA filed Critical NAGINO TATSUYA
Priority to JP2013195344A priority Critical patent/JP2015059391A/en
Publication of JP2015059391A publication Critical patent/JP2015059391A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an architectural structure having superior functions of construction easiness, maintenance inspection easiness, building balance holding properties, air sealability, repair properties, etc., as an air vibration-cutting architectural structure.SOLUTION: An air vibration-cutting architectural structure comprises: a lower base 4 which has a smooth surface part 12 formed along an upper surface peripheral edge; an upper base 6 mounted on the lower base 4 and having a cut groove 18, a metal plate 22, and a pressure air supply pipe; and a building formed integrally with the upper base 6. Further, the air vibration-cutting architectural structure has a cylinder 52 fitted to the upper base, a cover 54, a pressure air supply pipe 56 which supplies pressure air into a cylinder 52, a slide disk 58 housed in the cylinder 52, and a piston 60 mounted on the slide disk 58 and housed in the cylinder 52, and also has a balancer 50 enabling the piston 60 to move up and down airtightly in the cylinder 52 with an O ring mounted on an upper peripheral surface of the piston 60.

Description

本発明は、空気を用いる断震建築物に関する。更に詳述すれば、本発明は、下部基盤と、その上面を覆って載置される上部基盤と、上部基盤と一体に形成する建屋とからなる建築物において、地震発生時に前記下部基盤と上部基盤の間に空気を供給することにより前記建屋を浮上させて地震による建築物の揺れを逃がす空気断震建築物に関する。   The present invention relates to a seismic building using air. More specifically, the present invention relates to a building composed of a lower base, an upper base placed so as to cover the upper surface, and a building formed integrally with the upper base. The present invention relates to an air-seismic building that floats the building by supplying air between the bases to release the shaking of the building due to an earthquake.

地震発生時における建築物の揺れを軽減するには、従来からゴムなどの緩衝材を基礎と建屋の間に挟むように設置して地震の揺れを逃がすことにより免震効果が得られる免震装置が用いられている。   In order to reduce the shaking of the building in the event of an earthquake, a conventional seismic isolation device that can provide a seismic isolation effect by installing a cushioning material such as rubber between the foundation and the building and releasing the shaking of the earthquake Is used.

上記免震装置を採用する場合、ゴムなどの緩衝材の上に建屋が載っているので、台風などの大きな風圧を受けた場合や、乗物の通過の際に発生する振動により揺れや震動が生じ、この震動は常に続いているので居心地が悪い。   When the above seismic isolation device is used, the building is placed on a cushioning material such as rubber, so that it may be shaken or vibrated due to large wind pressure such as typhoons or vibrations that occur when a vehicle passes. This vibration is always uncomfortable.

地震から建物及び建物内の家財並びに居住者等を守るため、建築物の下部基盤上に上部基盤を載置し、前記下部基盤と上部基盤の周囲の隙間から空気が漏れないようシール手段を設け、地震発生時に前記下部基盤と上部基盤の間に空気を供給することにより建屋を浮上させて地震の揺れを逃がす免震効果を発揮する空気圧浮動式免震(空気断震)装置などが公開されている(例えば、特許文献1参照)。   In order to protect the building and household assets and residents from the earthquake, the upper base is placed on the lower base of the building, and sealing means is provided to prevent air from leaking from the gap between the lower base and the upper base. In the event of an earthquake, a pneumatic floating seismic isolation device (air-isolation) that exhibits the seismic isolation effect that floats the building by supplying air between the lower base and the upper base and releases the shaking of the earthquake has been released. (For example, refer to Patent Document 1).

また、シール手段などを改良し、施工が容易で保守点検を簡単にできる空気断震建築物が公開されている(例えば、特許文献2参照)。   In addition, an air-seismic building that has improved sealing means and can be easily constructed and maintained is disclosed (for example, see Patent Document 2).

更には、地震頻発時や停電時に空気断震装置に設置される使用量が限られたエアータンク内の圧縮空気を有効に使用するため前記空気断震装置の作動を制御するコントロールボックスが公開されている(例えば、特許文献3参照)。   In addition, a control box that controls the operation of the air seismic device has been released in order to effectively use the compressed air in the air tank that is installed in the air seismic device in the event of frequent earthquakes and power outages. (For example, refer to Patent Document 3).

また更に改良された技術として、地震鎮静後揺れが収まり、地盤に設置された下部基盤と建屋と一体の免震上部基盤との間に生じた位置ずれを修正する装置も提案されている。この装置は、地盤に設置された下部基盤と、建屋と一体に形成された上部基盤との間で位置ずれが生じた場合、潰れた空気袋に高圧空気を注入して、潰れた空気袋を膨らませることにより、両者間に生じている位置ずれを元の位置に修復させる装置である(例えば、特許文献4参照)。   Further, as a further improved technique, a device has been proposed that corrects a positional shift between a lower base installed on the ground and a base-isolated upper base that is integrated with the building, after shaking has subsided. This device is designed to inject high-pressure air into a crushed air bag when a displacement occurs between the lower base installed on the ground and the upper base formed integrally with the building. This is a device that restores a positional shift between the two to the original position by inflating (see, for example, Patent Document 4).

しかし、特許文献2〜4の技術の場合、施工時におけるシール手段の取付けの容易性、平常時における保守点検の容易性、地震発生時における建屋のバランスの保持性、シール手段の空気密閉性、地震鎮静後における下部基盤と上部基盤との位置ずれの修復性など、空気断震建築物の機能としては、まだ不充分なところがある。   However, in the case of the techniques of Patent Documents 2 to 4, the ease of installation of the sealing means at the time of construction, the ease of maintenance and inspection at normal times, the balance of the building balance at the occurrence of an earthquake, the air tightness of the sealing means, There are still some inadequate functions for air-seismic buildings, such as the ability to correct misalignment between the lower and upper foundations after the earthquake has subsided.

実用新案登録第3119675号公報Utility Model Registration No. 3119675 特開2009−150198号公報JP 2009-150198 A 実用新案登録第3170212号公報Utility Model Registration No. 3170212 特開2008−208696号公報JP 2008-208696 A

本発明の目的は、断震性、施工容易性、保守点検容易性、建屋バランス保持性、空気密閉性、位置ずれ修復性などの空気断震建築物としての機能に優れた建築物を提供することにある。   An object of the present invention is to provide a building having excellent functions as an air-seismic building such as seismic isolation, ease of construction, ease of maintenance, building balance retention, air tightness, and misalignment repairability. There is.

本発明者等は、上記課題について検討を重ねた結果、以下に記載する空気断震建築物は、上記本発明の目的を達成することを見出した。   As a result of studying the above problems, the present inventors have found that the air-seismic building described below achieves the object of the present invention.

〔1〕 少なくとも上面周縁に沿って所定幅の平滑表面部を形成してなる下部基盤と、
前記下部基盤の上面を覆って載置される上部基盤と、
前記上部基盤の上面に、前記上部基盤と一体に形成する建屋とからなり、
前記上部基盤は、
その下面の周縁に沿って形成した切り欠き溝と、
上部基盤の側面全周に亘り、上部基盤の下部側側面にその一端側が気密に固定される金属板であって、その他端側は下部基盤の平滑表面部方向に金属板の有する弾性力で付勢されて前記切り欠き溝に挿入されてなる複数の金属板と、
上部基盤を、その上面から下面にかけて貫通する、少なくとも1の加圧空気供給管と、
上部基盤の上面と下面との間を貫通して上部基盤に取付けられるバランサーであって、前記バランサーは、
大径の上部シリンダー部と、前記上部シリンダー部よりも小径の下部シリンダー部と、前記上部シリンダー部の底部内周から前記下部シリンダー部の頂部内周に亘って形成した肩部とを、これら軸心を一致させて一体に形成してなるシリンダーと、
前記シリンダーの上部開口を気密に閉塞する蓋と、
蓋に取付けられ、蓋を貫通して、シリンダー内に加圧空気を供給する加圧空気供給管と、
前記下部シリンダー部内の下端側に収納された滑り円盤と、
前記滑り円盤上に載置されてシリンダー内に収納されるピストンであって、前記ピストンは、大径の上部ピストン部と、前記上部ピストン部よりも小径の下部ピストン部と、前記上部ピストン部の底部外周から前記下部ピストン部の頂部外周に亘って形成した肩部とを有すると共に前記上部ピストン部の周面にはO−リングを装着してなり、前記O−リングによりシリンダー内においてピストンが上下方向に気密に摺動できるバランサーと、
を有する空気断震建築物。
[1] A lower base formed by forming a smooth surface portion having a predetermined width along at least the periphery of the upper surface;
An upper base placed over the upper surface of the lower base;
The upper surface of the upper base consists of a building formed integrally with the upper base,
The upper base is
A notch groove formed along the periphery of the lower surface;
A metal plate whose one end is airtightly fixed to the lower side surface of the upper base over the entire side surface of the upper base, and the other end is attached by the elastic force of the metal plate toward the smooth surface portion of the lower base. A plurality of metal plates that are energized and inserted into the notch grooves;
At least one pressurized air supply pipe passing through the upper base from its upper surface to its lower surface;
A balancer penetrating between the upper surface and the lower surface of the upper base and attached to the upper base, wherein the balancer is
These shafts have a large-diameter upper cylinder part, a lower cylinder part having a smaller diameter than the upper cylinder part, and a shoulder part formed from the bottom inner periphery of the upper cylinder part to the top inner periphery of the lower cylinder part. A cylinder that is formed integrally with the same heart,
A lid for hermetically closing the upper opening of the cylinder;
A pressurized air supply pipe that is attached to the lid, passes through the lid, and supplies pressurized air into the cylinder;
A sliding disk stored on the lower end side in the lower cylinder part;
A piston placed on the sliding disk and housed in a cylinder, wherein the piston comprises a large-diameter upper piston portion, a lower piston portion having a smaller diameter than the upper piston portion, and the upper piston portion. A shoulder portion formed from the bottom outer periphery to the top outer periphery of the lower piston portion, and an O-ring is mounted on the peripheral surface of the upper piston portion, and the piston moves up and down in the cylinder by the O-ring. A balancer that can slide in an airtight direction,
Air seismic building with

〔2〕 上部基盤の下面がその周縁に少なくとも1の角部を有し、複数の金属板のうちの角部における互いに近接する少なくとも1組は、その側部を互いに所定幅で重ねると共に、上側に重ねた金属板の側部に、前記側部から下側に重ねた金属板を覆いつつ外方に延伸するゴム板を金属板に貼着することにより、上側と下側とに重ねた金属板の積重部分を前記ゴム板で覆ってなる〔1〕に記載の空気断震建築物。   [2] The lower surface of the upper base has at least one corner on the periphery thereof, and at least one pair of the metal plates adjacent to each other in the corners overlaps the sides with a predetermined width and The metal stacked on the upper side and the lower side by sticking to the metal plate a rubber plate extending outward while covering the metal plate stacked on the lower side from the side portion on the side of the metal plate stacked on The air-seismic building according to [1], in which a stack of plates is covered with the rubber plate.

〔3〕 上部基盤の上面と下面との間を貫通して取付けられ、その頂部開口部は蓋を着脱自在に冠着されて気密に密閉されてなる筒状の上部位置固定部材と、前記上部位置固定部材と対向して下部基盤にその上面を露出して取付けられた筒状の下部位置固定部材と、前記上部位置固定部材と前記下部位置固定部材とをそれらの径方向に沿って互いに連結する複数のスプリングとからなる位置修正装置を有する〔1〕に記載の空気断震建築物。   [3] A cylindrical upper position fixing member that is attached through the upper base and the lower surface of the upper base, the top opening of which is detachably crowned and hermetically sealed, and the upper part A cylindrical lower position fixing member that faces the position fixing member and is exposed with its upper surface exposed to the lower base, and the upper position fixing member and the lower position fixing member are connected to each other along their radial direction. The air-isolated building according to [1], further including a position correcting device including a plurality of springs.

〔4〕 下部位置固定部材が有底筒状である〔3〕に記載の空気断震建築物。   [4] The air seismic building according to [3], wherein the lower position fixing member has a bottomed cylindrical shape.

〔5〕 平滑表面部が、下部基盤の上面周縁に沿って被覆層を積層して形成してなる〔1〕に記載の空気断震建築物。   [5] The air seismic building according to [1], wherein the smooth surface portion is formed by laminating a coating layer along the upper surface periphery of the lower base.

本発明によれば、建屋浮上時の下部基盤と上部基盤との間隙を何れの地点でも均一にするバランサーを設けているので、地震発生時における建屋は水平状態を保って浮上し、建屋として傾き難い。   According to the present invention, since the balancer is provided to make the gap between the lower base and the upper base at the time of rising of the building uniform at any point, the building at the time of the earthquake is kept floating and tilted as a building. hard.

更に、前記複数の金属板の重ねている部分にゴム板を重ねる場合には、供給空気の密閉性は更に高くなる。   Furthermore, when a rubber plate is stacked on the portion where the plurality of metal plates are stacked, the sealing property of the supply air is further enhanced.

本空気断震建築物に位置修正装置を取付ける場合は、地震鎮静後における下部基盤と上部基盤との位置ずれの修復性は高いものになる。位置修正装置は金属製であるので、耐久性が高く、長期の使用に耐える。   When the position correction device is attached to this air-isolated building, the repairability of the positional deviation between the lower base and the upper base after the earthquake is calm is high. Since the position correction device is made of metal, it has high durability and can withstand long-term use.

また、平滑表面部に被覆層を積層する場合は、下部基盤の平滑表面部がより平滑になるので、下部基盤のコンクリート打設が容易になる。   Moreover, when laminating | stacking a coating layer on a smooth surface part, since the smooth surface part of a lower base becomes smoother, the concrete placement of a lower base becomes easy.

本発明に用いるバランサーを設ける前の空気断震建築物の一例を示す概略図であり、(A)は、その正面断面図であり、(B)は、(A)におけるX〜X線に沿った平面断面図である。It is the schematic which shows an example of the air seismic building before providing the balancer used for this invention, (A) is the front sectional drawing, (B) is along the X-X line in (A). FIG. 図1(B)における角部Aで互いに近接する金属板の重なり状態を示す部分拡大平面図であり、(A)は、その積重部分の上側金属板にゴム板を貼着する前の状態を示し、(B)は、ゴム板を貼着した後の状態を示す。It is the elements on larger scale which show the overlapping state of the metal plate which mutually adjoins in the corner | angular part A in FIG. 1 (B), (A) is the state before sticking a rubber plate on the upper metal plate of the stacking part. (B) shows the state after sticking the rubber plate. 図1(B)における周縁の直線部Bで互いに近接する金属板の当接状態を示す部分拡大平面図である。It is a partial enlarged plan view which shows the contact state of the metal plate which adjoins mutually in the linear part B of the periphery in FIG. 1 (B). 図1(A)の例の空気断震建築物を示す概略図であり、圧縮空気により建屋が浮上した状態の正面断面図である。It is the schematic which shows the air-seismic building of the example of FIG. 1 (A), and is front sectional drawing of the state where the building surfaced with compressed air. 本発明に用いるバランサーを設ける前の空気断震建築物の一例における下部基盤、上部基盤にかけて設けられた位置修正装置及びその周辺を示す正面断面図である。It is front sectional drawing which shows the position correction apparatus provided over the lower base in an example of the air-seismic building before providing the balancer used for this invention, an upper base, and its periphery. 本発明に用いるバランサーを設ける前の空気断震建築物の一例における下部基盤の上面周縁に沿って被覆層を積層して形成された平滑表面部及びその周辺を示す正面断面図である。It is front sectional drawing which shows the smooth surface part formed by laminating | stacking a coating layer along the upper surface periphery of the lower base in an example of the air-seismic building before providing the balancer used for this invention, and its periphery. 本発明に用いるバランサーを設ける前の空気断震建築物の他の例における下部基盤の上面周縁に沿って被覆層を埋込んで積層して形成された平滑表面部及びその周辺を示す正面断面図である。Front sectional view showing a smooth surface portion formed by embedding a covering layer along the upper surface periphery of a lower base in another example of an air-seismic building before providing a balancer used in the present invention, and its periphery It is. 本発明の空気断震建築物の一例を示す概略図であり、図9(A)におけるV〜V線に沿った平面断面図である。It is the schematic which shows an example of the air-seismic building of this invention, and is plane sectional drawing along the VV line in FIG. 9 (A). 本発明の空気断震建築物の一例における下部基盤、上部基盤にかけて設けられたバランサー及びその周辺を示す正面断面図であり、(A)は、バランサー及びその周辺の上部基盤が下部基盤に対して浮上する前の状態を示し、(B)は、浮上した後の状態を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a front sectional view which shows the balancer provided over the lower base in the example of the air-seismic building of the present invention, the upper base, and the periphery thereof, and (A) is the balancer and the upper base in the vicinity thereof with respect to the lower base. The state before ascending is shown, and (B) shows the state after ascending. 図9(A)、(B)におけるピストンと滑り円盤とからなる構造体内部材質の概略を示す部分拡大断面図である。It is the elements on larger scale which show the outline of the structure internal material which consists of a piston and a sliding disk in FIG. 9 (A), (B).

以下、本発明の詳細について記載する。   Details of the present invention will be described below.

本発明に用いるバランサーを設ける前の空気断震建築物について、図1〜2の例を用いて説明する。   The air-seismic building before providing the balancer used for this invention is demonstrated using the example of FIGS.

図1は、本発明に用いるバランサーを設ける前の空気断震建築物の一例を示す概略図であり、(A)は、その正面断面図であり、(B)は、(A)におけるX〜X線に沿った平面断面図である。   FIG. 1 is a schematic view showing an example of an air-seismic building before providing a balancer used in the present invention, (A) is a front cross-sectional view thereof, and (B) is a cross-sectional view of X in FIG. It is plane sectional drawing along a X-ray.

図1(A)中、2は空気断震建築物であり、下部基盤4と上部基盤6と建屋8とからなる。下部基盤4は、所定厚さの平板状コンクリートからなり、地盤10に立設している。下部基盤4の厚さは通常の建築物の基礎と同様の厚さであり、150〜1500mmが好ましく、200〜1000mmがより好ましい。下部基盤4の平面形状は、上部基盤6、建屋8の形状に応じて任意の形状に形成できるが、本例においては矩形である。通常は、下部基盤4と上部基盤6との平面形状は同一になる場合が多い。   In FIG. 1 (A), 2 is an air-seismic building, which consists of a lower base 4, an upper base 6 and a building 8. The lower base 4 is made of flat concrete having a predetermined thickness, and stands on the ground 10. The thickness of the lower base 4 is the same as that of a normal building foundation, preferably 150 to 1500 mm, and more preferably 200 to 1000 mm. The planar shape of the lower base 4 can be formed into an arbitrary shape according to the shapes of the upper base 6 and the building 8, but is rectangular in this example. Usually, the planar shapes of the lower base 4 and the upper base 6 are often the same.

下部基盤4の上面には、少なくともその上面の周縁に沿って所定幅を平滑に形成した平滑表面部12を有する。平滑表面部12の所定幅は、200〜2000mmが好ましく、200〜1200mmがより好ましい。平滑表面部12は、下部基盤4をコンクリートで形成する際に、可能な限り平滑にコンクリートを打設することにより形成できる。平滑性が不足する場合は、平滑表面部12の表面を更にエンジン式回転鏝により研磨しても良い。   The upper surface of the lower base 4 has a smooth surface portion 12 having a predetermined width smoothly formed at least along the periphery of the upper surface. The predetermined width of the smooth surface portion 12 is preferably 200 to 2000 mm, and more preferably 200 to 1200 mm. The smooth surface portion 12 can be formed by placing the concrete as smoothly as possible when the lower base 4 is formed of concrete. When the smoothness is insufficient, the surface of the smooth surface portion 12 may be further polished with an engine-type rotary rod.

下部基盤4の上部側は地表(地盤10の表面)から少なくとも30mm以上露出していることが好ましい。泥等が後述する切り欠き溝18内に浸入しないためである。   The upper side of the lower base 4 is preferably exposed at least 30 mm or more from the ground surface (the surface of the ground 10). This is because mud or the like does not enter a notch groove 18 described later.

また、図6に示すように、平滑表面部12の上面に平滑な被覆層13を積層しても良い。好ましくは、図7に示すように、被覆層13bを平滑表面部12bに埋込んで積層することが好ましい。被覆層13を積層することにより、平滑表面部12の表面を更に平滑にできる。被覆層13は、平滑表面部12の上面と、気密に固着させることが好ましい。固着方法としては、接着、融着等が例示される。被覆層13としては、ブリキ板、銅板、ステンレス板等の金属板、合資樹脂板、金属板等の積層による平滑被覆層形成方法を用いる場合は、特に容易に平滑表面部12を平滑にすることができる。   In addition, as shown in FIG. 6, a smooth coating layer 13 may be laminated on the upper surface of the smooth surface portion 12. Preferably, as shown in FIG. 7, the covering layer 13 b is preferably embedded in the smooth surface portion 12 b and laminated. By laminating the coating layer 13, the surface of the smooth surface portion 12 can be further smoothed. The covering layer 13 is preferably adhered to the upper surface of the smooth surface portion 12 in an airtight manner. Examples of the fixing method include adhesion and fusion. As the coating layer 13, when using a smooth coating layer forming method by laminating a metal plate such as a tin plate, copper plate, stainless steel plate, joint resin plate, metal plate, etc., the smooth surface portion 12 is particularly easily smoothed. Can do.

平滑表面部12の平滑さとしては、平滑表面部12の長さ方向(平滑表面部12の外周に沿う方向)2m当たりにおける鉛直方向の凹凸の最大高低差が±1mm以内であることが好ましく、平滑表面部12の幅方向(外周と直交方向)1m当たりにおける鉛直方向の凹凸の最大高低差が±1mm以内であることが好ましい。   The smoothness of the smooth surface portion 12 is preferably such that the maximum height difference of the unevenness in the vertical direction per 2 m in the length direction of the smooth surface portion 12 (direction along the outer periphery of the smooth surface portion 12) is within ± 1 mm. It is preferable that the maximum height difference of the unevenness in the vertical direction per 1 m in the width direction (perpendicular to the outer periphery) of the smooth surface portion 12 is within ± 1 mm.

上部基盤6は、所定厚さの平板状コンクリートからなり、下部基盤4の上面を覆って載置している。上部基盤6の厚さは通常の建築物の基礎と同様の厚さであり、100〜1000mmが好ましく、200〜500mmがより好ましい。上部基盤6の平面形状は、下部基盤4、建屋8の形状に一致させて任意に形成できるが、本例においては矩形である。   The upper base 6 is made of flat concrete having a predetermined thickness, and is placed so as to cover the upper surface of the lower base 4. The thickness of the upper base 6 is the same as that of a normal building foundation, preferably 100 to 1000 mm, more preferably 200 to 500 mm. The planar shape of the upper base 6 can be arbitrarily formed in accordance with the shapes of the lower base 4 and the building 8, but is rectangular in this example.

建屋8は、上部基盤6の上面に、建屋8の底部材14をボルト16で固定することなどで上部基盤6と一体に形成している。   The building 8 is formed integrally with the upper base 6 by fixing the bottom member 14 of the building 8 with bolts 16 on the upper surface of the upper base 6.

図1(A)に示すように、上部基盤6は、その下面の全周縁に沿って切り欠き溝18を形成している。上部基盤6の面方向に沿う切り欠き溝18の深さは、前記平滑表面部12の幅と同一又はそれ以下に形成することが好ましく、150〜500mmがより好ましく、200〜400mmが特に好ましい。切り欠き溝18の幅(鉛直方向の溝幅であり、平滑表面部12と、上部基盤6との間隙幅)は、30〜100mmが好ましく、40〜80mmがより好ましい。   As shown in FIG. 1 (A), the upper base 6 has a notch 18 formed along the entire periphery of the lower surface thereof. The depth of the notch groove 18 along the surface direction of the upper base 6 is preferably formed to be equal to or less than the width of the smooth surface portion 12, more preferably 150 to 500 mm, and particularly preferably 200 to 400 mm. 30-100 mm is preferable and, as for the width | variety of the notch groove 18 (it is the groove width of a perpendicular direction, and the clearance gap between the smooth surface part 12 and the upper base 6), 40-80 mm is more preferable.

22は複数の金属板で、上部基盤6の側面の全周に隙間が無いように取付けられている。この金属板22は、上部基盤6の下部側側面にその一端側を気密にボルト20などで固定している。金属板22の他端側は金属板を撓めることにより、前記切り欠き溝18内に挿入されると共に、下部基盤4の平滑表面部12方向に金属板22の有する弾性力で付勢されている。   Reference numeral 22 denotes a plurality of metal plates which are attached so that there is no gap on the entire circumference of the side surface of the upper base 6. This metal plate 22 is airtightly fixed to the lower side surface of the upper base 6 with bolts 20 or the like. The other end side of the metal plate 22 is inserted into the notch groove 18 by bending the metal plate and is urged by the elastic force of the metal plate 22 toward the smooth surface portion 12 of the lower base 4. ing.

一般に、建築物は平面的に多角形のものが多く、この場合は角部を有する。   In general, many buildings are polygonal in plan, and in this case have corners.

図1(B)に示す例の場合は、上部基盤6にはその周縁に4の角部Aを有する。複数の金属板22のうちの角部Aにおいて互いに近接する1組を図2(A)に示す。   In the case of the example shown in FIG. 1B, the upper base 6 has four corners A on its periphery. One set of the metal plates 22 adjacent to each other at the corner A is shown in FIG.

角部Aの部分拡大平面図である図2(A)に示すように、角部Aで互いに近接する上側金属板22aと、下側金属板22bとが、積重部分22abで上側と下側とに重なっている。   As shown in FIG. 2A, which is a partially enlarged plan view of the corner portion A, the upper metal plate 22a and the lower metal plate 22b that are close to each other at the corner portion A are the upper and lower sides of the stacked portion 22ab. It overlaps with.

更に詳細には、図2(A)に示すように、角部Aにおいて1組の金属板22a、22bは、その側部E22a、E22bを互いに所定幅で重ねている。更に、上側に重ねた金属板22aの側部E22aには、図2(B)に示すようにゴム板36の一端が貼着してある。このゴム板36は、側部E22aから下側に重ねた金属板22bを覆って外方(下側金属板22bの方向)に延伸して上側金属板22aと下側金属板22bとの積重部分22abをゴム板36で覆っている。これにより、上側金属板22aと下側金属板22bとの積重部分22abの空気密閉性は高くなる。   More specifically, as shown in FIG. 2 (A), the pair of metal plates 22a and 22b in the corner portion A overlap the side portions E22a and E22b with a predetermined width. Furthermore, one end of a rubber plate 36 is adhered to the side portion E22a of the metal plate 22a stacked on the upper side, as shown in FIG. The rubber plate 36 extends outward (in the direction of the lower metal plate 22b) and covers the metal plate 22b stacked on the lower side from the side portion E22a, and the stack of the upper metal plate 22a and the lower metal plate 22b. The portion 22ab is covered with a rubber plate 36. Thereby, the airtightness of the stacked portion 22ab of the upper metal plate 22a and the lower metal plate 22b is enhanced.

上側と下側とに重ねた金属板22a、22bの側部E22a、E22b間の所定幅は最大幅Wmaxで100〜300mmが好ましく、150〜250mmがより好ましい。   The predetermined width between the side portions E22a and E22b of the metal plates 22a and 22b stacked on the upper side and the lower side is preferably a maximum width Wmax of 100 to 300 mm, and more preferably 150 to 250 mm.

図1(B)における周縁の直線部Bの部分拡大平面図を図3に示す。周縁の直線部Bで互いに近接する金属板22c、22dは互いに端部38を当接しており、重なり合っていない。この互いに端部を当接している金属板にはゴム板(不図示)が糊付けされ、金属板22c、22d端部同士の当接部分38を覆っていても良い。   FIG. 3 is a partially enlarged plan view of the peripheral straight line portion B in FIG. The metal plates 22c and 22d that are adjacent to each other at the peripheral straight portion B are in contact with each other at the end portion 38 and do not overlap. A rubber plate (not shown) may be glued to the metal plates abutting against each other to cover the abutting portion 38 between the end portions of the metal plates 22c and 22d.

金属板22としては、鉄板、銅板、アルミ板、ステンレス板等が例示できるが、弾性力、強度、耐食性の面からステンレス板が好ましい。金属板の形状の一例としては、取扱いの利便性等の点で、長さ500〜4000mm、幅120〜280mm、厚さ0.1〜0.8mmのものが好ましく、長さ800〜3000mm、幅150〜250mm、厚さ0.15〜0.6mmのものがより好ましく、本例においては、16枚のステンレス板22を切り欠き溝18に挿入している。ステンレス板の材質としては、弾力性の高いバネ性ステンレス板が好ましい。   Examples of the metal plate 22 include an iron plate, a copper plate, an aluminum plate, a stainless steel plate, and the like, but a stainless steel plate is preferable in terms of elasticity, strength, and corrosion resistance. As an example of the shape of the metal plate, in view of convenience of handling, the length of 500 to 4000 mm, the width of 120 to 280 mm, and the thickness of 0.1 to 0.8 mm are preferable, the length of 800 to 3000 mm, the width More preferably, the thickness is 150 to 250 mm and the thickness is 0.15 to 0.6 mm. In this example, 16 stainless steel plates 22 are inserted into the cutout grooves 18. As the material of the stainless steel plate, a springy stainless steel plate having high elasticity is preferable.

上部基盤6には、少なくとも1、好ましくは2〜6[図1(B)では、5]の加圧空気供給管24が、上部基盤6の上面から下面にかけて貫通している。加圧空気供給管24の内径は10〜40mmが好ましく、15〜30mmがより好ましい。   The upper base 6 has at least 1, preferably 2 to 6 [5 in FIG. 1 (B)], a pressurized air supply pipe 24 that penetrates from the upper surface to the lower surface of the upper base 6. The inner diameter of the pressurized air supply pipe 24 is preferably 10 to 40 mm, and more preferably 15 to 30 mm.

図1(A)に示すように、加圧空気供給管24には、地震発生時に、建屋8内に備えられた空気タンク26内の圧縮空気がバルブ28を介して注入される。注入される圧縮空気は、下部基盤4と上部基盤6と金属板22とに囲まれた空気圧力室30に送り込まれ、空気圧力室30の圧上昇により、上部基盤6と一体に形成された建屋8は、図4に示すように浮上して浮上間隙Y(建屋浮上時の下部基盤4と上部基盤6との間隙Y)を形成し、この浮上間隙Yが緩衝作用を示すことにより、断震効果が発揮される。   As shown in FIG. 1A, compressed air in an air tank 26 provided in the building 8 is injected into the pressurized air supply pipe 24 through a valve 28 when an earthquake occurs. The compressed air to be injected is fed into the air pressure chamber 30 surrounded by the lower base 4, the upper base 6 and the metal plate 22, and the building formed integrally with the upper base 6 by the pressure increase of the air pressure chamber 30. As shown in FIG. 4, 8 is levitated to form a levitation gap Y (gap Y between the lower base 4 and the upper base 6 when the building is levitated). The effect is demonstrated.

制御システムについて説明すると、地震発生時には、建屋8内に備えられた加速度計32が、地震の揺れを感知して制御部34に知らせる。制御部34においては、所定値を超える揺れの強い地震時のみ、バルブ28開の制御信号を発生させる。これにより、上述のようにバルブ28、加圧空気供給管24を介して圧縮空気は空気圧力室30に送り込まれ、建屋8は浮上する。これにより、特に地震の初期微動継続時間の経過後に来る地震の本震について断震効果が発揮される。   The control system will be described. When an earthquake occurs, the accelerometer 32 provided in the building 8 senses the shaking of the earthquake and notifies the control unit 34. The control unit 34 generates a control signal for opening the valve 28 only during a strong earthquake exceeding a predetermined value. Thereby, the compressed air is sent into the air pressure chamber 30 through the valve 28 and the pressurized air supply pipe 24 as described above, and the building 8 rises. As a result, the seismic effect is exerted particularly on the main shock of the earthquake that comes after the lapse of the initial tremor duration of the earthquake.

空気圧力室30内の圧力は、建屋8の全質量にも拠るが、通常、平屋〜3階建の場合はゲージ圧で2〜10kgf/cm2が好ましく、4階建以上の場合は階数に応じて追加加圧することが好ましい。なお、本発明は、軽い木造建築物に用いることが好ましいが、これに限られず、鉄筋コンクリート建築物、鉄骨建築物にも適用できる。 The pressure in the air pressure chamber 30 depends on the total mass of the building 8, but usually 2 to 10 kgf / cm 2 is preferable in the case of one to three stories, and the number of stories in the case of four or more stories. It is preferable to apply additional pressure accordingly. In addition, although it is preferable to use this invention for a light wooden building, it is not restricted to this, It can apply also to a reinforced concrete building and a steel frame building.

図1(A)、図4の例において、空気タンク26は、建屋8内の床上に備えているが、これに限られず、メンテナンスし易さや見栄えの良さなどに応じて、屋根裏、床下、屋外などに備えても良い。   In the example of FIG. 1 (A) and FIG. 4, the air tank 26 is provided on the floor in the building 8. However, the air tank 26 is not limited to this, and depending on the ease of maintenance, good appearance, etc. You may prepare for.

図5は、本発明に用いるバランサーを設ける前の空気断震建築物の一例における下部基盤、上部基盤にかけて設けられた位置修正装置46及びその周辺を示す正面断面図である。図5では、建屋は圧縮空気により浮上した状態にある。   FIG. 5 is a front cross-sectional view showing the position correcting device 46 provided on the lower base and the upper base in the example of the air-seismic building before providing the balancer used in the present invention, and the periphery thereof. In FIG. 5, the building is in a state of being floated by compressed air.

図5中、40は筒状に形成された上部位置固定部材で、上部基盤6の厚さ方向にその軸心を一致させて、上部基盤6を貫通して取付けてある。前記上部位置固定部材40の上端は、ボルト49により蓋48が気密に取付けてある。   In FIG. 5, reference numeral 40 denotes an upper position fixing member formed in a cylindrical shape, and is attached through the upper base 6 with its axis aligned with the thickness direction of the upper base 6. A lid 48 is airtightly attached to the upper end of the upper position fixing member 40 by a bolt 49.

42は下部位置固定部材で、有底円筒状に形成され、前記下部基盤4にその上面を露出して埋設されている。   Reference numeral 42 denotes a lower position fixing member which is formed in a bottomed cylindrical shape and is embedded in the lower base 4 with its upper surface exposed.

上部位置固定部材40と下部位置固定部材42とは、上下に互いに対向して配設され、これら上部位置固定部材40と下部位置固定部材42との間には複数のスプリング44が張設されている。スプリング44は、好ましくは、上部位置固定部材40と下部位置固定部材42との径方向に沿って張設される。   The upper position fixing member 40 and the lower position fixing member 42 are arranged opposite to each other in the vertical direction, and a plurality of springs 44 are stretched between the upper position fixing member 40 and the lower position fixing member 42. Yes. The spring 44 is preferably stretched along the radial direction of the upper position fixing member 40 and the lower position fixing member 42.

位置修正装置46の設置数は、建屋8の床面積(建坪)にも拠るが、通常の建坪、20〜200m2の場合は2〜8が好ましく、2〜5がより好ましい。建坪が200m2を超える場合は建坪に応じて位置修正装置46の設置数を追加することが好ましい。上部位置固定部材40と下部位置固定部材42とを連結するスプリング44の数は10〜30が好ましく、12〜20がより好ましい。上部位置固定部材40の内径及び下部位置固定部材42の内径は何れも400〜2000mmが好ましく、500〜1200mmがより好ましい。 The number of position correction devices 46 installed depends on the floor area (building area) of the building 8, but in the case of a normal building area of 20 to 200 m 2 , 2 to 8 are preferable, and 2 to 5 are more preferable. When the floor area exceeds 200 m 2 , it is preferable to add the number of position correction devices 46 according to the floor area. 10-30 are preferable and, as for the number of the springs 44 which connect the upper position fixing member 40 and the lower position fixing member 42, 12-20 are more preferable. The inner diameter of the upper position fixing member 40 and the inner diameter of the lower position fixing member 42 are both preferably 400 to 2000 mm, and more preferably 500 to 1200 mm.

図1(B)では、上部基盤6の断面において5本の加圧空気供給管24の断面と4本の上部位置固定部材40の断面が見えると共に、各上部位置固定部材40の内側には4本のスプリング44が見えている。   In FIG. 1B, in the cross section of the upper base 6, the cross section of the five pressurized air supply pipes 24 and the cross section of the four upper position fixing members 40 are visible, and 4 on the inner side of each upper position fixing member 40. The spring 44 of the book is visible.

以上の位置修正装置46を空気断震建築物が有することにより、地震鎮静後における下部基盤4と上部基盤6との位置ずれの修復性は高いものになる。   By having the above-described position correcting device 46 in the air-seismic building, the repairability of the positional deviation between the lower base 4 and the upper base 6 after the earthquake is calmed down.

即ち、特許文献4のような空気袋を用いる位置修正装置では、地震の揺れにより空気袋が潰れると位置ずれが生じてしまう。この位置ずれを修復するには、空気袋に高圧空気を注入する必要があり、工程や設備が煩雑になる。   That is, in the position correction apparatus using the air bag as in Patent Document 4, if the air bag is crushed due to the shaking of the earthquake, the position shift occurs. In order to repair this misalignment, it is necessary to inject high-pressure air into the air bag, and the process and equipment become complicated.

これに対し、位置修正装置46を有する空気断震建築物では、スプリング44は地震の揺れに対しても安定して作動する。また、地震の揺れに対して下部基盤4は大きい振幅で振動するが、上部基盤6は浮上しているため地震の揺れに対する振動の振幅は極めて小さい。更に、スプリング44により、下部基盤4の振動の中心と、上部基盤6の振動の中心とは、地震の揺れが続いている間でも位置ずれを起こし難い。そのため、位置修正装置46を有する空気断震建築物では、工程や設備は煩雑にならず、且つ、地震鎮静後における下部基盤4と上部基盤6との位置ずれの修復性は高いものになる。   On the other hand, in an air-seismic building having the position correcting device 46, the spring 44 operates stably against earthquake shaking. In addition, the lower base 4 vibrates with a large amplitude with respect to the shaking of the earthquake, but the amplitude of the vibration with respect to the shaking of the earthquake is extremely small because the upper base 6 has floated. Further, due to the spring 44, the center of vibration of the lower base 4 and the center of vibration of the upper base 6 are unlikely to be misaligned even during an earthquake. For this reason, in the air-seismic building having the position correcting device 46, the process and facilities are not complicated, and the repairability of the positional deviation between the lower base 4 and the upper base 6 after the earthquake is calmed down.

なお、下部位置固定部材42は有底筒状であることが好ましい。これにより、施工時における下部位置固定部材42の取付けは容易なものになる。下部位置固定部材42は有底筒状の場合、その深さは50〜300mmが好ましく、60〜200mmがより好ましい。   The lower position fixing member 42 is preferably a bottomed cylindrical shape. Thereby, attachment of the lower position fixing member 42 at the time of construction becomes easy. When the bottom position fixing member 42 has a bottomed cylindrical shape, the depth is preferably 50 to 300 mm, and more preferably 60 to 200 mm.

図8は、本発明の空気断震建築物の一例を示す概略図であり、図9(A)におけるV〜V線に沿った平面断面図である。   FIG. 8 is a schematic view showing an example of the air-seismic building of the present invention, and is a cross-sectional plan view taken along line V-V in FIG. 9 (A).

図8では、上部基盤6の断面において5本の加圧空気供給管24の断面と4本の位置修正装置46の上部位置固定部材40の断面が見えると共に、各上部位置固定部材40の内側には4本のスプリング44が見えている。更には、4本のバランサー50の上部シリンダー部62の断面が見えると共に、各上部シリンダー部62の内側には上部ピストン部72の断面が見えている。各上部ピストン部72の下方には下部シリンダー部66の断面が破線で示されている。   In FIG. 8, the cross section of the five pressurized air supply pipes 24 and the cross section of the upper position fixing member 40 of the four position correcting devices 46 can be seen in the cross section of the upper base 6, and inside each upper position fixing member 40. 4 springs 44 are visible. Furthermore, the cross section of the upper cylinder part 62 of the four balancers 50 is visible, and the cross section of the upper piston part 72 is visible inside each upper cylinder part 62. Below each upper piston portion 72, a cross section of the lower cylinder portion 66 is indicated by a broken line.

バランサー50の設置数は、建屋8の床面積(建坪)にも拠るが、通常の建坪、20〜200m2の場合は4〜10本が好ましい。建坪が200m2を超える場合は建坪に応じてバランサー50の設置数を追加することが好ましい。 The number of balancers 50 installed depends on the floor area (building area) of the building 8, but in the case of a normal building area of 20 to 200 m 2 , 4 to 10 are preferable. When the floor area exceeds 200 m 2 , it is preferable to add the number of balancers 50 according to the floor area.

図9は、本発明の空気断震建築物の一例におけるバランサー及びその周辺を示す正面断面図であり、(A)は、バランサー及びその周辺の上部基盤が下部基盤に対して浮上する前の状態を示し、(B)は、浮上した後の状態を示す。   FIG. 9 is a front cross-sectional view showing a balancer and its surroundings in an example of the air-seismic building of the present invention, and (A) is a state before the balancer and the surrounding upper base are lifted with respect to the lower base. (B) shows the state after rising.

図9中、50は上部基盤6の上面と下面との間を貫通して取付けられるバランサーである。このバランサー50は、シリンダー52と蓋54と加圧空気供給管56と滑り円盤58とピストン60とを有する。   In FIG. 9, reference numeral 50 denotes a balancer that is attached so as to penetrate between the upper surface and the lower surface of the upper base 6. The balancer 50 includes a cylinder 52, a lid 54, a pressurized air supply pipe 56, a sliding disk 58, and a piston 60.

シリンダー52は、大径の上部シリンダー部62と、上部シリンダー部62よりも小径の下部シリンダー部66と、上部シリンダー部62の底部内周から下部シリンダー部66の頂部内周に亘って形成した肩部64とを、これら軸心を一致させて一体に形成してなり、前記肩部64は上部シリンダー部62と下部シリンダー部66とを連結している。   The cylinder 52 includes an upper cylinder portion 62 having a large diameter, a lower cylinder portion 66 having a smaller diameter than the upper cylinder portion 62, and a shoulder formed from the inner periphery of the bottom portion of the upper cylinder portion 62 to the inner periphery of the top portion of the lower cylinder portion 66. The portion 64 is formed integrally with these axes aligned, and the shoulder portion 64 connects the upper cylinder portion 62 and the lower cylinder portion 66.

蓋54は、シリンダー52の上部開口を気密に閉塞する。図9の例では、蓋54は、その周縁側下面と上部基盤6の上面との間に、中心に通気孔を形成した円盤状のゴムシートやパッキン68を介在させてボルト70で締結して気密に閉塞している。締付けには、ワッシャー等を介在させても良い。   The lid 54 airtightly closes the upper opening of the cylinder 52. In the example of FIG. 9, the lid 54 is fastened with a bolt 70 with a disc-shaped rubber sheet or packing 68 having a vent hole formed in the center between the lower surface on the peripheral side and the upper surface of the upper base 6. Airtightly blocked. A washer or the like may be interposed for tightening.

加圧空気供給管56は、蓋54に取付けられ、蓋54を貫通して、シリンダー52内に加圧空気を供給する。図9の例では、加圧空気はC方向から加圧空気供給管56に導入され、シリンダー52内に供給されている。   The pressurized air supply pipe 56 is attached to the lid 54 and passes through the lid 54 to supply pressurized air into the cylinder 52. In the example of FIG. 9, the pressurized air is introduced into the pressurized air supply pipe 56 from the C direction and is supplied into the cylinder 52.

上部シリンダー部62の頂部は、外方、上方に向けて延長され、この延長部は鍔部65を形成している。鍔部65の頂部は、ボルト70の頂部のレベルよりも高い位置にあることが好ましい。   The top portion of the upper cylinder portion 62 extends outward and upward, and this extension portion forms a flange portion 65. It is preferable that the top portion of the flange portion 65 is located at a position higher than the level of the top portion of the bolt 70.

滑り円盤58は、下部シリンダー部66内の下端側に収納される。   The sliding disk 58 is housed on the lower end side in the lower cylinder portion 66.

ピストン60は、滑り円盤58上に載置されてシリンダー52内に収納されると共に、大径の上部ピストン部72と、上部ピストン部72よりも小径の下部ピストン部76と、上部ピストン部72の底部外周から下部ピストン部76の頂部外周に亘って形成した肩部74とを有し、前記肩部74は上部ピストン部72と下部ピストン部76とを連結している。   The piston 60 is placed on the sliding disk 58 and accommodated in the cylinder 52, and has a large-diameter upper piston portion 72, a lower piston portion 76 having a smaller diameter than the upper piston portion 72, and the upper piston portion 72. The shoulder portion 74 extends from the outer periphery of the bottom portion to the outer periphery of the top portion of the lower piston portion 76, and the shoulder portion 74 connects the upper piston portion 72 and the lower piston portion 76.

図10に示すように、ピストン60は、外周が樹脂82で被覆されたコンクリート84製が好ましい。被覆樹脂82の厚さは5〜30mmが好ましい。   As shown in FIG. 10, the piston 60 is preferably made of concrete 84 whose outer periphery is covered with a resin 82. The thickness of the coating resin 82 is preferably 5 to 30 mm.

上部ピストン部72の周面には少なくとも1本(図9の例では2本)のO−リング78を装着してなり、O−リング78によりシリンダー52内においてピストン60が上下方向に気密に摺動できる。   At least one (two in the example of FIG. 9) O-rings 78 is attached to the peripheral surface of the upper piston portion 72, and the piston 60 slides in the vertical direction in the cylinder 52 by the O-rings 78. I can move.

以上の構成のバランサー50において、下部ピストン部76の鉛直方向の長さLと滑り円盤58の厚さTとの合計は、下部シリンダー部66の鉛直方向の長さDよりも長く、好ましくは1〜35mm長く、より好ましくは5〜30mm長い。   In the balancer 50 configured as described above, the sum of the vertical length L of the lower piston portion 76 and the thickness T of the sliding disk 58 is longer than the vertical length D of the lower cylinder portion 66, preferably 1 It is -35 mm long, more preferably 5-30 mm long.

また、上部ピストン部72の鉛直方向の長さPは、上部シリンダー部62の鉛直方向の長さSよりも短く、好ましくは1〜50mm短く、より好ましくは5〜40mm短い。   The vertical length P of the upper piston part 72 is shorter than the vertical length S of the upper cylinder part 62, preferably 1 to 50 mm shorter, more preferably 5 to 40 mm shorter.

滑り円盤58としては、摺動性、弾性力、耐摩耗性、耐食性の面から樹脂成型物が好ましく、その樹脂としてはポリエチレン、ポリプロピレンなどの熱可塑性樹脂が好ましい。   The sliding disk 58 is preferably a resin molded product in terms of slidability, elastic force, wear resistance, and corrosion resistance, and the resin is preferably a thermoplastic resin such as polyethylene or polypropylene.

ピストン60の被覆樹脂82としては、強度、弾性力、耐摩耗性、耐食性の面から繊維強化樹脂成型物が好ましく、その樹脂としてはポリエチレン、ポリプロピレンなどの熱可塑性樹脂が好ましい。   The coating resin 82 of the piston 60 is preferably a fiber reinforced resin molded product from the viewpoint of strength, elasticity, wear resistance, and corrosion resistance, and the resin is preferably a thermoplastic resin such as polyethylene or polypropylene.

以上のバランサー50を空気断震建築物が有することにより、地震発生時において建屋の傾きを最小限に抑えて浮上し、建屋のバランスの保持性は高いものになる。   By having the above-described balancer 50 in the air-isolated building, the building can be lifted with a minimum inclination of the building when an earthquake occurs, and the balance of the building can be maintained.

即ち、本発明に用いるバランサーを設けていない空気断震建築物(例えば図1、4の場合)では、建屋8の地点によって荷重に偏りがあると、特に荷重が掛かる建屋の地点においては加圧空気供給管24から加圧空気を供給しても下部基盤4に対して上部基盤6が少ししか浮上しないことが発生してしまう。   That is, in an air seismic building without a balancer used in the present invention (for example, in the case of FIGS. 1 and 4), if the load is uneven depending on the point of the building 8, it is pressurized at the point of the building where the load is applied. Even if pressurized air is supplied from the air supply pipe 24, the upper base 6 may slightly float with respect to the lower base 4.

この少ししか浮上しない地点付近においては、下部基盤4と上部基盤6との間隙が殆ど無いので、その間隙に加圧空気を供給するには圧抵抗が高いものとなる。そのため、この少ししか浮上しない地点を解消するには、加圧空気供給管24からの加圧空気の圧力を高くする必要がある。しかし、この高圧加圧空気の圧力は、既に浮上している地点にも掛かり、建屋の浮上におけるアンバランスは益々拡大される。   There is almost no gap between the lower base plate 4 and the upper base plate 6 in the vicinity of the point where it floats only a little, so that pressure resistance is high to supply pressurized air to the gap. Therefore, in order to eliminate the point where only a small amount of air rises, it is necessary to increase the pressure of the pressurized air from the pressurized air supply pipe 24. However, the pressure of the high-pressure pressurized air is also applied to the already floating point, and the imbalance in the rising of the building is further expanded.

この問題を解決するためにバランサーを採用する。バランサー50を有する空気断震建築物(例えば図8、9の場合)では、地震発生時において加圧空気供給管24から空気圧力室30に加圧空気を供給すると共に、バランサー50の加圧空気供給管56から空気圧力室80に加圧空気を供給する。   A balancer is adopted to solve this problem. In an air-seismic building having a balancer 50 (for example, in the case of FIGS. 8 and 9), pressurized air is supplied from the pressurized air supply pipe 24 to the air pressure chamber 30 at the time of the occurrence of the earthquake, and the pressurized air of the balancer 50 is used. Pressurized air is supplied from the supply pipe 56 to the air pressure chamber 80.

空気圧力室80に加圧空気を供給すると、ピストン60の上面に下向きの応力が掛かり、ピストン60は下方に移動し、その結果傾いた建屋を押し上げ、建屋のバランスは回復する。   When pressurized air is supplied to the air pressure chamber 80, a downward stress is applied to the upper surface of the piston 60, and the piston 60 moves downward. As a result, the tilted building is pushed up, and the balance of the building is restored.

ピストン60の上面の面積は、滑り円盤58の下面の面積よりも大きい。従って、ピストン60の上面に加えられる応力は、これらの面積比で増幅される。空気圧力室30と空気圧力室80とに加えられる加圧空気の圧力が同じでも、ピストン60の押し下げる応力は上記のように増幅されているので、建屋は確実にバランスを取り戻す。   The area of the upper surface of the piston 60 is larger than the area of the lower surface of the sliding disk 58. Therefore, the stress applied to the upper surface of the piston 60 is amplified by these area ratios. Even if the pressures of the pressurized air applied to the air pressure chamber 30 and the air pressure chamber 80 are the same, the stress that pushes down the piston 60 is amplified as described above, so that the building reliably restores the balance.

そのため、ピストン60の上面は、滑り円盤58の下面に対して広くする。その面積倍率R(ピストン60の上面の面積/滑り円盤58の下面の面積)は1.1〜5倍とすることが好ましく、1.2〜2.5倍とすることがより好ましい。   Therefore, the upper surface of the piston 60 is made wider than the lower surface of the sliding disk 58. The area magnification R (the area of the upper surface of the piston 60 / the area of the lower surface of the sliding disk 58) is preferably 1.1 to 5 times, more preferably 1.2 to 2.5 times.

2 空気断震建築物
4 下部基盤
6 上部基盤
8 建屋
10 地盤
12、12b 平滑表面部
13、13b 被覆層
14 建屋の底部材
16、20、49、70 ボルト
18 切り欠き溝
A 上部基盤の下面の周縁における角部
B 上部基盤の下面の周縁における直線部
22、22a、22b、22c、22d 金属板
22ab 金属板の積重部分
E22a、E22b 金属板の側部
Wmax 上側と下側とに重ねた金属板の側部間の最大幅
24、56 加圧空気供給管
26 空気タンク
28 バルブ
30、80 空気圧力室
Y 下部基盤から上部基盤が浮上して形成される浮上間隙
32 加速度計
34 制御部
36 ゴム板
38 互いに近接する金属板の端部
40 上部位置固定部材
42 下部位置固定部材
44 スプリング
46 位置修正装置
48 上部位置固定部材の蓋
50 バランサー
52 シリンダー
54 バランサーの蓋
58 滑り円盤
60 ピストン
62 上部シリンダー部
64 シリンダーの肩部
65 シリンダー頂部の鍔部
66 下部シリンダー部
68 中心に通気孔を形成した円盤状のゴムシートやパッキン
72 上部ピストン部
74 ピストンの肩部
76 下部ピストン部
78 O−リング
82 コンクリート製ピストンの外周における被覆樹脂
84 ピストンの外周が樹脂で被覆されたコンクリート
C バランサーの加圧空気供給管に加圧空気を導入する方向を示す矢印
D 下部シリンダー部の鉛直方向の長さ
L 下部ピストン部の鉛直方向の長さ
P 上部ピストン部の鉛直方向の長さ
S 上部シリンダー部の鉛直方向の長さ
T 滑り円盤の厚さ
2 Air Seismic Building 4 Lower Base 6 Upper Base 8 Building 10 Ground 12, 12b Smooth Surface 13, 13b Covering Layer 14 Building Bottom Member 16, 20, 49, 70 Bolt 18 Notch Groove A Bottom of Upper Base Corner part at the periphery B Straight line part at the periphery of the lower surface of the upper base plate 22, 22a, 22b, 22c, 22d Metal plate 22ab Stacked portion of the metal plate E22a, E22b Metal plate side Wmax Metal stacked on the upper side and the lower side Maximum width between side portions of plates 24, 56 Pressurized air supply pipe 26 Air tank 28 Valve 30, 80 Air pressure chamber Y Floating gap formed by upper substrate floating from lower substrate 32 Accelerometer 34 Controller 36 Rubber Plate 38 End portions of metal plates adjacent to each other 40 Upper position fixing member 42 Lower position fixing member 44 Spring 46 Position correcting device 48 Upper position fixing Material cover 50 Balancer 52 Cylinder 54 Balancer cover 58 Sliding disk 60 Piston 62 Upper cylinder part 64 Cylinder shoulder part 65 Cylinder top part 66 Lower cylinder part 68 Disc-shaped rubber sheet or packing with a vent hole in the center 72 Upper piston portion 74 Piston shoulder portion 76 Lower piston portion 78 O-ring 82 Coating resin on the outer periphery of the concrete piston 84 Concrete with the outer periphery of the piston coated with resin C Pressurized air is supplied to the pressurized air supply pipe of the balancer Arrow indicating the direction of introduction D Vertical length of the lower cylinder part L Vertical length of the lower piston part P Vertical length of the upper piston part S Vertical length of the upper cylinder part T Sliding disk thickness

Claims (5)

少なくとも上面周縁に沿って所定幅の平滑表面部を形成してなる下部基盤と、
前記下部基盤の上面を覆って載置される上部基盤と、
前記上部基盤の上面に、前記上部基盤と一体に形成する建屋とからなり、
前記上部基盤は、
その下面の周縁に沿って形成した切り欠き溝と、
上部基盤の側面全周に亘り、上部基盤の下部側側面にその一端側が気密に固定される金属板であって、その他端側は下部基盤の平滑表面部方向に金属板の有する弾性力で付勢されて前記切り欠き溝に挿入されてなる複数の金属板と、
上部基盤を、その上面から下面にかけて貫通する、少なくとも1の加圧空気供給管と、
上部基盤の上面と下面との間を貫通して上部基盤に取付けられるバランサーであって、前記バランサーは、
大径の上部シリンダー部と、前記上部シリンダー部よりも小径の下部シリンダー部と、前記上部シリンダー部の底部内周から前記下部シリンダー部の頂部内周に亘って形成した肩部とを、これら軸心を一致させて一体に形成してなるシリンダーと、
前記シリンダーの上部開口を気密に閉塞する蓋と、
蓋に取付けられ、蓋を貫通して、シリンダー内に加圧空気を供給する加圧空気供給管と、
前記下部シリンダー部内の下端側に収納された滑り円盤と、
前記滑り円盤上に載置されてシリンダー内に収納されるピストンであって、前記ピストンは、大径の上部ピストン部と、前記上部ピストン部よりも小径の下部ピストン部と、前記上部ピストン部の底部外周から前記下部ピストン部の頂部外周に亘って形成した肩部とを有すると共に前記上部ピストン部の周面にはO−リングを装着してなり、前記O−リングによりシリンダー内においてピストンが上下方向に気密に摺動できるバランサーと、
を有する空気断震建築物。
A lower base formed by forming a smooth surface portion of a predetermined width along at least the upper surface periphery;
An upper base placed over the upper surface of the lower base;
The upper surface of the upper base consists of a building formed integrally with the upper base,
The upper base is
A notch groove formed along the periphery of the lower surface;
A metal plate whose one end is airtightly fixed to the lower side surface of the upper base over the entire side surface of the upper base, and the other end is attached by the elastic force of the metal plate toward the smooth surface portion of the lower base. A plurality of metal plates that are energized and inserted into the notch grooves;
At least one pressurized air supply pipe passing through the upper base from its upper surface to its lower surface;
A balancer penetrating between the upper surface and the lower surface of the upper base and attached to the upper base, wherein the balancer is
These shafts have a large-diameter upper cylinder part, a lower cylinder part having a smaller diameter than the upper cylinder part, and a shoulder part formed from the bottom inner periphery of the upper cylinder part to the top inner periphery of the lower cylinder part. A cylinder that is formed integrally with the same heart,
A lid for hermetically closing the upper opening of the cylinder;
A pressurized air supply pipe that is attached to the lid, passes through the lid, and supplies pressurized air into the cylinder;
A sliding disk stored on the lower end side in the lower cylinder part;
A piston placed on the sliding disk and housed in a cylinder, wherein the piston comprises a large-diameter upper piston portion, a lower piston portion having a smaller diameter than the upper piston portion, and the upper piston portion. A shoulder portion formed from the bottom outer periphery to the top outer periphery of the lower piston portion, and an O-ring is mounted on the peripheral surface of the upper piston portion, and the piston moves up and down in the cylinder by the O-ring. A balancer that can slide in an airtight direction,
Air seismic building with
上部基盤の下面がその周縁に少なくとも1の角部を有し、複数の金属板のうちの角部における互いに近接する少なくとも1組は、その側部を互いに所定幅で重ねると共に、上側に重ねた金属板の側部に、前記側部から下側に重ねた金属板を覆いつつ外方に延伸するゴム板を金属板に貼着することにより、上側と下側とに重ねた金属板との積重部分を前記ゴム板で覆ってなる請求項1に記載の空気断震建築物。   The lower surface of the upper base has at least one corner on the periphery thereof, and at least one pair of the metal plates adjacent to each other at the corner overlaps the sides with a predetermined width and the upper side. By attaching a rubber plate that extends outward while covering the metal plate stacked on the lower side from the side portion to the side of the metal plate, the metal plate stacked on the upper side and the lower side The air-seismic building according to claim 1, wherein a stacking portion is covered with the rubber plate. 上部基盤の上面と下面との間を貫通して取付けられ、その頂部開口部は蓋を着脱自在に冠着されて気密に密閉されてなる筒状の上部位置固定部材と、前記上部位置固定部材と対向して下部基盤にその上面を露出して取付けられた筒状の下部位置固定部材と、前記上部位置固定部材と前記下部位置固定部材とをそれらの径方向に沿って互いに連結する複数のスプリングとからなる位置修正装置を有する請求項1に記載の空気断震建築物。   A cylindrical upper position fixing member which is attached through the upper surface and the lower surface of the upper base, the top opening of which is detachably crowned and hermetically sealed, and the upper position fixing member A cylindrical lower position fixing member that is attached to the lower base so that the upper surface is exposed, and a plurality of the upper position fixing member and the lower position fixing member that are connected to each other along their radial direction. The air-isolated building according to claim 1, further comprising a position correcting device including a spring. 下部位置固定部材が有底筒状である請求項3に記載の空気断震建築物。   The air-seismic building according to claim 3, wherein the lower position fixing member has a bottomed cylindrical shape. 平滑表面部が、下部基盤の上面周縁に沿って被覆層を積層して形成してなる請求項1に記載の空気断震建築物。   The air-seismic building according to claim 1, wherein the smooth surface portion is formed by laminating a coating layer along the upper surface periphery of the lower base.
JP2013195344A 2013-09-20 2013-09-20 Air vibration-cutting architectural structure Pending JP2015059391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013195344A JP2015059391A (en) 2013-09-20 2013-09-20 Air vibration-cutting architectural structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013195344A JP2015059391A (en) 2013-09-20 2013-09-20 Air vibration-cutting architectural structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016003903U Continuation JP3207824U (en) 2016-08-10 2016-08-10 Air seismic building

Publications (1)

Publication Number Publication Date
JP2015059391A true JP2015059391A (en) 2015-03-30

Family

ID=52817153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013195344A Pending JP2015059391A (en) 2013-09-20 2013-09-20 Air vibration-cutting architectural structure

Country Status (1)

Country Link
JP (1) JP2015059391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089277A (en) * 2015-11-12 2017-05-25 株式会社三誠Air断震システム Rubber plate cushioning mechanism, and air levitation-type base isolation device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293685A (en) * 1998-04-07 1999-10-26 Sumitomo Metal Ind Ltd Base isolation structure of construction
JP3119675U (en) * 2005-10-05 2006-03-09 祥一 坂本 Pneumatic floating type seismic isolation device
JP2008208696A (en) * 2007-02-26 2008-09-11 Shoichi Sakamoto Pneumatic base isolation device for restoring positional deviation
JP3150746U (en) * 2008-11-14 2009-06-04 美穂 坂本 Horizontal correction device for air levitation type seismic isolation device
JP2012067840A (en) * 2010-09-22 2012-04-05 Junichiro Omata Horizontal seismic-isolated table device
JP2012241351A (en) * 2011-05-17 2012-12-10 Nippon Steel Corp Base isolation structure and construction method of the same
WO2013073507A2 (en) * 2011-11-14 2013-05-23 坂本 美穂 Cassette vibration isolation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293685A (en) * 1998-04-07 1999-10-26 Sumitomo Metal Ind Ltd Base isolation structure of construction
JP3119675U (en) * 2005-10-05 2006-03-09 祥一 坂本 Pneumatic floating type seismic isolation device
JP2008208696A (en) * 2007-02-26 2008-09-11 Shoichi Sakamoto Pneumatic base isolation device for restoring positional deviation
JP3150746U (en) * 2008-11-14 2009-06-04 美穂 坂本 Horizontal correction device for air levitation type seismic isolation device
JP2012067840A (en) * 2010-09-22 2012-04-05 Junichiro Omata Horizontal seismic-isolated table device
JP2012241351A (en) * 2011-05-17 2012-12-10 Nippon Steel Corp Base isolation structure and construction method of the same
WO2013073507A2 (en) * 2011-11-14 2013-05-23 坂本 美穂 Cassette vibration isolation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016003384; 'メカライフな人々No.25' 日本機械学会誌 Vol.113、No.1099, 201006, 451-455 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089277A (en) * 2015-11-12 2017-05-25 株式会社三誠Air断震システム Rubber plate cushioning mechanism, and air levitation-type base isolation device

Similar Documents

Publication Publication Date Title
US9109357B2 (en) Modular isolation systems
JP4983326B2 (en) Improved ground and its construction method
JP2691471B2 (en) Seismic isolation support device
WO2013125231A1 (en) Seismic isolation structure for heavy objects, and seismic isolation method
CN103206064A (en) Earthquake resisting apparatus
US20140298656A1 (en) Structure reinforcement partial shell
JP3207824U (en) Air seismic building
JP2015059391A (en) Air vibration-cutting architectural structure
JP3207823U (en) Air seismic building
JP2011202769A (en) Levitation type base isolation device
JP6152406B2 (en) Rubber plate shock absorber and air levitation type seismic isolation device
JP2008069535A (en) Bearing power testing method and testing device for pile buried in ground
JP3119675U (en) Pneumatic floating type seismic isolation device
US20210206563A1 (en) Peripheral sealing assembly for an internal floating roof
JP2015059390A (en) Air vibration-cutting architectural structure
TW201842281A (en) Base isolation supporting device
TW201738434A (en) Seismic isolation bearing for bridge and bridge using the same
JP2004108316A (en) Water-tight base for installation of pump and pump equipment
JP2011058624A (en) Base isolation structure and building
CN105156540A (en) Air cushion shock absorber
JP2008296946A (en) Manhole apparatus for underground tank
JPH11125306A (en) Base isolation system
JPH1037212A (en) Vibration-isolation ground
JP6940092B2 (en) How to replace the seismic isolation support system and seismic isolation device
JP2012077876A (en) Base isolation structure

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20151102

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20151113

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20151216

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160607

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160902