JPH0413515B2 - - Google Patents
Info
- Publication number
- JPH0413515B2 JPH0413515B2 JP62306735A JP30673587A JPH0413515B2 JP H0413515 B2 JPH0413515 B2 JP H0413515B2 JP 62306735 A JP62306735 A JP 62306735A JP 30673587 A JP30673587 A JP 30673587A JP H0413515 B2 JPH0413515 B2 JP H0413515B2
- Authority
- JP
- Japan
- Prior art keywords
- brace
- building
- piston
- state
- earthquake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 description 9
- 238000013016 damping Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010291 electrical method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
Landscapes
- Joining Of Building Structures In Genera (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は建物架構の可変剛性装置に関するもの
で、制震構造の建物に入力する地震、風等の外力
に応じて建物架構の剛性を変化させ、地震等に対
処させるものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a variable rigidity device for a building frame, which changes the rigidity of the building frame in response to external forces such as earthquakes and wind that are input to a building with a damping structure. The purpose is to enable people to deal with earthquakes, etc.
従来、高層建築や重要構造物等の耐震設計にお
いては地震時の地盤の動きや建物の応答を計算
し、安全性をチエツクする動的設計が行われてい
る。
Conventionally, in the seismic design of high-rise buildings and important structures, dynamic design has been performed to check safety by calculating the ground movement and building response during an earthquake.
耐震の方法としては建物と基礎の間に積層ゴム
支承やダンパーを介在させた免震構法あるいは減
震構法、建物構成部材のうち、非主要部材の破壊
により地震エネルギーを消費させる方法、壁ある
いは柱等にスリツトを設け、建物を最適の剛性に
調整する方法等がある。 Earthquake resistance methods include seismic isolation or attenuation construction methods in which laminated rubber bearings or dampers are interposed between the building and the foundation, methods that consume earthquake energy by destroying non-main building components, walls or columns. There is a method to adjust the rigidity of the building to the optimum level by creating slits in the building.
ところで、現行の耐震設計手法により設計され
た建物の地震等における安全性の確認は、構造物
の塑性化を伴なう履歴特性による吸収エネルギー
が構造物に作用する地震エネルギーを上回るとい
う基本思想によるが、これには履歴ループ特性に
対する信頼性の問題がある。 By the way, confirmation of the safety of buildings designed using current seismic design methods in the event of an earthquake is based on the basic idea that the energy absorbed by the hysteresis characteristics associated with plasticization of the structure exceeds the seismic energy acting on the structure. However, this has the problem of reliability regarding the history loop characteristics.
また、従来の方法はいずれも地震や風等の自然
外力に対し、受身の耐震構造を与えるものであ
り、建物が特定の固有振動数を有するため地震と
いう不確定な入力に対し、共振現象を避けて通る
ことはできない。 In addition, all conventional methods provide a passive seismic structure against natural external forces such as earthquakes and wind, and because buildings have a specific natural frequency, they do not allow resonance phenomena to occur against uncertain inputs such as earthquakes. You can't avoid it.
これに対し、出願人は特願昭61−112026号(特
開昭62−268479号)において、上述のような受身
の耐震方法でなく、感知した地震動に基づく応答
予測システムの判断のもとに建物自体の剛性を変
化させ、共振領域外または共振の少ない状態と
し、建物および建物内の機器、居住者等の安全を
図つた制震方法を提案している。 In contrast, in Japanese Patent Application No. 61-112026 (Japanese Unexamined Patent Publication No. 62-268479), the applicant proposed a method based on the judgment of a response prediction system based on the detected seismic motion, rather than the passive seismic method described above. We are proposing a vibration damping method that changes the rigidity of the building itself to bring it out of the resonance region or into a state with less resonance, thereby ensuring the safety of the building, its equipment, residents, etc.
上記の制震方法では柱、はり、ブレース、壁並
びにそれらの接合部の全部もしくは一部、または
建物と基礎あるいは隣接する建物との間に、コン
ピユーターの指令により連結状態が変化する制御
装置を設け、次のようにして、建物の制震を行な
う。 In the above seismic control method, a control device is installed in all or part of columns, beams, braces, walls, and their joints, or between a building and the foundation or an adjacent building, so that the connection state can be changed according to computer commands. , Damping the building is done as follows.
地震の発生を建物を中心に狭域および広域に
配置した地震感知装置により感知し、観測デー
タを有線、無線の通信網によりコンピユーター
に伝達する。広域の地震感知装置は既設の地震
観測点における地震計あるいは専用に設置した
ものをマイクロ回線あるいは電話回線等で結
ぶ。また狭域の地震感知装置は建物の周辺ある
いは周辺地盤内に設けた地震計や、建物基部や
建物内に設置した振動センサーからなり、風力
等の影響は建物内の振動センサーで感知する。 The occurrence of an earthquake is detected by earthquake sensing devices placed in both narrow and wide areas around buildings, and the observation data is transmitted to a computer via wired and wireless communication networks. Wide-area earthquake sensing equipment connects seismometers at existing earthquake observation points or specially installed equipment using micro-wires or telephone lines. In addition, narrow-area earthquake sensing devices consist of seismometers installed around buildings or in the surrounding ground, and vibration sensors installed at the base of buildings or inside buildings, and the effects of wind force etc. are detected by vibration sensors inside buildings.
感知した地震について、コンピユーターによ
り地震の規模の判断、周波数特性の分析、応答
量の予測等を行ない、建物の振動を制御すべき
か否か、また制御すべき場合の制御量につい
て、共振をかわし、地震応答量の少ない最適剛
性(固有振動数)を与えるものとして判断を下
す。 For detected earthquakes, a computer determines the scale of the earthquake, analyzes frequency characteristics, predicts the amount of response, etc., and determines whether or not to control the vibration of the building, and if so, the amount of control to avoid resonance. The judgment is made based on the one that provides the optimum stiffness (natural frequency) with a small amount of seismic response.
コンピユーターの指令を建物の各部の制御装
置に伝え、建物の剛性をコンピユーターの予測
に基づく最適剛性となるよう制御装置を作動さ
せる。連結状態の調整は固定状態と連結解除状
態を油圧機構、電磁石等によりオン、オフで調
整するものや、固定状態、連結解除状態の外、
緊張力の導入や任意の位置での固定を油圧機構
あるいは特殊合金等を用いて調整するもの等が
考えられる。 The commands from the computer are transmitted to the control devices in each part of the building, and the control devices are operated so that the stiffness of the building reaches the optimal stiffness based on the computer's predictions. The connection state can be adjusted by turning the fixed state and uncoupled state on and off using hydraulic mechanisms, electromagnets, etc., and in addition to the fixed state and disconnected state,
It is conceivable to use a hydraulic mechanism or a special alloy to adjust the introduction of tension force and fixation at an arbitrary position.
また、建物内に配した振動センサーにより、
建物各部における応答量並びに制御を行つた場
合の実際の振動が検知でき、これをフイードバ
ツクして、制御量の修正等を行なうことができ
る。 In addition, vibration sensors placed inside the building will
The amount of response in each part of the building as well as the actual vibration when controlled can be detected, and this can be fed back to correct the amount of control.
本発明の建物架構の可変剛性装置は上述のよう
な制震方法において、柱梁構面内あるいは床スラ
ブ構面内等に使用し、架構の地震時の変形を制御
することにより、建物の応答を低減させ、建物の
地震災害を防ぐとともに、中に居住する人や機械
設備等を地震による不快感、振動障害等から守る
ことを目的としたものである。
The variable stiffness device for a building frame of the present invention is used in the above-mentioned vibration control method in a column-beam structure, a floor slab structure, etc., and controls the deformation of the structure during an earthquake, thereby improving the response of the building. The purpose is to reduce earthquake damage and prevent earthquake disasters in buildings, as well as protect people and machinery and equipment living inside from discomfort caused by earthquakes, vibration disturbances, etc.
〔発明の構成〕
以下、本発明の概要を実施例に対応する図面の
符号を用いて説明する。[Structure of the Invention] Hereinafter, an overview of the present invention will be explained using reference numerals in the drawings corresponding to the embodiments.
本発明の可変剛性装置は長手方向に伸縮可能に
接続した2本のブレース構成部材4,5からなる
ブレース3を建物架構の構面内に配置し、ブルー
ス3の継手部6を油封式の流体圧シリンダー14
で構成したものである。 In the variable rigidity device of the present invention, a brace 3 consisting of two brace members 4 and 5 connected so as to be extendable and contractible in the longitudinal direction is disposed within the structural surface of a building frame, and the joint portion 6 of the brace 3 is connected to an oil-sealed fluid. pressure cylinder 14
It is composed of.
流体圧シリンダー14はピストン15の両側を
連通させる流路20に、封入された流体18の流
れを調整するための制御弁17を設けたものであ
り、流体18の流れが制御弁17の開度により調
整される。すなわち、制御弁17が完全に開いた
状態ではピストン15の移動が自由であり、閉じ
た状態ではピストン15が実質的に固定される。 The fluid pressure cylinder 14 is provided with a control valve 17 for adjusting the flow of a sealed fluid 18 in a flow path 20 that communicates both sides of a piston 15, and the flow of the fluid 18 depends on the opening degree of the control valve 17. Adjusted by That is, when the control valve 17 is completely open, the piston 15 is free to move, and when the control valve 17 is closed, the piston 15 is substantially fixed.
この流体圧シリンダー14を一方のブレース構
成部材4の端部に形成し、ロツド16を他方のブ
レース構成部材5の端部に固定し、制御弁17の
調整により接続状態と切り離した状態の間で切り
換えを行い、ブレース3を効かせたり、効かせな
かつたりすることができる。すなわち、架構の剛
性を地震特性に応じ、高い剛性すなわち固有振動
数が大きい状態と、低い剛性すなわち固有振動数
が小さい状態との間で自由に変えることができ
る。 This hydraulic cylinder 14 is formed at the end of one brace component 4, the rod 16 is fixed at the end of the other brace component 5, and the control valve 17 can be adjusted between a connected state and a disconnected state. It is possible to make a switch and make the brace 3 work or not. That is, the rigidity of the frame can be freely changed between a state of high rigidity, ie, a large natural frequency, and a state of low rigidity, ie, a small natural frequency, depending on the seismic characteristics.
次に図示した実施例について説明する。 Next, the illustrated embodiment will be described.
第1図は本発明の可変剛性装置を柱梁構面内に
適用した場合の概要を、第2図は本発明の一実施
例におけるブレース3の継手部6の構造を示した
ものである。 FIG. 1 shows an outline of the case where the variable rigidity device of the present invention is applied within a column-beam structure, and FIG. 2 shows the structure of a joint portion 6 of a brace 3 in an embodiment of the present invention.
ブレース3は2本のブレース構成部材4,5を
長手方向に伸縮可能に接続したものであり、柱1
と梁2とで囲まれる構面内において、両端を対角
位置のガセツトプレート7間に取り付け、中央の
継手部6における接続状態を調整可能としてい
る。 The brace 3 is made by connecting two brace members 4 and 5 so as to be expandable and contractible in the longitudinal direction.
In the structural plane surrounded by the beam 2 and the beam 2, both ends are attached between diagonally positioned gusset plates 7, so that the connection state at the central joint 6 can be adjusted.
継手部6において、一方のブレース構成部材4
の端部には、図に示すようにピストン15を有す
る油封式の流体圧シリンダー14が形成され、ピ
ストンロツド16が他方のブレース構成部材5の
端部にナツト19で固定されている。図中17は
流体圧シリンダー14のピストン15の両側を連
通させる流路20に設けた制御弁であり、封入さ
れた流体18の流れをこの制御弁17の開度でコ
ントロールすることにより、両ブレース構成部材
4,5を接続したり、切り離したりすることがで
きる。ただし、切り離し状態は完全に切り離され
た状態ではなく、流体18の体積による弾性をも
つた嵌合状態となる。制御弁17は電気的な方法
等により、コントロールすることができ、これを
コンピユーターで制御することにより、地震特性
に応じた最適な剛性状態を直ちに架構に与えるこ
とができる。 At the joint part 6, one brace component 4
As shown in the figure, an oil-sealed hydraulic cylinder 14 having a piston 15 is formed at the end thereof, and a piston rod 16 is fixed to the end of the other brace component 5 with a nut 19. In the figure, 17 is a control valve provided in a flow path 20 that communicates both sides of the piston 15 of the fluid pressure cylinder 14. By controlling the flow of the enclosed fluid 18 by the opening degree of this control valve 17, both braces can be connected. The components 4, 5 can be connected or separated. However, the disconnected state is not a completely disconnected state, but a fitted state with elasticity due to the volume of the fluid 18. The control valve 17 can be controlled by an electrical method or the like, and by controlling it by a computer, it is possible to immediately provide the frame with an optimal rigidity state depending on the seismic characteristics.
なお、第1図は構面内のブレース3が一つの場
合であるが、第3図および第4図に示すように、
複数設置したブレース3に適用することもでき
る。 Although FIG. 1 shows the case where there is only one brace 3 in the composition plane, as shown in FIGS. 3 and 4,
It can also be applied to a plurality of braces 3 installed.
また、以上、一対の柱1と梁2によつて囲まれ
る構面との関係で説明したが、多層階の建物に適
用する場合、この装置を多数配置し、建物全体と
して剛性を変化させることもできる。 Moreover, although the above explanation has been made in relation to the structural surface surrounded by a pair of columns 1 and beams 2, when applied to a multi-story building, it is possible to arrange a large number of this device and change the rigidity of the building as a whole. You can also do it.
〔発明の効果〕
ブレース構成部材どうしの継手部を油封式の
流体圧シリンダーで構成し、制御弁の調整で接
続状態を変える構成であるため、わずかな駆動
エネルギーで建物の剛性を変化させることがで
きる。[Effects of the Invention] The joints between the brace components are constructed with oil-sealed fluid pressure cylinders, and the connection state can be changed by adjusting the control valve, so it is possible to change the rigidity of the building with a small amount of drive energy. can.
2本のブレース構成部材からなるブレースの
継手部における接続状態を制御装置で制御する
ことにより、架構の剛性を自由に制御すること
がきる。 The rigidity of the frame can be freely controlled by controlling the connection state at the joint portion of the brace, which is made up of two brace constituent members, using a control device.
制御装置による制御コンピユーターの指令で
行うことにより、個々の地震特性に応じて建物
全体の変形を制御できる。これにより、建物の
安全性を高め、揺れの少ない快適な居住空間が
形成される。 The deformation of the entire building can be controlled according to individual seismic characteristics by using commands from the control computer from the control device. This increases the safety of the building and creates a comfortable living space with less shaking.
第1図は本発明の概要を示す架構の正面図、第
2図はブレースの継手部の詳細を示すブレース長
手方向の断面図、第3図および第4図は構面内に
おけるブレースの配置例を示す正面図である。
1……柱、2……梁、3……ブレース、4,5
……ブレース構成部材、6……継手部、7……ガ
セツトプレート、14……シリンダー、15……
ピストン、16……ロツド、17……弁、18…
…流体、19……ナツト、20……流路。
Fig. 1 is a front view of the frame showing an overview of the present invention, Fig. 2 is a sectional view in the longitudinal direction of the brace showing details of the joint part of the brace, and Figs. 3 and 4 are examples of arrangement of the brace within the structure. FIG. 1...Column, 2...Beam, 3...Brace, 4,5
... Brace component, 6 ... Joint part, 7 ... Gusset plate, 14 ... Cylinder, 15 ...
Piston, 16...Rod, 17...Valve, 18...
...Fluid, 19...nut, 20...channel.
Claims (1)
ス構成部材からなるブレースを建物架構の構面内
に配置し、制御装置により前記ブレースの継手部
における接続状態を制御するよう構成した建物架
構の可変剛性装置において、前記ブレース構成部
材の一方の端部にピストンを有する油封式の流体
圧シリンダーを形成し、前記ピストンのロツドを
他方のブレース構成部材の端部に固定するととも
に、前記流体圧シリンダーの前記ピストンの両側
を連通させる流路に、該流路における流体の流れ
を調整するための制御弁を設けたことを特徴とす
る建物架構の可変剛性装置。1 Variability of a building frame, in which a brace consisting of two brace members connected so as to be extendable and contractable in the longitudinal direction is arranged within the structural surface of the building frame, and a control device controls the state of connection at the joint of the brace. In the rigid device, an oil-sealed hydraulic cylinder having a piston is formed at one end of the brace component, a rod of the piston is fixed to an end of the other brace component, and the hydraulic cylinder is A variable rigidity device for a building frame, characterized in that a control valve for adjusting the flow of fluid in the flow path is provided in a flow path that communicates both sides of the piston.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30673587A JPH01146079A (en) | 1987-12-03 | 1987-12-03 | Variable rigid device for building framing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30673587A JPH01146079A (en) | 1987-12-03 | 1987-12-03 | Variable rigid device for building framing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01146079A JPH01146079A (en) | 1989-06-08 |
JPH0413515B2 true JPH0413515B2 (en) | 1992-03-09 |
Family
ID=17960670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30673587A Granted JPH01146079A (en) | 1987-12-03 | 1987-12-03 | Variable rigid device for building framing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01146079A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4946993A (en) * | 1972-09-09 | 1974-05-07 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61100754U (en) * | 1984-12-10 | 1986-06-27 |
-
1987
- 1987-12-03 JP JP30673587A patent/JPH01146079A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4946993A (en) * | 1972-09-09 | 1974-05-07 |
Also Published As
Publication number | Publication date |
---|---|
JPH01146079A (en) | 1989-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2179727C (en) | Improved method and apparatus for real-time structure parameter modification | |
Kobori et al. | Effect of dynamic tuned connector on reduction of seismic response-application to adjacent office buildings | |
JPH0522028B2 (en) | ||
JPH0561427B2 (en) | ||
JPH0559230B2 (en) | ||
Gupta et al. | Dynamic analysis of staggered truss framing system | |
JPH0413515B2 (en) | ||
JPH01263333A (en) | Variable bending rigidity device for structure | |
JPH11200659A (en) | Base isolation structure | |
JPH0572490B2 (en) | ||
JPH0572489B2 (en) | ||
JPH0369431B2 (en) | ||
JPS6370734A (en) | Axially variable rigid material of building housing | |
JP2001003982A (en) | Non-resonant semi-active base isolating structure and base isolating method | |
JPH0370071B2 (en) | ||
JPH0438870B2 (en) | ||
JPH0438871B2 (en) | ||
JP3028035B2 (en) | Active vibration control structure | |
JPH0572488B2 (en) | ||
JPH05248118A (en) | Variable rigidity device for frame of building | |
JPH02240341A (en) | Damping frame having controlling mechanism for bending deformation | |
JPH0413517B2 (en) | ||
JPH0413516B2 (en) | ||
JPH04366208A (en) | Bridge of active oscillation-controlling type | |
JPH09100648A (en) | Building structure |