JPH02209526A - Anti-seismic mechanism of building - Google Patents

Anti-seismic mechanism of building

Info

Publication number
JPH02209526A
JPH02209526A JP2715089A JP2715089A JPH02209526A JP H02209526 A JPH02209526 A JP H02209526A JP 2715089 A JP2715089 A JP 2715089A JP 2715089 A JP2715089 A JP 2715089A JP H02209526 A JPH02209526 A JP H02209526A
Authority
JP
Japan
Prior art keywords
building
air
earthquake
bearings
foundation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2715089A
Other languages
Japanese (ja)
Other versions
JPH0563580B2 (en
Inventor
Norihide Kojika
紀英 小鹿
Yoshiyuki Kasai
河西 良幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2715089A priority Critical patent/JPH02209526A/en
Publication of JPH02209526A publication Critical patent/JPH02209526A/en
Publication of JPH0563580B2 publication Critical patent/JPH0563580B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To shut off vibration by installing a number of air bearings under the borne part of a building, sending high compressed air to these air bearings from a compressor in the event of an earthquake, and putting the borne part afloat in the air. CONSTITUTION:A groove 4 is formed in the undersurface of a foundation slab 3 of building mass 2, and air bearings 6 installed on a plate 5 are slipped into this groove 4. These bearings 6 are connected with a compressor 12 through a flexible hose 11, and output from a seismic sensing device is introduced to a computer, and a valve 13 is controlled. When an earthquake has occurred, the valve 13 is opened with the output from sensing, and the air in an air receiver 14 is released, and air is jetted out of the bearings 6, and by this pressure the whole mass 2 is put afloat from the foundation 1. Thus vibration is shut, and flame damage, etc., of building can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地震の発生時にその振動を遮断できる建物の
遮震機構に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vibration isolation mechanism for a building that can isolate vibrations when an earthquake occurs.

〔従来の技術〕[Conventional technology]

従来、高層建築や重要構造物の耐震設計においては、地
震時の地盤の動きや建物の応答を計算し、安全性をチエ
ツクする動的設計が行われている。
Conventionally, in the seismic design of high-rise buildings and important structures, dynamic design has been performed to check safety by calculating the ground movement and building response during an earthquake.

耐震の方法としては、建物と基礎の間に積層ゴム支承や
ダンパーを介在させた免震構法あるいは滅震構法、建物
構成部材のうち、非主要部材の破壊により、地震エネル
ギーを消費させる方法、壁あるいは柱などにスリットを
設け、建物を最適の剛性に調整する方法などがある。
Earthquake resistance methods include seismic isolation or seismic attenuation construction methods in which laminated rubber bearings or dampers are interposed between the building and the foundation, methods to consume earthquake energy by destroying non-main building components, and walls. Another method is to create slits in pillars, etc., and adjust the building's rigidity to the optimum level.

C発明が解決しようとする課題〕 ところで、現行の耐震設計手法により設計された建物の
地震時における安全性の確認は、構造物の塑性化を伴う
履歴特性による吸収エネルギーが構造物に作用する地震
エネルギーを上回るという基本思想によるものであるが
、これには履歴ループ特性に対する信頼性の問題がある
[Problem to be solved by invention C] By the way, confirmation of the safety of buildings designed using current seismic design methods in the event of an earthquake is based on earthquakes in which absorbed energy due to the hysteresis characteristics accompanied by plasticization of the structure acts on the structure. This is based on the basic idea of exceeding energy, but this has the problem of reliability regarding the hysteresis loop characteristics.

また、従来の方法はいずれも地震や風などの自然外力に
対し、受身の耐震構造を与えるものであリ、建物が特性
の固有振動数を有するため地震という不確定な入力に対
し、共振現象を避けて通ることはできない。
In addition, all conventional methods provide a passive earthquake-resistant structure against natural external forces such as earthquakes and wind, but because buildings have a characteristic natural frequency, they cannot resist resonance phenomena in response to an uncertain input such as an earthquake. You cannot avoid it.

本発明の目的は前記の従来例の不都合を解消し、地震に
対する応答を著しく低減でき、建物の地震災害を防ぐと
ともに、中に居住する人や機械設備などを地震による不
快怒、振動障害などから守ることができる建物の遮震機
構を提供することにある。
The purpose of the present invention is to eliminate the above-mentioned disadvantages of the conventional example, to significantly reduce the response to earthquakes, to prevent earthquake disasters in buildings, and to protect people and machinery inside from earthquake-induced discomfort, vibration damage, etc. The objective is to provide a seismic isolation mechanism for buildings that can be protected.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記目的を達成するため、高圧圧縮空気の送入
パイプを取付けた金属製盤体に膜によるスカート部を設
けてなるエアーベアリングを、建物の被支承部分下に多
数適宜間隔で配設し、地震の発生時に該エアーベアリン
グにコンプレッサーから高圧圧縮空気を送り込んで支承
部分から被支承部分を空中に浮上させることを要旨とす
るものである。
In order to achieve the above object, the present invention installs a large number of air bearings, each of which is made of a metal disc body to which a high-pressure compressed air supply pipe is attached and has a membrane skirt part, arranged at appropriate intervals under the supported part of the building. The gist of this system is to send high-pressure compressed air from a compressor to the air bearing to levitate the supported part from the supporting part into the air when an earthquake occurs.

〔作用〕[Effect]

本発明によれば、地震の発生時に送入パイプを介してエ
アーベアリング内に高圧圧縮空気を送り込めば、エアー
ベアリングのスカート部内にこれがたまるとともにその
下端から外へ吹き出して上昇作用を発揮する。
According to the present invention, when high-pressure compressed air is sent into the air bearing through the inlet pipe when an earthquake occurs, the air accumulates inside the skirt of the air bearing and blows out from the lower end to exert a lifting effect.

このようにして多数のエアーベアリングにより建物の被
支承部分は支承部分から分離してわずかに浮上するので
、地震の揺れは支承部分から被支承部分に伝わることは
ない。
In this way, the supported part of the building is separated from the supported part and slightly floated by the large number of air bearings, so that the shaking of the earthquake is not transmitted from the supported part to the supported part.

〔実施例〕〔Example〕

以下、図面について本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明の建物の遮震機構の第1実施例を示す
縦断側面図、第2図は同上横断平面図で、図中1は建物
の支承部分としての基礎、2は被支承部分としての建物
矩形であり、これらは分割可能に接合する。
Fig. 1 is a vertical side view showing a first embodiment of the seismic isolation mechanism for a building according to the present invention, and Fig. 2 is a cross-sectional plan view of the same. It is a building rectangle as parts, and these parts are joined so that they can be divided.

建物躯体2の基礎スラブ3の下面に適宜間隔で溝4を形
成し、この溝4内に2個を1組として板5に取付けたエ
アーベアリング6をこの板5ごと側面から滑り込ませる
Grooves 4 are formed at appropriate intervals on the lower surface of the foundation slab 3 of the building frame 2, and two air bearings 6 attached to a plate 5 are slid into the grooves 4 from the side surface together with the plate 5.

第4図、第5図はエアーベアリング6の詳細を示すもの
で、楕円形のスチール板による金属製盤体7の下面にウ
レタン膜を曲成して形成したスカート部8を設け、かつ
金属製盤体7の上面にスチール製の高圧圧縮空気の送入
パイプ9を取付けた。
4 and 5 show details of the air bearing 6, in which a skirt portion 8 formed by bending a urethane film is provided on the lower surface of a metal disk body 7 made of an oval steel plate, and a skirt portion 8 made of metal A high-pressure compressed air supply pipe 9 made of steel was attached to the upper surface of the panel body 7.

図中10は、たるみを持たせて周囲を金属製盤体7の周
囲に固定したウレタン膜の中央を金属製盤体7の下面中
央に固定するスチール板である。
In the figure, reference numeral 10 denotes a steel plate that fixes the center of the urethane film, whose periphery is fixed around the metal disk 7 with slack, to the center of the lower surface of the metal disk 7.

第3図はエアーベアリング6の原理を示す説明図で、送
入パイプ9にフレキシブルホース11を介してコンプレ
ッサー12を接続し、このコンプレッサー12より高圧
圧縮空気を送入すれば、この空気の一部は金属製盤体7
とウレタン膜との間に入りウレタン膜を膨らませてスカ
ート部8となる。
FIG. 3 is an explanatory diagram showing the principle of the air bearing 6. A compressor 12 is connected to the inlet pipe 9 via a flexible hose 11, and if high-pressure compressed air is sent from the compressor 12, a portion of this air can be is metal board 7
and the urethane film and inflates the urethane film to form the skirt portion 8.

さらに、高圧圧縮空気はウレタン膜の下部、すなわちス
カート部8内に溜り、このスカート部8の下端から外へ
吹き出してエアーベアリング6を約0.003 m程度
浮上させる。
Further, the high-pressure compressed air accumulates in the lower part of the urethane film, that is, in the skirt part 8, and is blown out from the lower end of the skirt part 8, thereby floating the air bearing 6 by about 0.003 m.

本発明ではこのようなエアーベアリング6を多数フレキ
シブルホース11で接続し、バルブ13及びエアレシー
バ−14を介してコンプレッサー12に連結するように
した。
In the present invention, a large number of such air bearings 6 are connected by flexible hoses 11 and connected to a compressor 12 via a valve 13 and an air receiver 14.

また、図示は省略するが、建物を中心に狭域および広域
に地震感知装置を配置し、この地震感知装置からの観測
データを有線、無線の通信網によりコンピュータに伝達
する。その場合、広域の地震感知装置は既設の地震観測
点における地震計あるいは専用に設置したものをマイク
ロ回線あるいは電話回線で結ぶ。また、狭域の地震感知
装置は建物の周辺あるいは周辺地盤内に設けた地震計や
、建物基部や建物内に設置した振動センサーからなる。
Although not shown in the drawings, earthquake sensing devices are placed in both narrow and wide areas around buildings, and observation data from the earthquake sensing devices is transmitted to the computer via wired and wireless communication networks. In that case, the wide-area earthquake sensing equipment is connected to seismometers at existing earthquake observation points or specially installed equipment via micro-wires or telephone lines. In addition, narrow-area earthquake sensing devices consist of seismometers installed around buildings or in the surrounding ground, and vibration sensors installed at the base of buildings or inside buildings.

このようにして、地震感知装置からの出力をコンピュー
タに導入し、該コンピュータを介してエアレシーバ−1
4やバルブ13を制御するようにする。
In this way, the output from the earthquake sensing device is introduced into the computer and via the computer the air receiver 1
4 and valve 13.

次に、使用法及び動作について説明すると、通常時はエ
アベアリング6は作動せず、基礎スラブ3は基礎1に接
合して、建物躯体2は静止した状態を保つ。
Next, the usage and operation will be explained. Normally, the air bearing 6 does not operate, the foundation slab 3 is joined to the foundation 1, and the building frame 2 remains stationary.

地震が発生し、この地震を地震感知装置が感知すると、
コンピュータエアコンブレッザー12のバルブ13が開
くように指示が出され、エアレシーバ−14内の空気が
瞬時に流れ出して、建物躯体2と基盤1の間に設置され
たエアーベアリング6から空気を噴射しその圧力によっ
て建物躯体2の全体を基盤1から浮上させる。
When an earthquake occurs and an earthquake sensor detects this earthquake,
An instruction is issued to open the valve 13 of the computer air conditioner blazer 12, and the air in the air receiver 14 flows out instantly, injecting air from the air bearing 6 installed between the building frame 2 and the foundation 1. The pressure causes the entire building frame 2 to float above the foundation 1.

地震終了後は、エアーベアリング6は作動しなくなり、
建物躯体2はもとの状態にもどる。
After the earthquake ends, air bearing 6 will no longer operate.
The building frame 2 returns to its original state.

なお、エアーベアリング6の点検、補修時には、板5ご
と溝4から引き抜けばよい。
Note that when inspecting or repairing the air bearing 6, it is sufficient to pull out the entire plate 5 from the groove 4.

以上の実施例は、建物躯体2の全体を浮」ニさせる場合
について説明したが、建物の被支承部分は床で、この床
を支える支承部分としての建物η目体との間にエアーベ
アリング6を配設し、床すなわち建物の一部のみを浮上
させることもできる。
In the above embodiments, the case where the entire building frame 2 is made to float has been described. It is also possible to raise only a portion of the floor, that is, a part of the building.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の建物の遮震機構は、地震発生
時に建物の被支承部分を支承部分から浮上させるように
して、入力地震を遮断することにより、建物の応答を著
しく低減させ、建物の地震災害を防ぐとともに、中に居
住する人や機械設備などを地震による不快感、振動障害
などから守ることができるものである。
As described above, the building seismic isolation mechanism of the present invention allows the supported parts of the building to rise above the supporting parts when an earthquake occurs, thereby blocking the input earthquake, thereby significantly reducing the response of the building. In addition to preventing earthquake disasters, it can also protect the people living inside and machinery and equipment from discomfort and vibration disturbances caused by earthquakes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の建物の遮震機横の1実施例を示す縦断
側面図、第2図は同上横断平面図、第3図はエアーベア
リングの原理を示す説明図、第4図はエアーベアリング
の平面図、第5図は第4図のA−A線断面図である。
Fig. 1 is a vertical cross-sectional side view showing one embodiment of the building seismic isolator of the present invention, Fig. 2 is a cross-sectional plan view of the same, Fig. 3 is an explanatory diagram showing the principle of air bearing, and Fig. 4 is an air bearing. A plan view of the bearing, FIG. 5 is a sectional view taken along the line A--A in FIG. 4.

Claims (3)

【特許請求の範囲】[Claims] (1)高圧圧縮空気の送入パイプを取付けた金属製盤体
に膜によるスカート部を設けてなるエアーベアリングを
、建物の被支承部分下に多数適宜間隔で配設し、地震の
発生時に該エアーベアリングにコンプレッサーから高圧
圧縮空気を送り込んで支承部分から被支承部分を空中に
浮上させることを特徴とする建物の遮震機構。
(1) A large number of air bearings, which are made of a metal plate with a membrane skirt attached to a high-pressure compressed air supply pipe, are placed under the supported parts of the building at appropriate intervals, so that they can be used in the event of an earthquake. A seismic isolation mechanism for buildings that is characterized by sending high-pressure compressed air from a compressor into an air bearing to levitate the supported part from the supporting part into the air.
(2)建物の被支承部分は基礎スラブ、支承部分は基盤
で、建物全体を浮上させる請求項第1項記載の建物の遮
震機構。
(2) The seismic isolation mechanism for a building according to claim 1, wherein the supported part of the building is a foundation slab, the supporting part is a foundation, and the entire building is floated.
(3)建物の被支承部分は床、支承部分はこの床に対す
る建物躯体で、床を浮上させる請求項第1項記載の建物
の遮震機構。
(3) The seismic isolation mechanism for a building according to claim 1, wherein the supported part of the building is a floor, and the supported part is a building frame relative to this floor, and the floor is floated.
JP2715089A 1989-02-06 1989-02-06 Anti-seismic mechanism of building Granted JPH02209526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2715089A JPH02209526A (en) 1989-02-06 1989-02-06 Anti-seismic mechanism of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2715089A JPH02209526A (en) 1989-02-06 1989-02-06 Anti-seismic mechanism of building

Publications (2)

Publication Number Publication Date
JPH02209526A true JPH02209526A (en) 1990-08-21
JPH0563580B2 JPH0563580B2 (en) 1993-09-10

Family

ID=12213020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2715089A Granted JPH02209526A (en) 1989-02-06 1989-02-06 Anti-seismic mechanism of building

Country Status (1)

Country Link
JP (1) JPH02209526A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235700A (en) * 2008-03-26 2009-10-15 Kumagai Gumi Co Ltd Seismic isolation structure building
US20110053486A1 (en) * 2009-08-16 2011-03-03 G-Con, Llc Modular, self-contained, mobile clean room
JP2017227323A (en) * 2016-06-21 2017-12-28 根本企画工業株式会社 Air pad for base isolation device
US10106974B2 (en) 2008-12-23 2018-10-23 Xoma (Us) Llc Flexible manufacturing system
US11492795B2 (en) 2020-08-31 2022-11-08 G-Con Manufacturing, Inc. Ballroom-style cleanroom assembled from modular buildings
US11624182B2 (en) 2019-08-15 2023-04-11 G-Con Manufacturing, Inc. Removable panel roof for modular, self-contained, mobile clean room

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235700A (en) * 2008-03-26 2009-10-15 Kumagai Gumi Co Ltd Seismic isolation structure building
US10106974B2 (en) 2008-12-23 2018-10-23 Xoma (Us) Llc Flexible manufacturing system
US10294658B2 (en) 2008-12-23 2019-05-21 Xoma (Us) Llc Flexible manufacturing system
US20110053486A1 (en) * 2009-08-16 2011-03-03 G-Con, Llc Modular, self-contained, mobile clean room
US9518748B2 (en) * 2009-08-16 2016-12-13 G-Con Manufacturing Inc. Modular, self-contained, mobile clean room
JP2017227323A (en) * 2016-06-21 2017-12-28 根本企画工業株式会社 Air pad for base isolation device
US11624182B2 (en) 2019-08-15 2023-04-11 G-Con Manufacturing, Inc. Removable panel roof for modular, self-contained, mobile clean room
US11492795B2 (en) 2020-08-31 2022-11-08 G-Con Manufacturing, Inc. Ballroom-style cleanroom assembled from modular buildings

Also Published As

Publication number Publication date
JPH0563580B2 (en) 1993-09-10

Similar Documents

Publication Publication Date Title
JP6372033B2 (en) Anti-vibration vibration reduction device
JPH02209526A (en) Anti-seismic mechanism of building
JP5264241B2 (en) Seismic isolation building
JPH0561427B2 (en)
JP6530830B1 (en) Sound reduction system
JP4138534B2 (en) Semi-fixing device for seismic isolation structure
JPH01263333A (en) Variable bending rigidity device for structure
JP2706366B2 (en) Seismic isolation device using liquefaction characteristics of sand
JPH08303053A (en) Clean room building structure
JPH0559230B2 (en)
JP3739725B2 (en) Seismic isolation structure in wooden buildings
JP2003097086A (en) Base isolation building and construction method therefor
JPH0674671B2 (en) Seismic isolation device
JPH03244767A (en) Anti-seismic and vibration resisting device for structure
JPS62268478A (en) Earthquakeproof method of building
JPH01247633A (en) Damping mechanism for vibrationproof device
JPH01131741A (en) Variable rigid brace
CA1160650A (en) System for protecting a body from motions transmitted through the ground
JPH04272306A (en) Housetop helicopter port
JPH09144375A (en) Base isolation device
JPH01127742A (en) Variable length type variable rigid wire brace for guilding frame
KR20230039245A (en) Seismic support for gas pipe
JP3009650B1 (en) Trigger mechanism for seismic isolation device
JPH0413515B2 (en)
JPH01247667A (en) Multistoried quake-free damping structure