JPH0370071B2 - - Google Patents

Info

Publication number
JPH0370071B2
JPH0370071B2 JP25879486A JP25879486A JPH0370071B2 JP H0370071 B2 JPH0370071 B2 JP H0370071B2 JP 25879486 A JP25879486 A JP 25879486A JP 25879486 A JP25879486 A JP 25879486A JP H0370071 B2 JPH0370071 B2 JP H0370071B2
Authority
JP
Japan
Prior art keywords
drive device
building
rigidity
axial force
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25879486A
Other languages
Japanese (ja)
Other versions
JPS63114770A (en
Inventor
Takuji Kobori
Shunichi Yamada
Shuichi Kamagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP25879486A priority Critical patent/JPS63114770A/en
Priority to US07/096,012 priority patent/US4890430A/en
Publication of JPS63114770A publication Critical patent/JPS63114770A/en
Priority to US07/400,691 priority patent/US4922667A/en
Publication of JPH0370071B2 publication Critical patent/JPH0370071B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は制震構造の建物架構に用いられる軸
方向可変剛性材に関するもので、建物に入力する
地震、風等の外力に応じて部材の剛性を変化さ
せ、地震等に対処させるものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to an axially variable rigidity material used in a building frame with a vibration-damping structure, in which the stiffness of the member changes in response to external forces such as earthquakes and wind that are input to the building. This changes the rigidity to cope with earthquakes, etc.

〔従来の技術〕[Conventional technology]

従来、高層建築や重要構造物等の耐震設計にお
いては地震時の地盤の動きや建物の応答を計算
し、安全性をチエツクする動的設計が行われてい
る。
Conventionally, in the seismic design of high-rise buildings and important structures, dynamic design has been performed to check safety by calculating the ground movement and building response during an earthquake.

耐震の方法としては建物と基礎の間に積層ゴム
支承やダンパーを介在させた免震構法あるいは減
震構法、建物構成部材のうち、非主要部材の破壊
により地震エネルギーを消費させる方法、壁ある
いは柱等にスリツトを設け、建物を最適の剛性に
調整する方法等がある。
Earthquake resistance methods include seismic isolation or attenuation construction methods in which laminated rubber bearings or dampers are interposed between the building and the foundation, methods that consume earthquake energy by destroying non-main building components, walls or columns. There is a method to adjust the rigidity of the building to the optimum level by creating slits in the building.

ところで、現行の耐震設計手法により設計され
た建物の地震時における安全性の確認は、構造物
の塑性化を伴なう履歴特性による吸収エネルギー
が構造物に作用する地震エネルギーを上回るとい
う基本思想によるが、これには履歴ループ特性に
対する信頼性の問題がある。
By the way, confirmation of the safety of buildings designed using current seismic design methods in the event of an earthquake is based on the basic idea that the energy absorbed by the hysteresis characteristics associated with plasticization of the structure exceeds the seismic energy acting on the structure. However, this has the problem of reliability regarding the history loop characteristics.

また、従来の方法はいずれも地震や風等の自然
外力に対し、受身の耐震構造を与えるものであ
り、建物が特定の固有振動数を有するため地震と
いう不確定な入力に対し、共振現象を避けて通る
ことはできない。
In addition, all conventional methods provide a passive seismic structure against natural external forces such as earthquakes and wind, and because buildings have a specific natural frequency, they do not allow resonance phenomena to occur against uncertain inputs such as earthquakes. You can't avoid it.

これに対し、出願人は特願昭61−112026号(特
開昭62−268479号)において、上述のような受身
の耐震方法でなく、感知した地震動に基づく応答
予測システムの判断のもとに建物自体の剛性を変
化させ、共振領域外または共振の少ない状態と
し、建物および建物内の機器、居住者等の安全を
図つた制震方法を提案している。
In contrast, in Japanese Patent Application No. 61-112026 (Japanese Unexamined Patent Publication No. 62-268479), the applicant proposed a method based on the judgment of a response prediction system based on the detected seismic motion, rather than the passive seismic method described above. We are proposing a vibration damping method that changes the rigidity of the building itself to bring it out of the resonance region or into a state with less resonance, thereby ensuring the safety of the building, its equipment, residents, etc.

上記の制震方法では柱、はり、ブレース、壁並
びにそれらの接合部の全部もしくは一部、または
建物と基礎あるいは隣接する建物との間に、コン
ピユーターの指令により連結状態が変化する制御
装置を設け、次のようにして、建物の制震を行な
う。
In the above seismic control method, a control device is installed in all or part of columns, beams, braces, walls, and their joints, or between a building and the foundation or an adjacent building, so that the connection state can be changed according to computer commands. , Damping the building is done as follows.

地震の発生を建物を中心に狭域および広域に
配置した地震感知装置により感知し、観測デー
タを有線、無線の通信網によりコンピユーター
に伝達する。広域の地震感知装置は既設の地震
観測点における地震計あるいは専用に設置した
ものをマイクロ回線あるいは電話回線等で結
ぶ。また狭域の地震感知装置は建物の周辺ある
いは周辺地盤内に設けた地震計や、建物基部や
建物内に設置した振動センサーからなり、風力
等の影響は建物内の振動センサーで感知する。
The occurrence of an earthquake is detected by earthquake sensing devices placed in both narrow and wide areas around buildings, and the observation data is transmitted to a computer via wired and wireless communication networks. Wide-area earthquake sensing equipment connects seismometers at existing earthquake observation points or specially installed equipment using micro-wires or telephone lines. In addition, narrow-area earthquake sensing devices consist of seismometers installed around buildings or in the surrounding ground, and vibration sensors installed at the base of buildings or inside buildings, and the effects of wind force etc. are detected by vibration sensors inside buildings.

感知した地震について、コンピユーターによ
り地震の規模の判断、周波数特性の分析、応答
量の予測等を行ない、建物の振動を制御すべき
か否か、また制御すべき場合の制御量につい
て、共振をかわし、地震応答量の少ない最適剛
性(固有振動数)を与えるものとして判断を下
す。
For detected earthquakes, a computer determines the scale of the earthquake, analyzes frequency characteristics, predicts the amount of response, etc., and determines whether or not to control the vibration of the building, and if so, the amount of control to avoid resonance. The judgment is made based on the one that provides the optimum stiffness (natural frequency) with a small amount of seismic response.

コンピユーターの指令を建物の各部の制御装
置に伝え、建物の剛性をコンピユーターの予測
に基づく最適剛性となるよう制御装置を作動さ
せる。連結状態の調整は固定状態と連結解除状
態を油圧機構、電磁石等によりオン、オフで調
整するものや、固定状態、連結解除状態の外、
緊張力の導入や任意の位置での固定を油圧機構
あるいは特殊合金等を用いて調整するもの等が
考えられる。
The commands from the computer are transmitted to the control devices in each part of the building, and the control devices are operated so that the stiffness of the building reaches the optimal stiffness based on the computer's predictions. The connection state can be adjusted by turning the fixed state and uncoupled state on and off using hydraulic mechanisms, electromagnets, etc., and in addition to the fixed state and disconnected state,
It is conceivable to use a hydraulic mechanism or a special alloy to adjust the introduction of tension force and fixation at an arbitrary position.

また、建物内に配した振動センサーにより、
建物各部における応答量並びに制御を行つた場
合の実際の振動が検知でき、これをフイードバ
ツクして、制御量の修正等を行なうことができ
る。
In addition, vibration sensors placed inside the building will
The amount of response in each part of the building as well as the actual vibration when controlled can be detected, and this can be fed back to correct the amount of control.

〔発明の目的〕[Purpose of the invention]

この発明の建物架構の軸方向可変剛性材は、上
述のような制震方法において、ブレース、あるい
は柱等に使用し、軸方向の剛性を変化させ、地震
等に対処できるようにしたものである。なお、こ
の発明は上述の制震方法への使用にのみ限定する
ものではなく、上記方法の改良方法に使用した
り、あるいは単に剛性を変化させるために使用す
ることも可能である。
The axially variable rigidity material of the building frame of the present invention is used for braces, columns, etc. in the above-mentioned vibration control method to change the axial rigidity and cope with earthquakes, etc. . Note that the present invention is not limited to use in the above-mentioned vibration damping method, but can also be used to improve the above-mentioned method, or simply to change rigidity.

〔発明の構成〕[Structure of the invention]

以下、この発明を第2図に示した力学モデルに
よつて説明する。
This invention will be explained below using the dynamic model shown in FIG.

この発明の可変剛性材Aは第2図に示すように
軸力Nを受ける点(図中ピン4a,4bで示され
る)を共通にしたく字状の主部材1,2の中間を
それぞれピン5a,5bで接合し、ピン5a,5
b間を連結部材3で結んだ軸力抵抗材で、連結部
材3の材軸は軸力Nの方向と直角であり、この方
向に力を加えられる駆動装置6により伸縮可能と
なつている。主部材1,2を構成する部材1a,
1b,2a,2bおよび連結部材3を構成する部
材3a,3bはそれぞれ軸力Nに対して、安定構
造として抵抗できる基本的な軸剛性を有するよう
断面を決定する。
As shown in FIG. 2, the variable rigidity material A of the present invention has a dogleg-shaped main member 1, 2 which has a common point receiving axial force N (indicated by pins 4a, 4b in the figure), and a pin 5a between each. , 5b, and pins 5a, 5
The material axis of the connecting member 3 is perpendicular to the direction of the axial force N, and can be expanded and contracted by a drive device 6 that applies force in this direction. Member 1a constituting main members 1 and 2,
The cross sections of the members 1b, 2a, 2b and the members 3a, 3b constituting the connecting member 3 are determined so as to have basic axial rigidity capable of resisting the axial force N as a stable structure.

なお、軸力抵抗材としての基本剛性は、静止時
のくの字に曲げる角度θ(軸方向と主部材1,2
を構成する部材のなす角)と連結部材3の基本剛
性によつて選択できる。すなわち、連結部材3の
駆動装置6による制動力を考えない場合において
も、θによつて任意に基本剛性を変えることはで
きる。
The basic rigidity as an axial force resistance material is determined by the angle θ (axial direction and main members 1 and 2) of bending into a dogleg shape when at rest.
It can be selected depending on the angle formed by the members constituting the connecting member 3) and the basic rigidity of the connecting member 3. That is, even when the braking force of the drive device 6 of the connecting member 3 is not considered, the basic rigidity can be arbitrarily changed by θ.

駆動装置6としてはサーボ弁を有する油圧のア
クチユエーターや、電気パルスモーターを使つた
デジタル式の油圧アクチユエーターやボールねじ
を利用し、電動のサーボモーターによつてボルト
を回転させて、連結部材3aの部材3a,3bの
間隔を変えて行くもの、その他パワーが小さくて
よいものとしては電磁式のリニヤモーター等が考
えられる。これらの駆動装置6による制御力Pは
地震による建物の共振現象を避ける等の時々刻々
剛性を変化させたい時に作用させるのが効果的で
ある。すなわち、コンピユーターの制御プログラ
ムに基づいて駆動装置6を自動制御することがで
き、地震等の振動外力に応じ、建物各部での部材
の剛性、連結状態等を変化させて、建物全体とし
ての固有周期を変化させるなどして共振をかわす
ことができる。
As the drive device 6, a hydraulic actuator with a servo valve, a digital hydraulic actuator using an electric pulse motor, or a ball screw is used, and the bolt is rotated by the electric servo motor to perform the connection. An electromagnetic linear motor or the like can be considered as a device that changes the distance between the members 3a and 3b of the member 3a, and other devices that require small power. It is effective to apply the control force P by these drive devices 6 when it is desired to change the rigidity from time to time, such as to avoid a resonance phenomenon of the building due to an earthquake. In other words, the drive device 6 can be automatically controlled based on a computer control program, and the natural period of the building as a whole can be adjusted by changing the rigidity, connection state, etc. of members in each part of the building in response to external vibrational forces such as earthquakes. Resonance can be avoided by changing the

なお、連結部材3の基本剛性に関し、必要とあ
らば駆動装置6と並列にコイルばね等を介在さ
せ、駆動装置6が作動しない場合にも所定の剛性
を確保することもできる。
Regarding the basic rigidity of the connecting member 3, if necessary, a coil spring or the like may be interposed in parallel with the drive device 6 to ensure a predetermined rigidity even when the drive device 6 does not operate.

〔作用〕[Effect]

前述のようにθを選択すると基本剛性Koは軸
力N方向の変形が軸力に比例するように一義的に
決まるが、連結部材3に設けた駆動装置6による
制御力Pは基本剛性Koを変えるものである。す
なわち、軸力Nによつて幾何学的に決定される連
結部材3の部材応力による連結部材3の伸び縮み
をさらに制御力Pを加えたり、減じたりすること
により、く字状の主部材1,2の中間のピン5
a,5b接合部における軸力Nの方向と直角方向
の変形を増減させて、軸力Nの方向の変形を変化
させることができる。
As mentioned above, when θ is selected, the basic stiffness Ko is uniquely determined so that the deformation in the direction of the axial force N is proportional to the axial force, but the control force P by the drive device 6 provided on the connecting member 3 changes the basic stiffness Ko. It is something that can be changed. That is, by further adding or subtracting the control force P to the expansion and contraction of the connecting member 3 due to the member stress of the connecting member 3 determined geometrically by the axial force N, the dogleg-shaped main member 1 is , 2 intermediate pin 5
The deformation in the direction of the axial force N can be changed by increasing or decreasing the deformation in the direction perpendicular to the direction of the axial force N at the joint a, 5b.

軸力Nの作用方向の基本剛性Koは下記(1)式の
ように軸力Nと軸力の作用方向の変形δの関係を
一義的に決めるものである(第3図a参照)が、
連結部材3に制御力Pを作用させた場合(第3図
b参照)には、△δだけ変化を変えることができ
るので、下記(2)式のように剛性Kが変わるのと同
じことになる。
The basic stiffness Ko in the direction of action of the axial force N uniquely determines the relationship between the axial force N and the deformation δ in the direction of action of the axial force, as shown in equation (1) below (see Figure 3 a).
When the control force P is applied to the connecting member 3 (see Fig. 3b), the change can be changed by △δ, which is the same as changing the stiffness K as shown in equation (2) below. Become.

Ko=N/δ ……(1) K=N/δ+△δ ……(2) 〔実施例〕 次に、図示した実施例について説明する。 Ko=N/δ...(1) K=N/δ+△δ……(2) 〔Example〕 Next, the illustrated embodiment will be described.

第1図a〜cは可変剛性材Aの構造の一例を示
したものである。対向するく字状の主部材1,2
はそれぞれ部材1a,1b、部材2a,2bをピ
ン5a,5bで接合し、軸力を受ける両端を共通
のピン4a,4bで接合してある。この実施例
で、各部材1a,1b,2a,2bの断面は第1
図cのようにH形断面となつているが、これに限
定する必要はない。
FIGS. 1a to 1c show an example of the structure of the variable rigidity material A. FIG. Opposing dog-shaped main members 1 and 2
The members 1a, 1b and the members 2a, 2b are respectively joined by pins 5a, 5b, and both ends receiving axial force are joined by a common pin 4a, 4b. In this embodiment, the cross section of each member 1a, 1b, 2a, 2b is the first
Although it has an H-shaped cross section as shown in Figure c, it is not necessary to be limited to this.

ピン5a,5bによる接合部間は連結部材3に
よつて連結されている。連結部材3は例えば第1
図bに示すようにコ字状の部材3a,3bを背中
合わせに配し、ボルト7によつて連結したもの
で、駆動装置6としての電動サーボモーター6a
によつてボルト7を回転させることにより、部材
3aに固定したナツト8により、部材3aが他方
の部材3bに対し、離れたり、近づいたりして、
制御力Pが作用する。このように、モーター6a
の回転をボルト7の直線運動に変換し、く字状の
主部材1,2に加速度を与えることにより制御力
を得ることができる。なお、上述したボルト7と
ナツト8を、ボールねじ(おねじとめねじを同一
位置に合わせ、それで生じた溝の中にボールを入
れ、そのボールが循環できるようにもどり溝を設
けたもの)で置き換えた構造のもの、すなわちボ
ルトとナツトに相当する部材の螺合部分にボール
ねじを用いたものを利用すれば、摩擦が小さくな
り、駆動における効率を上げることができる。図
中9はストツパーである。第1図dは電動サーボ
モーター6aの代わりにサーボ弁を有する油圧シ
リンダー6bを用いた場合の例であり、油圧力
で、直接、制御することができる。
A connecting member 3 connects the joint between the pins 5a and 5b. The connecting member 3 is, for example, a first
As shown in FIG.
By rotating the bolt 7 by the nut 8 fixed to the member 3a, the member 3a moves away from or approaches the other member 3b,
A control force P acts. In this way, the motor 6a
A control force can be obtained by converting the rotation of the bolt 7 into a linear motion of the bolt 7 and applying acceleration to the doglegged main members 1 and 2. The above-mentioned bolt 7 and nut 8 can be connected using a ball screw (a device in which the male and female screws are aligned in the same position, a ball is inserted into the groove created by the screw, and a return groove is provided so that the ball can circulate). If a replacement structure is used, that is, a ball screw is used for the threaded part of the members corresponding to the bolt and nut, friction can be reduced and driving efficiency can be increased. 9 in the figure is a stopper. FIG. 1d shows an example in which a hydraulic cylinder 6b having a servo valve is used instead of the electric servo motor 6a, and can be directly controlled by hydraulic pressure.

一例として動力Nが引張力の場合を考えると、
駆動装置6を作動させて、ピン5a,5b間の間
隔が狭まる向きに制御力を働かすことにより、前
述の(2)式より、剛性Kが小さくなる。逆にピン5
a,5bの間隔が広がる向きに制御力を働かすこ
とにより、(2)式の△δは負の値となり、剛性Kが
大きくなる。軸力Nが圧縮力の場合も(2)式より剛
性Kの変化を知ることができる。
As an example, if we consider the case where the power N is a tensile force,
By operating the drive device 6 and exerting a control force in a direction that narrows the distance between the pins 5a and 5b, the rigidity K becomes smaller according to the above-mentioned equation (2). Conversely, pin 5
By applying the control force in a direction that increases the distance between a and 5b, Δδ in equation (2) becomes a negative value, and the rigidity K increases. Even when the axial force N is a compressive force, the change in stiffness K can be determined from equation (2).

第4図は可変剛性材Aをブレースに適用した場
合、第5図は建物最下層の長期軸力用柱10の両
側に用い、地震時の転倒モーメントに対する抵抗
柱として利用した場合の例である。駆動装置6の
作動による制御力によつて可変剛性材Aの剛性K
が変わり、共振を避けることができる。図中11
耐震壁またはブレースである。
Figure 4 shows an example in which variable stiffness material A is applied to a brace, and Figure 5 shows an example in which it is used on both sides of a long-term axial force column 10 on the lowest floor of a building, and used as a resistance column against overturning moment during an earthquake. . The rigidity K of the variable rigidity member A is controlled by the control force generated by the operation of the drive device 6.
changes, and resonance can be avoided. 11 in the diagram
Shear walls or braces.

第6図a〜cは建物の最下層で柱の柱頭、柱脚
をピン接合とし、この発明の可変剛性材Aをブレ
ースとして使つている。連結部材の基本剛性を極
端に小さくすれば、最下層の水平剛性は制御力に
よつて決まる。風等、建物側から入る横力に対し
てはブレースの剛性が高くなるようにする(第6
図a参照)。また、地震等地面から入るものに対
してはブレースの剛性が低くなるように、制御力
を調整する(第6図b、c参照)。すなわち免震
装置になる。
In Figures 6a to 6c, the capitals and bases of columns are connected with pins on the lowest floor of a building, and the variable rigidity material A of the present invention is used as a brace. If the basic stiffness of the connecting member is made extremely small, the horizontal stiffness of the lowest layer is determined by the control force. The rigidity of the braces should be high against lateral forces such as wind that enter from the building side (No. 6)
(see figure a). In addition, the control force is adjusted so that the rigidity of the brace becomes low against earthquakes and other forces that enter from the ground (see Figures 6b and 6c). In other words, it becomes a seismic isolation device.

以上の機構は柱が通常の建物に使われるもので
あれば、接合部をピン接合とせず、剛接合でも多
少柱の水平剛性が増すだけで基本的には同じであ
り、特に柱脚ピン柱頭剛接合は鉄骨製作や建方に
しても取り合いが容易になり経済性、施工性の面
で利点がある。また、免震装置としての使用等、
柔かく使用する場合に起こる自由振動による大変
形に対しては駆動装置6による制御力を揺れを打
ち消すようなダンパーとして使用することもでき
る。
The above mechanism is basically the same as long as the column is used in a normal building, instead of using a pin connection at the joint, the horizontal rigidity of the column increases slightly even if the joint is rigidly connected. Rigid joints are advantageous in terms of economy and workability, as they facilitate assembly when manufacturing and erecting steel frames. In addition, use as a seismic isolation device, etc.
For large deformations due to free vibrations that occur when used gently, the control force provided by the drive device 6 can be used as a damper to cancel out the vibrations.

〔発明の効果〕 く字状の主部材中間のピン接合位置で軸力と
直角な方向の制御力を加えることにより軸力抵
抗材としての剛性を変化させることができる。
[Effects of the Invention] By applying a control force in a direction perpendicular to the axial force at the pin joint position in the middle of the dogleg-shaped main member, the rigidity as an axial force resisting material can be changed.

コンピユーター等で、建物架構に用いた可変
剛性材の剛性変化を制御することにより、個々
の地震特性に応じて建物の固有周期を変動さ
せ、共振現象による建物の大きな変形を抑制す
ることができる。
By controlling changes in the rigidity of variable-rigidity materials used in building frames using computers, etc., it is possible to vary the natural period of the building according to individual seismic characteristics, thereby suppressing large deformations of the building due to resonance phenomena.

コンピユーターを用いた制震方法に利用する
ことにより、共振がなく、揺れの少ない快適な
居住空間が形成される。
By using a computer-based vibration control method, a comfortable living space with no resonance and less shaking can be created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜dはこの発明の実施例を示したもの
で、第1図a,b,cはそれぞれ正面図、−
断面図、および−断面図、第1図dは−
断面における変形例を示す断面図、第2図は力学
モデルとして示した説明図、第3図a,bは変形
の関係を示す説明図、第4図はブレースへの適用
例を示す正面図、第5図はモーメント抵抗柱への
適用例を示す正面図、第6図a,b,cは建物最
下層のブレースに適用したと仮定した場合の作用
を示す正面図である。 A……可変剛性材、1,2……主部材、3……
連結部材、4a,4b,5a,5b……ピン、6
……駆動装置、6a……モーター、6b……油圧
シリンダー、7……ボルト、8……ナツト、9…
…ストツパー、10……長期軸力用柱、11……
耐震壁またはブレース。
Figures 1 a to d show an embodiment of the present invention, and Figures 1 a, b, and c are front views, and -
Sectional view, and - Sectional view, Figure 1 d -
2 is an explanatory diagram showing a dynamic model; FIGS. 3 a and b are explanatory diagrams showing the relationship of deformation; FIG. 4 is a front view showing an example of application to a brace; FIG. 5 is a front view showing an example of application to a moment resistance column, and FIGS. 6a, b, and c are front views showing the effect when applied to a brace on the lowest floor of a building. A...Variable rigidity material, 1, 2...Main member, 3...
Connection member, 4a, 4b, 5a, 5b...pin, 6
...Drive device, 6a...Motor, 6b...Hydraulic cylinder, 7...Bolt, 8...Nut, 9...
...Stopper, 10...Long-term axial force column, 11...
Shear walls or braces.

Claims (1)

【特許請求の範囲】 1 両材端の軸力を受ける点を共通にした互いに
対向するく字状の主部材の中間をそれぞれピン接
合とし、該ピン接合位置どうしを駆動装置の作動
により伸縮可能とした連結部材で連結し、前記連
結部材を伸縮させることにより、前記軸力と直角
な方向の制御力を導入可能としたことを特徴とす
る軸方向可変剛性材。 2 前記連結部材は駆動装置を介して連結した2
部材からなり、前記2部材の間隔を前記駆動装置
の作動により制御可能としたものである特許請求
の範囲第1項記載の軸方向可変剛性材。 3 前記駆動装置はサーボ機構を有する油圧シリ
ンダーである特許請求の範囲第1項または第2項
記載の軸方向可変剛性材。 4 前記駆動装置は電気、油圧ステツピングシリ
ンダーである特許請求の範囲第1項または第2項
記載の軸方向可変剛性材。
[Scope of Claims] 1. Pin joints are formed between mutually opposing dogleg-shaped main members that share a common point of receiving axial force at the ends of both materials, and the pin joint positions can be expanded and contracted by the operation of a drive device. An axially variable rigidity member, characterized in that the material is connected by a connecting member having a shape, and by expanding and contracting the connecting member, it is possible to introduce a control force in a direction perpendicular to the axial force. 2. The connecting member is 2 connected via a drive device.
The axially variable rigidity member according to claim 1, wherein the axially variable rigidity member is made of a member, and the distance between the two members is controllable by the operation of the drive device. 3. The axially variable rigidity member according to claim 1 or 2, wherein the drive device is a hydraulic cylinder having a servo mechanism. 4. The axially variable rigidity member according to claim 1 or 2, wherein the drive device is an electric or hydraulic stepping cylinder.
JP25879486A 1986-09-12 1986-10-30 Axial variable rigid material Granted JPS63114770A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP25879486A JPS63114770A (en) 1986-10-30 1986-10-30 Axial variable rigid material
US07/096,012 US4890430A (en) 1986-09-12 1987-09-10 Device and method for protecting a building against earthquake tremors
US07/400,691 US4922667A (en) 1986-09-12 1989-08-30 Device and method for protecting a building against earthquake tremors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25879486A JPS63114770A (en) 1986-10-30 1986-10-30 Axial variable rigid material

Publications (2)

Publication Number Publication Date
JPS63114770A JPS63114770A (en) 1988-05-19
JPH0370071B2 true JPH0370071B2 (en) 1991-11-06

Family

ID=17325159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25879486A Granted JPS63114770A (en) 1986-09-12 1986-10-30 Axial variable rigid material

Country Status (1)

Country Link
JP (1) JPS63114770A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5032232B2 (en) * 2007-07-24 2012-09-26 株式会社構造計画研究所 Building
KR101171346B1 (en) * 2011-11-21 2012-08-10 류호현 Shock absorbers of truss structures

Also Published As

Publication number Publication date
JPS63114770A (en) 1988-05-19

Similar Documents

Publication Publication Date Title
US5526609A (en) Method and apparatus for real-time structure parameter modification
US8857110B2 (en) Negative stiffness device and method
US5265387A (en) Vibration suppressing structure
JPH01284639A (en) Variable rigidity brace
JPH0561427B2 (en)
JPH0370071B2 (en)
JPH01203571A (en) Variable rigidity construction of building frame
JPH0686774B2 (en) Variable bending stiffness device for structures
Narasimhan et al. Smart base isolated building benchmark problem
JPH0615780B2 (en) Axial variable stiffness material for building frame
JPH0369431B2 (en)
JPH0572489B2 (en)
Lu Discrete-time modal control for seismic structures with active bracing system
JPS63130839A (en) Rigid material variable in axial direction
JPH01146079A (en) Variable rigid device for building framing
JPH0370072B2 (en)
JPH06307117A (en) Damping structure of mega-structure brace frame assembled with damper unit
JPH0742735B2 (en) Vibration control frame with bending deformation control mechanism
JPH01131741A (en) Variable rigid brace
Kishan et al. Experimental and Analytical Study of Negative Stiffness Device for Protection of Structures Against Earthquake—A Review
JPH01127741A (en) Variable rigid device for building frame
JPH0515851B2 (en)
JPH0438871B2 (en)
JP2556239B2 (en) Seismic frame for bending yield type damping device
Utku et al. A readily available energy source for active vibration control in buildings