JP3739725B2 - Seismic isolation structure in wooden buildings - Google Patents

Seismic isolation structure in wooden buildings Download PDF

Info

Publication number
JP3739725B2
JP3739725B2 JP2002159825A JP2002159825A JP3739725B2 JP 3739725 B2 JP3739725 B2 JP 3739725B2 JP 2002159825 A JP2002159825 A JP 2002159825A JP 2002159825 A JP2002159825 A JP 2002159825A JP 3739725 B2 JP3739725 B2 JP 3739725B2
Authority
JP
Japan
Prior art keywords
seismic isolation
foundation
base
building
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002159825A
Other languages
Japanese (ja)
Other versions
JP2004003189A (en
Inventor
国夫 木下
Original Assignee
国夫 木下
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国夫 木下 filed Critical 国夫 木下
Priority to JP2002159825A priority Critical patent/JP3739725B2/en
Publication of JP2004003189A publication Critical patent/JP2004003189A/en
Application granted granted Critical
Publication of JP3739725B2 publication Critical patent/JP3739725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地震による木造建築物の倒壊、破壊を確実に防止する様にした木造建築物における免震構造に関する。
【0002】
【従来の技術】
従来、木造建築物はコンクリートの基礎上に建築物の土台をアンカーボルトによって緊結し、地震の衝撃、振動などによって基礎から建築物がずれ落ちない様にし、又木造建築物においては柱間に斜めに取付けた筋違を設けたり、壁を多数設けたりして地震による衝撃に耐える構造となしているだけであって、衝撃、振動を緩和する構造ではないため、規模の大きい地震では建築物の倒壊、破壊を防止することが出来ないのが現状であった。
【0003】
そこで、本願出願人は、特許第3034449号として、「木造建築物における基礎と土台の間に介装される免震装置であって、圧縮コイルバネからなる弾性体の上下に座板を設け、該座板間に弾性を有する筒状の胴部を設けてその内部を気密閉塞すると共に、胴部に空気流通口を設けたことを特徴とする木造建築物における免震構造。」を発明した。
これは、弾性体の弾性作用により、地震による振動の減衰を早め、建築物に生ずる衝撃や振動の吸収、緩衝を図り、而も地震による衝撃、特に直下型地震の縦揺れを受けて弾性体が収縮する時に胴部内の空気室内の空気が圧縮され、空気流通穴より徐々に排気され、かかる空気室内の空気の圧縮により急激な衝撃に対する緩衝作用を促し、逆に弾性体が伸長する時には空気室内の空気が空気流通穴より徐々に吸い込まれ、弾性体の急激な伸長状態を抑制し、伸縮する弾性体に生ずる衝撃を緩和出来、よって弾性体のみを有し空気室を設けていない他の免震装置よりもその免震性の向上を図ることが出来、建築物の破壊、倒壊を防止出来る様にしたものである。
【0004】
【発明が解決しようとする課題】
しかし、上記従来技術のものは、縦揺れに対する確実な免震機能を具備している反面、基礎側に固定されている関係上、横揺れに対する免震機能は弾性体の変形によるものだけで変形量には限界があるため、弾性体の変形量だけでは賄えない振幅の大きい地震になると、衝撃が建築物側に伝搬してしまって、建築物の一部破損、室内家具の倒壊等の可能性を否定し切れない等、解決せねばならない課題があった。
【0005】
【課題を解決するための手段】
本発明は、上記従来技術に基づく、直下型で振幅の大きい地震に対応することが困難な課題に鑑み、上記従来の免震装置の下部に、該免震装置を任意方向にスライド可能にする転がり支承手段を設け、該免震装置を、基礎スラブ上に設けた複数個の支持基礎の上面に設けた凹部の底面上に載置すると共に、該免震装置上に土台を載架、固定して、地震による衝撃、振動による弾性体の急激な伸縮を緩和し免震性を向上させ、且つ免震装置自体も地盤に対し切り離されてスライド可能となって、免震装置における弾性体の変形量及び免震装置のスライド量の和により、大きい振幅の地震にも対応する様にしたことによって、直下型大地震における大きい縦・横揺れによる衝撃が建築物側へ伝搬しない様にして、上記課題を解決する。
【0006】
【発明の実施の形態】
以下本発明の一実施例を図面に基づいて説明する。
図7、8に示す様に、地盤W上に構築したコンクリート基礎スラブ1上の適所に多数の支持基礎3、3a…を設けると共に、該支持基礎3、3a…上に免震装置4、4a…を載置し、該免震装置4、4a…上に建築物2の土台5を載置固定し、免震装置4、4a…を支持基礎3、3a…(基礎スラブ1)と土台5間に介装している。
【0007】
免震装置4、4a…の配置個所は少なくとも管柱、通し柱等の主要な柱6が立設される土台5下部に対応した位置に設け、又好ましくは前記配置個所及びかかる配置個所間の適所に単数又は多数配置するのが良く、要するに基礎スラブ1上に構築される建築物2の重量とバランスを考慮し、免震装置4、4a…により建築物2を基礎スラブ1に対し水平配置する様になしている。
【0008】
各支持基礎3、3a…の上面に凹部7を形成し、該凹部7の底面7aの中央を平坦部7bとすると共に、該平坦部7bの外周部を緩斜面部7cとし、平坦部7b上に免震装置4、4a…が載置されている。
【0009】
免震装置4、4a…は、図1〜3に示す様に、弾性体8の上下に座板9、9aを固定し、上方の座板9に土台5を固定する支持ボルト10、10a …を突設し、該支持ボルト10、10a …は座板9、9aに対しナット締め又は溶接等の手段によって固定している。
弾性体8は1つの圧縮コイルバネ11、又は図1に示す様に、少なくとも2つ以上の径の違った圧縮コイルバネ11、11a を同心に組み合わせ、且つ内外相互の圧縮コイルバネ11、11a のコイルの巻方向を反対にした同心圧縮コイルバネ12からなる。そして、弾性体8を同心圧縮コイルバネ12にすることで、地震による衝撃に対し横座屈、振動などが起きず、而も出来るだけ大きい能力の弾性作用を具有して、地震による振動の減衰をより早めることが可能になる。
座板9、9aは基礎スラブ1及び土台5の幅より若干大きな径又は辺を有する円板状又は方形状に形成され、各座板9、9aの対向面に所定高さの側壁13、13a を設けると共に、弾性を有する略円筒状の合成ゴム製の胴部14を座板9、9a間の空間を囲繞する様に設けて内部を気密閉塞し、上下の座板9、9aと胴部14によって設けられた空間を空気室15となしている。
胴部14は、図1に示す様に、蛇腹を形成したゴムベローズに弾性体8を内装してなり、胴部14と側壁13、13a の接合部となる各端部に接着剤を塗布して胴部14の端部を側壁13、13a の先端部に気密状に外嵌し、更に側壁13、13a と胴部14の接合部を弾性を有する環状のバンド16、16a にて締結して気密性を保持している。
又、胴部14の適所に、少なくとも1つ以上の小さな空気流通口17を貫設して、弾性体8の変形に伴い空気室15内へ空気を入出させて、弾性体8の伸縮時に生じる衝撃を緩和する様にしている。
【0010】
支持ボルト10、10a …は、土台5の高さより長い直線状に形成し、上方の座板9上においてその中心より等間隔で十字方向に4本突設してなり、各突出個所を結んで構成される正方形の一辺の長さを土台5の幅よりも長く設定している。
【0011】
下方の座板9aの下面に転がり支承手段18を設け、該転がり支承手段18により免震装置4、4a…を任意方向にスライド可能にしている。
尚、転がり支承手段18は、図示した様な4個の自在キャスター19、19a …に限定せず、例えば図4に示す様なボールキャスター27、27a …など、要するに免震装置4、4a…が任意方向にスライド可能になればどの様な構成のものでも良い。
【0012】
図5〜8に示す様に、上方の座板9の上方にして土台5上に、支持ボルト10、10a …の先端部を固定する押さえ板20を設け、該押さえ板20は基礎スラブ1及び土台5の幅より若干大きな径又は辺を有する円形又は方形状に形成した鉄板、鋼板等の金属板からなり、柱6が立設される土台5下部に対応した位置に免震装置4、4a…を設けるものに限っては、押さえ板20の中央に所定の大きさの円形又は方形状の穴を貫設して柱6のほぞの差込み口21となしている。
【0013】
又、差込み口21の周囲には押さえ板20の中心より所定半径を有する円上に等間隔置きに4個の挿通穴22、22a …を穿設している。
【0014】
免震装置4、4a…は、十字状、T字状、直角に組む仕口部分やその他の継手部分の箇所、管柱、通し柱等の主要な柱6が土台5上に立設される個所に対応して設置され、柱6や間柱6aが立設される個所に設置される免震装置4、4a…に対しては差込み口21を設けた押さえ板20を使用し、その他柱6のない個所には差込み口21を設けない押さえ板20を使用する。
そして、基礎スラブ1及び支持基礎3、3a…を構築後、支持基礎3、3a…の凹部7の底面7a上に免震装置4、4a…を載置すると共に、該免震装置4、4a…間に土台5を載架する様に、各免震装置4、4a…における上方の座板9上に土台5を載置し、かかる状態において、免震装置4、4a…上の土台5は支持ボルト10、10a …間に位置している。
そして、押さえ板20を、その挿通穴22、22a …内に支持ボルト10、10a …の先端を挿通させて土台5上に載置し、支持ボルト10、10a …の突端部にナット23、23a …を螺嵌、締結して、上方の座板9及び押さえ板20で土台5を挟着し、免震装置4、4a…上に土台5を載置固定することで、基礎スラブ1と土台5間に免震装置4、4a…を介装出来る。
又、土台5を十字状、T字状、直角に組む仕口部分やその他の継手部分では、夫々の土台5の継手部分を押さえ板20と免震装置4、4a…の上方の座板9間に介在挟持出来るため、土台5の仕口部分や継手部分を堅固に連結固定出来る。而も、管柱、通し柱等の主要な柱6や間柱6aが土台5上に立設される個所では、差込み口21を設けた押さえ板20を使用すれば、差込み口21より柱6や間柱6aを土台5に差し込むことが出来、建築物2の軸組みに支障を及ぼすことはない。
【0015】
図7、8に示す様に、基礎スラブ1と土台5間に複数個の圧縮弾性材24、24a …を適宜配置すると共に、該圧縮弾性材24、24a …の上下部を基礎スラブ1及び土台5に固定している。又、図面上、圧縮弾性材24、24a …をコイルバネとし、その上下部を、基礎スラブ1に打設されたアンカーボルト25の上部及び土台5に貫通固定されたボルト26の下部に掛止固定している。
【0016】
建築物2を基礎側(基礎スラブ1又は支持基礎3、3a…)へ固定する手段28、28a …としては、各固定手段28、28a …の2個の構成部品の一方を建築物2に、他方を基礎側(基礎スラブ1又は支持基礎3、3a…)に固定すると共に、両者をワンタッチで係脱可能としている。具体的には、図7、8に示す様に、建築物2側に固定したラッチ29及び基礎側(基礎スラブ1又は支持基礎3、3a…)に固定したラッチ受け30で構成している。
【0017】
次に、本発明に係る木造建築物における免震構造の作用について説明する。
基礎スラブ1と建築物2の土台5の間には免震装置4、4a…があることから、地震発生時に弾性体8の変形と免震装置4、4a…のスライドが同時又は随時開始して、免震装置4、4a…における弾性体8の弾性作用により、地震による振動の減衰を早め、且つ転がり支承手段18により免震装置4、4a…が支持基礎3、3a…(基礎スラブ1)から切り離されているため、支持基礎3、3a…(基礎スラブ1)に対し免震装置4、4a…が移動可能となり、許容振幅量が大きくなる。
而も、免震装置4、4a…を載置する凹部7の中央を低くして平坦部7bとすることで、地震が治まった後に免震装置4、4a…が必ず初期位置に戻る様に成っている。
【0018】
強風時、例えば到来が予測出来る台風時には、例えば図9(a)に示す様に、ラッチ29におけるレバー31を起こしてU字杆32をラッチ受け30に引っ掛けた後に上記レバー31を倒して、ラッチ29及びラッチ受け30を連結するなどして、予め固定手段28、28a …により建築物2を基礎側(基礎スラブ1又は支持基礎3、3a…)に固定しておけば、建築物2に大きい風荷重が作用しても該建築物2は動かない。
尚、この固定手段28、28a …は、通常は、図9(b)に示す様に、解除状態としておかねばならなず、必要に応じて固定する様にしている。
【0019】
尚、本発明に係る免震装置4、4a…を既存の建築物2に設置する場合、該建築物2をジャッキアップした後、既存基礎を撤去して基礎スラブ1及び支持基礎3、3a…を構築した後、建築物2を降ろして、免震装置4、4a…に建築物2を固定する様にしている。
【0020】
【発明の効果】
要するに本発明は、木造建築物2における基礎スラブ1上に設けた複数個の支持基礎3、3a…上に、圧縮コイルバネ 11 11a からなる弾性体8の上下に設けた座板9、 9a 間に弾性を有する筒状の胴部 14 を設けてその内部を気密閉塞すると共に、胴部 14 に空気流通口 17 を設けた免震装置4、 4a …を載置し、該免震装置4、 4a …間に土台5を載架、固定した免震構造において、上記免震装置4、 4a …における下方の座板 9a の下面に、上記支持基礎3、 3a …の上面に設けた凹部7の底面 7a 上を任意方向に移動可能な転がり支承手段 18 を設けたので、免震装置4、4a…(弾性体8)が具備する、建築物2への衝撃及び振動の吸収・緩衝機能や、伸縮時に作用する衝撃の緩和機能により免震性を向上させる効果に加えて、免震装置4、4a…が基礎スラブ1(支持基礎3、3a…)側に固定されずに任意方向にスライド可能となって、地盤W側と建築物2を完全に切り離すことが出来るため、直下型大地震における大きい縦・横揺れに対する免震機能を具備させて建築物2の破壊、倒壊、室内家具類の倒れを防止出来る。
又、凹部7の底面7aの中央を平坦部7bとすると共に、該平坦部7bの外周部を緩斜面部7cとしたので、免震装置4、4a…が、地震が治まった時点で底面7aの外周側、即ち緩斜面部7cに位置していても、その後平坦部7bに自動的に戻るため、建築物2を初期位置に自動復帰させることが出来る。
【0021】
圧縮弾性材24、24a …の上下部を基礎スラブ1及び土台5に固定したので、基礎スラブ1と建築物2を連結することが出来ると共に、免震装置4、4a…を支持基礎3、3a…の上面に押圧して、ある程度の風荷重が建築物2に作用しても該建築物2が揺れない様に固定することが出来る他、圧縮弾性材24、24a …の弾性復元力により免震装置4、4a…を初期位置に確実に復帰させることが出来る。而も、圧縮弾性材24、24a …によっても振動を吸収することが出来るため、免震機能の更なる向上を図ることが出来る。
又、建築物2の外周の適宜箇所に、建築物2を基礎側(基礎スラブ1又は支持基礎3、3a…)に固定する手段28、28a …の一方を、基礎側(基礎スラブ1又は支持基礎3、3a…)に固定手段28、28a …の他方を設けると共に、両者を係脱自在としたので、かかる固定手段28、28a …により建築物2を基礎側(基礎スラブ1又は支持基礎3、3a…)に固定することで、台風時の様な大きい風荷重が作用しても、建築物2は基礎側(基礎スラブ1又は支持基礎3、3a…)に一体化されているために揺れず、強風下であっても快適な居住環境を維持することか出来、而も台風は1年に数回しか到来せず、それ以外の日は固定手段28、28a …を解除状態にしておけば良く、大地震及び強風にたいしても揺れない建築物2にすることが出来る等その実用的効果甚だ大なるものである。
【図面の簡単な説明】
【図1】免震装置の断面図である。
【図2】図1の免震装置の平面図である。
【図3】図1の免震装置の底面図である。
【図4】転がり支承手段をボールキャスターとした免震装置の底面図である。
【図5】免震装置の設置状態を示す拡大平面図である。
【図6】図5のXーX断面図である。
【図7】図1の免震装置を用いた建築物における土台伏図の要部拡大図である。
【図8】図7のYーY断面図である。
【図9】固定手段の固定・解除状態を示す側面図である。
【符号の説明】
1 基礎スラブ
2 木造建築物
3、3a… 支持基礎
4、4a… 免震装置
5 土台
7 凹部
7a 底面
7b 平坦部
7c 緩斜面部
8 弾性体
9、9a 座板
11、11a 圧縮コイルバネ
14 胴部
17 空気流通口
18 転がり支承手段
24、24a … 圧縮弾性材
28、28a … 固定手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic isolation structure in a wooden building that reliably prevents collapse and destruction of the wooden building due to an earthquake.
[0002]
[Prior art]
Conventionally, a wooden building is tightly bound to a concrete foundation by anchor bolts so that the building does not fall off the foundation due to the impact, vibration, etc. of an earthquake. The structure is designed to withstand the impact of an earthquake by providing a number of struts attached to the wall, or by providing a number of walls. The current situation is that it cannot prevent collapse or destruction.
[0003]
Therefore, the applicant of the present application, as Japanese Patent No. 3034449, “is a seismic isolation device interposed between a foundation and a foundation in a wooden building, provided with seat plates above and below an elastic body made of a compression coil spring, Invented the seismic isolation structure in a wooden building, characterized in that a cylindrical barrel portion having elasticity is provided between the seat plates and the inside thereof is hermetically closed and an air circulation port is provided in the barrel portion.
This is due to the elastic action of the elastic body, which accelerates the damping of vibrations caused by earthquakes, absorbs and absorbs shocks and vibrations generated in buildings, and is subject to impacts caused by earthquakes, especially the vertical vibrations of direct earthquakes. When the air is contracted, the air in the air chamber in the body is compressed and gradually exhausted from the air circulation hole, and the compression of the air in the air chamber promotes a buffering action against a sudden impact. The air in the room is gradually sucked in from the air circulation hole to suppress the sudden expansion state of the elastic body, and the impact generated in the elastic body that expands and contracts can be mitigated. The seismic isolation performance can be improved compared to the seismic isolation system, and the destruction and collapse of buildings can be prevented.
[0004]
[Problems to be solved by the invention]
However, while the above prior art has a reliable seismic isolation function for pitching, the seismic isolation function for rolling is deformed only by deformation of the elastic body because it is fixed to the foundation side. Because there is a limit to the amount, if an earthquake with a large amplitude that cannot be covered only by the amount of deformation of the elastic body, the impact propagates to the building, causing partial damage to the building, collapse of indoor furniture, etc. There were issues that had to be solved, such as the possibility of being denied.
[0005]
[Means for Solving the Problems]
The present invention makes it possible to slide the seismic isolation device in an arbitrary direction below the conventional seismic isolation device in view of the problem that it is difficult to deal with an earthquake of a direct type and a large amplitude based on the conventional technology. Rolling support means are provided, and the seismic isolation device is placed on the bottom surfaces of the recesses provided on the upper surfaces of a plurality of support foundations provided on the foundation slab, and a base is mounted and fixed on the seismic isolation device. In this way, the elastic body can be isolated and slidable with respect to the ground, reducing the sudden expansion and contraction of the elastic body due to the impact and vibration caused by the earthquake. By adding the amount of deformation and the amount of slide of the seismic isolation device to cope with large-amplitude earthquakes, it is possible to prevent the impact of large vertical and horizontal shaking in a direct type large earthquake from propagating to the building side. Solve the above problems.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
As shown in FIGS. 7 and 8, a large number of support foundations 3, 3a are provided at appropriate positions on the concrete foundation slab 1 constructed on the ground W, and seismic isolation devices 4, 4a are provided on the support foundations 3, 3a. Is placed, and the base 5 of the building 2 is placed and fixed on the seismic isolation devices 4, 4 a, and the base isolation devices 4, 4 a are supported by the support foundations 3, 3 a, and the foundation slab 1. It is in between.
[0007]
The location of the seismic isolation devices 4, 4 a... Is provided at a position corresponding to at least the lower part of the base 5 on which the main pillar 6 such as a pipe column and a through column is erected, and preferably the appropriate location between the location and the location. It is good to arrange a single or a large number, and in short, considering the weight and balance of the building 2 constructed on the foundation slab 1, the building 2 is horizontally arranged with respect to the foundation slab 1 by the seismic isolation devices 4, 4a. Like you.
[0008]
A concave portion 7 is formed on the upper surface of each support base 3, 3a, and the center of the bottom surface 7a of the concave portion 7 is a flat portion 7b. The outer peripheral portion of the flat portion 7b is a gentle slope portion 7c, and the flat portion 7b The seismic isolation devices 4, 4 a.
[0009]
As shown in FIGS. 1 to 3, the seismic isolation devices 4, 4 a... Support bolts 10, 10 a, which fix the base plates 9, 9 a on the upper and lower sides of the elastic body 8 and fix the base 5 to the upper seat plate 9. The support bolts 10, 10a are fixed to the seat plates 9, 9a by means such as nut tightening or welding.
The elastic body 8 is composed of one compression coil spring 11 or, as shown in FIG. 1, at least two compression coil springs 11 and 11a having different diameters concentrically and winding the inner and outer compression coil springs 11 and 11a. It consists of concentric compression coil springs 12 whose directions are reversed. And by making the elastic body 8 a concentric compression coil spring 12, there is no lateral buckling, vibration, etc. with respect to the shock caused by an earthquake, and it has an elastic action with as much ability as possible, so that the vibration caused by the earthquake can be further attenuated. It becomes possible to speed up.
The seat plates 9 and 9a are formed in a disk shape or a square shape having a diameter or side slightly larger than the width of the foundation slab 1 and the base 5, and side walls 13 and 13a having a predetermined height are formed on the opposing surfaces of the seat plates 9 and 9a. In addition, an approximately cylindrical synthetic rubber body 14 having elasticity is provided so as to surround the space between the seat plates 9 and 9a, and the inside is hermetically closed, and the upper and lower seat plates 9 and 9a and the body portion are sealed. The space provided by 14 is an air chamber 15.
As shown in FIG. 1, the body portion 14 has a rubber bellows having a bellows and an elastic body 8, and an adhesive is applied to each end portion that becomes a joint portion between the body portion 14 and the side walls 13 and 13 a. The end portion of the body portion 14 is externally fitted to the end portions of the side walls 13 and 13a in an airtight manner, and the joint portion between the side walls 13 and 13a and the body portion 14 is fastened by an elastic annular band 16 and 16a. Maintains airtightness.
In addition, at least one or more small air circulation ports 17 are provided at appropriate positions in the body portion 14 so that air enters and exits the air chamber 15 as the elastic body 8 is deformed. I try to reduce the impact.
[0010]
The supporting bolts 10, 10a are formed in a straight line longer than the height of the base 5, and are formed on the upper seat plate 9 by four protrusions in the cross direction at equal intervals from the center thereof, and connecting the protruding portions. The length of one side of the formed square is set longer than the width of the base 5.
[0011]
Rolling support means 18 is provided on the lower surface of the lower seat plate 9a. The rolling support means 18 allows the seismic isolation devices 4, 4a,... To slide in any direction.
The rolling support means 18 is not limited to the four free casters 19, 19a as shown in the figure, but includes, for example, the ball casters 27, 27a as shown in FIG. Any configuration may be used as long as it can slide in any direction.
[0012]
As shown in FIGS. 5 to 8, a pressing plate 20 is provided on the base 5 above the upper seat plate 9 to fix the front ends of the support bolts 10, 10 a. The seismic isolation device 4, 4 a is made of a metal plate such as a steel plate or a steel plate having a diameter or side slightly larger than the width of the base 5 and corresponding to the lower part of the base 5 where the column 6 is erected. ... Are limited to those provided with a circular or square hole of a predetermined size in the center of the holding plate 20 to form a tenon insertion port 21 of the column 6.
[0013]
Further, around the insertion port 21, four insertion holes 22, 22a,... Are formed at equal intervals on a circle having a predetermined radius from the center of the pressing plate 20.
[0014]
The seismic isolation devices 4, 4 a... Are locations where main pillars 6 such as cross-shaped, T-shaped, right-angled joints and other joint parts, pipe pillars, through pillars, etc. are erected on the base 5. For the seismic isolation devices 4, 4 a... Installed at the locations where the pillars 6 and the interposition pillars 6 a are erected, a pressing plate 20 having an insertion port 21 is used, and other pillars 6 The holding plate 20 that does not have the insertion port 21 is used in a place where there is not.
And after constructing the foundation slab 1 and the support foundations 3, 3a ..., the seismic isolation devices 4, 4a ... are placed on the bottom surface 7a of the recess 7 of the support foundations 3, 3a ... ... the base 5 is placed on the upper seat plate 9 of each seismic isolation device 4, 4a ... so that the base 5 is placed between them. In this state, the base 5 on the base isolation device 4, 4a ... Is located between the support bolts 10, 10a.
Then, the presser plate 20 is placed on the base 5 with the tips of the support bolts 10, 10 a... Inserted into the insertion holes 22, 22 a... And the nuts 23, 23 a at the projecting ends of the support bolts 10, 10 a. ... are screwed and fastened, the base 5 is clamped by the upper seat plate 9 and the holding plate 20, and the base 5 is placed and fixed on the seismic isolation devices 4, 4a, so that the foundation slab 1 and the base are fixed. Seismic isolation devices 4, 4a ... can be installed between the five.
In addition, in the joint portion and other joint portions in which the base 5 is formed in a cross shape, a T shape, or a right angle, the joint portion of each base 5 is a pressing plate 20 and a seat plate 9 above the seismic isolation devices 4, 4 a. Since the interposition can be sandwiched between them, the joint portion and joint portion of the base 5 can be firmly connected and fixed. However, if the main column 6 such as a pipe column or a through column or the column 6a is erected on the base 5, if the holding plate 20 provided with the insertion port 21 is used, the column 6 or the column from the insertion port 21 is used. 6a can be inserted into the base 5 and does not interfere with the framework of the building 2.
[0015]
As shown in FIGS. 7 and 8, a plurality of compression elastic members 24, 24a... Are appropriately disposed between the foundation slab 1 and the base 5, and the upper and lower portions of the compression elastic members 24, 24a. 5 is fixed. Further, in the drawing, the compression elastic members 24, 24a... Are coil springs, and the upper and lower portions thereof are fixed to the upper portion of the anchor bolts 25 placed on the foundation slab 1 and the lower portion of the bolts 26 fixed to the base 5. is doing.
[0016]
As means 28, 28a ... for fixing the building 2 to the foundation side (foundation slab 1 or support foundation 3, 3a ...), one of the two components of each fixing means 28, 28a ... The other side is fixed to the foundation side (the foundation slab 1 or the supporting foundation 3, 3a ...), and both can be engaged and disengaged with one touch. Specifically, as shown in FIGS. 7 and 8, a latch 29 fixed to the building 2 side and a latch receiver 30 fixed to the foundation side (the foundation slab 1 or the supporting foundation 3, 3 a...) Are configured.
[0017]
Next, the effect | action of the seismic isolation structure in the wooden building which concerns on this invention is demonstrated.
Since there is a seismic isolation device 4, 4a ... between the foundation slab 1 and the base 5 of the building 2, the deformation of the elastic body 8 and the sliding of the seismic isolation device 4, 4a ... start simultaneously or at any time when an earthquake occurs. The seismic isolation devices 4, 4 a... Accelerate the damping of the vibration due to the earthquake, and the rolling support means 18 causes the base isolation devices 4, 4 a. Since the seismic isolation devices 4, 4a,... Are movable with respect to the supporting foundations 3, 3a,... (The foundation slab 1), the allowable amplitude is increased.
However, by lowering the center of the recess 7 where the seismic isolation devices 4, 4 a, etc. are lowered to a flat portion 7 b, the seismic isolation devices 4, 4 a, and so on always return to their initial positions after the earthquake has ceased. It is made up.
[0018]
In a strong wind, for example, in the case of a typhoon in which arrival can be predicted, for example, as shown in FIG. 9A, the lever 31 in the latch 29 is raised, the U-shaped hook 32 is hooked on the latch receiver 30, and then the lever 31 is tilted to latch. If the building 2 is fixed to the foundation side (the foundation slab 1 or the supporting foundation 3, 3a ...) by the fixing means 28, 28a ... in advance by connecting the 29 and the latch receiver 30, etc., the building 2 is large. Even if a wind load acts, the building 2 does not move.
It should be noted that the fixing means 28, 28a... Normally have to be in a released state as shown in FIG. 9B, and are fixed as necessary.
[0019]
In addition, when installing the seismic isolation device 4, 4a ... based on this invention in the existing building 2, after jacking up the building 2, the existing foundation is removed and the foundation slab 1 and the support foundation 3, 3a ... After building, the building 2 is lowered and the building 2 is fixed to the seismic isolation devices 4, 4a.
[0020]
【The invention's effect】
In short, the present invention is provided between the base plates 9 and 9a provided above and below the elastic body 8 composed of the compression coil springs 11 and 11a on the plurality of support foundations 3 and 3a provided on the foundation slab 1 in the wooden building 2. a cylindrical barrel 14 having elasticity is provided on its internal as well as air-tight closure, the seismic isolation device 4 provided with vent port 17, 4a ... were placed on the barrel 14,該免Isolation system 4, 4a ... rests a base 5 between, in fixed seismic isolation structure, the lower surface of the seismic isolation device 4, 4a ... of the lower in the seat plate 9a, the recess 7 provided in the supporting foundation 3, 3a ... upper surface of the Since the rolling bearing means 18 that can move in any direction on the bottom surface 7a is provided , the seismic isolation device 4, 4a (elastic body 8) has a function of absorbing and buffering shock and vibration to the building 2, In addition to the effect of improving the seismic isolation by the impact mitigation function that acts during expansion and contraction, the seismic isolation device 4, 4a ... is the basic slab 1 ( Since it is possible to slide in any direction without being fixed to the holding foundation 3, 3a ...) side, the ground W side and the building 2 can be completely separated, so it is immune to large vertical and horizontal shaking in a direct earthquake. The seismic function can be provided to prevent the building 2 from being destroyed or collapsed and the indoor furniture falling down.
Further, since the center of the bottom surface 7a of the concave portion 7 is a flat portion 7b and the outer peripheral portion of the flat portion 7b is a gentle slope portion 7c, the seismic isolation devices 4, 4a. Even if it is located on the outer peripheral side, that is, on the gentle slope portion 7c, it automatically returns to the flat portion 7b, so that the building 2 can be automatically returned to the initial position.
[0021]
Since the upper and lower parts of the compression elastic members 24, 24a are fixed to the foundation slab 1 and the base 5, the foundation slab 1 and the building 2 can be connected, and the seismic isolation devices 4, 4a, etc. are supported by the support foundations 3, 3a. In addition to being able to be fixed so that the building 2 does not shake even if a certain amount of wind load acts on the building 2 by pressing on the upper surface of the ..., it is exempted by the elastic restoring force of the compression elastic members 24, 24a ... The seismic devices 4, 4 a can be reliably returned to the initial positions. In addition, since the vibration can be absorbed by the compression elastic members 24, 24a, etc., the seismic isolation function can be further improved.
In addition, one of the means 28, 28a... For fixing the building 2 to the foundation side (the foundation slab 1 or the supporting foundation 3, 3a...) At the appropriate position on the outer periphery of the building 2 is the foundation side (the foundation slab 1 or the support. Since the other of the fixing means 28, 28a... Is provided on the foundation 3, 3a..., And both are made detachable, the building 2 is moved to the foundation side (the foundation slab 1 or the supporting foundation 3 by the fixing means 28, 28a. , 3a ...), because the building 2 is integrated on the foundation side (foundation slab 1 or support foundation 3, 3a ...) even if a large wind load is applied, such as during a typhoon. It is possible to maintain a comfortable living environment even under strong winds without shaking, and the typhoon only arrives a few times a year. On other days, the fixing means 28, 28a, etc. are released. It can be used, and it can be made into a building 2 that does not shake even in the event of a large earthquake or strong wind. It become one.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a seismic isolation device.
2 is a plan view of the seismic isolation device of FIG. 1. FIG.
FIG. 3 is a bottom view of the seismic isolation device of FIG. 1;
FIG. 4 is a bottom view of a seismic isolation device using a ball caster as a rolling support means.
FIG. 5 is an enlarged plan view showing an installation state of the seismic isolation device.
6 is a cross-sectional view taken along the line XX in FIG.
FIG. 7 is an enlarged view of a main part of a base prone map in a building using the seismic isolation device of FIG. 1;
8 is a cross-sectional view taken along line YY in FIG.
FIG. 9 is a side view showing a fixed / released state of the fixing means.
[Explanation of symbols]
1 Foundation slab 2 Wooden building 3, 3a ... Support foundation 4, 4a ... Seismic isolation device 5 Base 7 Recess
7a Bottom
7b Flat part
7c Slope 8 Elastic body 9, 9a Seat plate
11, 11a Compression coil spring
14 Torso
17 Air distribution port
18 Rolling support means
24, 24a… Compression elastic material
28, 28a… Fixing means

Claims (4)

木造建築物における基礎スラブ上に設けた複数個の支持基礎上に、圧縮コイルバネからなる弾性体の上下に設けた座板間に弾性を有する筒状の胴部を設けてその内部を気密閉塞すると共に、胴部に空気流通口を設けた免震装置を載置すると共に、免震装置間に土台を載架、固定した免震構造において、
上記免震装置における下方の座板の下面に、上記支持基礎の上面に設けた凹部の底面上を任意方向に移動可能な転がり支承手段を設けたことを特徴とする木造建築物における免震構造。
On a plurality of support foundations provided on a foundation slab in a wooden building , a cylindrical body having elasticity is provided between seat plates provided above and below an elastic body made of a compression coil spring to hermetically close the inside. In addition, in the seismic isolation structure in which a base isolation device provided with an air circulation port in the trunk is placed, and a base is mounted and fixed between the base isolation devices,
A seismic isolation structure in a wooden building, characterized in that a rolling support means is provided on the lower surface of the lower seat plate in the seismic isolation device so as to be movable in any direction on the bottom surface of the recess provided on the upper surface of the support foundation. .
凹部の底面の中央を平坦部とすると共に、該平坦部の外周部を緩斜面部としたことを特徴とする請求項1記載の木造建築物における免震構造。The seismic isolation structure in a wooden building according to claim 1, wherein the center of the bottom surface of the concave portion is a flat portion, and the outer peripheral portion of the flat portion is a gentle slope portion. 基礎スラブと土台間に圧縮弾性材を配設すると共に、該圧縮弾性材の上下部を基礎スラブ及び土台に固定したことを特徴とする請求項1又は2記載の木造建築物における免震構造。3. A base-isolated structure in a wooden building according to claim 1 or 2, wherein a compression elastic material is disposed between the foundation slab and the base, and upper and lower portions of the compression elastic material are fixed to the foundation slab and the foundation. 建築物の外周の適宜箇所に、建築物を基礎スラブ又は支持基礎に固定する手段における構成部品の一方を、基礎スラブ又は支持基礎に固定手段における構成部品の他方を設けると共に、両者を係脱自在としたことを特徴とする請求項1、2又は3記載の木造建築物における免震構造。One of the components in the means for fixing the building to the foundation slab or support foundation is provided at an appropriate location on the outer periphery of the building, and the other of the components in the fixing means is provided to the foundation slab or support foundation, and both can be freely attached and detached. The seismic isolation structure in the wooden building of Claim 1, 2, or 3 characterized by the above-mentioned.
JP2002159825A 2002-05-31 2002-05-31 Seismic isolation structure in wooden buildings Expired - Fee Related JP3739725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002159825A JP3739725B2 (en) 2002-05-31 2002-05-31 Seismic isolation structure in wooden buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002159825A JP3739725B2 (en) 2002-05-31 2002-05-31 Seismic isolation structure in wooden buildings

Publications (2)

Publication Number Publication Date
JP2004003189A JP2004003189A (en) 2004-01-08
JP3739725B2 true JP3739725B2 (en) 2006-01-25

Family

ID=30429448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002159825A Expired - Fee Related JP3739725B2 (en) 2002-05-31 2002-05-31 Seismic isolation structure in wooden buildings

Country Status (1)

Country Link
JP (1) JP3739725B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008020550A1 (en) 2006-08-18 2008-02-21 Joho Corporation 6-cycle engine with regenerator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513095B2 (en) * 2004-11-01 2010-07-28 和直 亀山 Isolation device
JP7023447B2 (en) * 2020-07-13 2022-02-22 洋一 堀江 Seismic isolation device that combines monocyte rolling bearings and tension spring expansion and contraction
JP7148904B1 (en) * 2021-06-28 2022-10-06 洋一 堀江 A seismic isolation device that combines sliding lubricating friction bearings and the expansion and contraction action of a pull spring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008020550A1 (en) 2006-08-18 2008-02-21 Joho Corporation 6-cycle engine with regenerator

Also Published As

Publication number Publication date
JP2004003189A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
US3906689A (en) Apparatus for absorbing or damping vibrations of the ground
KR101701810B1 (en) Seismic equipment
JP2016033390A (en) Vibration isolation vibration damping apparatus
JP3739725B2 (en) Seismic isolation structure in wooden buildings
JP6378494B2 (en) Seismic isolation structure
JP5348945B2 (en) Seismic isolation structure of building
JP3749818B2 (en) Seismic isolation devices, buildings with seismic isolation devices
JP2819454B2 (en) Seismic isolation device for small buildings
JP6338563B2 (en) Tower structure
JP3034449B2 (en) Seismic isolation structure of wooden building
JP2007113377A (en) Method and device for base isolation of building
JP6383532B2 (en) Seismic isolation method for existing structures
JP3650911B2 (en) Seismic isolation device and seismic isolation structure
JP2008240290A (en) Base-isolating device and its construction method
JPH10317723A (en) Damper device of base isolation structure
JP2013217122A (en) Foundation block for earthquake-proof shelter room
JP6923989B1 (en) Seismic isolation support device
JP2001182363A (en) Adjustable anchor bolt and base isolation sill base for foundation in wooden building
JP4749599B2 (en) Damping structure of structures with large spaces
JPH10513238A (en) Rigid absorber for blocking the foundation of structures
JPH09100648A (en) Building structure
JP3244244B2 (en) Anti-vibration rubber, anti-vibration support device and installation method thereof
JP2005256315A (en) Base isolation construction method and base isolation member used for this construction method
JP3019057U (en) Earthquake proof equipment
JP2004316178A (en) Base isolated foundation structure for lightweight structure, and its base isolating method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees