JPH0742735B2 - Vibration control frame with bending deformation control mechanism - Google Patents

Vibration control frame with bending deformation control mechanism

Info

Publication number
JPH0742735B2
JPH0742735B2 JP6123789A JP6123789A JPH0742735B2 JP H0742735 B2 JPH0742735 B2 JP H0742735B2 JP 6123789 A JP6123789 A JP 6123789A JP 6123789 A JP6123789 A JP 6123789A JP H0742735 B2 JPH0742735 B2 JP H0742735B2
Authority
JP
Japan
Prior art keywords
building
steel pipe
bending deformation
cylinder
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6123789A
Other languages
Japanese (ja)
Other versions
JPH02240341A (en
Inventor
直幹 丹羽
鐸二 小堀
元一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP6123789A priority Critical patent/JPH0742735B2/en
Priority to US07/475,367 priority patent/US5065552A/en
Priority to US07/475,818 priority patent/US5036633A/en
Publication of JPH02240341A publication Critical patent/JPH02240341A/en
Publication of JPH0742735B2 publication Critical patent/JPH0742735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主として高層ビルなど曲げ変形量の大きい構造
物の、地震や風などに対する応答量を低減させるための
曲げ変形制御機構を有する制震架構に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention mainly relates to a seismic control system having a bending deformation control mechanism for reducing a response amount of a structure having a large bending deformation amount such as a high-rise building to an earthquake or wind. It is about the frame.

〔従来の技術〕[Conventional technology]

出願人は構造物の柱梁架構内に、ブレースや壁などの形
で可変剛性要素を組み込み、可変剛性要素自体の剛性、
あるいは架構本体と可変剛性要素との連結状態を固定状
態と非固定状態の間で切り換え、あるいは固定状態と非
固定状態との間でその接続状態を変化させ、地震や風な
どの振動外力に対し、振動外力の特性をコンピューター
により解析して、非共振となるよう構造物の剛性を変化
させて構造物の安全を図る能動的制震システムおよび可
変剛性構造を種々提案している(例えば特開昭62−2684
79号、特開昭63−114770号、特開昭63−114771号な
ど)。
The applicant has incorporated the variable rigidity element in the form of brace or wall in the column beam structure of the structure, and the rigidity of the variable rigidity element itself,
Alternatively, the connection state between the frame body and the variable stiffness element can be switched between the fixed state and the non-fixed state, or the connection state can be changed between the fixed state and the non-fixed state to prevent external vibrations such as earthquakes and winds. , Various types of active vibration control systems and variable rigidity structures have been proposed, in which the characteristics of vibration external force are analyzed by a computer, and the rigidity of the structure is changed so that the structure does not resonate, thereby ensuring the safety of the structure. Sho 62-2684
79, JP-A-63-114770, JP-A-63-114771, etc.).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、地震や風による高層ビルの揺れには、柱、梁
の曲げ変形、せん断変形によるフレームのせん断変形
と、柱の軸変形による架構全体の曲げ変形がある。通常
の場合、建物の揺れは上記2つの変形の合計として生
じ、建物の幅に対して高さの高いスレンダーな建物ほ
ど、架構全体の曲げ変形量が大きくなる。
By the way, shaking of a high-rise building due to an earthquake or wind includes bending deformation of columns and beams, shear deformation of a frame due to shear deformation, and bending deformation of the entire frame due to axial deformation of columns. Usually, the shaking of the building occurs as a sum of the above two deformations, and a slender building having a height higher than the width of the building has a larger bending deformation amount of the entire frame.

これに対し、従来の可変剛性構造は各層のフレームごと
剛性を制御して対処させるものが多く、曲げ変形に対処
させるためには複雑な制御が必要となり、必ずしも合理
的ではない。
On the other hand, in many conventional variable rigidity structures, the rigidity of each frame of each layer is controlled and dealt with, and complicated control is required to deal with bending deformation, which is not always rational.

本発明はこのような多層階の建物における曲げ変形を効
果的に制御するための制震架構を提供することを目的と
したものである。
An object of the present invention is to provide a vibration control frame for effectively controlling bending deformation in such a multi-storey building.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明では多層階の建物の柱に沿って、建物の高さ方向
に少なくとも複数階にわたって延びる軸部材を設け、こ
の軸部材の上部と下部を前記建物の一部、好ましくは最
上部と最下部に連結する。この軸部材の途中または端部
には連結状態をフリーとロックあるいは中間の多段階で
可変とした連結装置を設け、この連結状態を調整するこ
とにより、地震や風などの振動外乱に対し、曲げ変形の
制御といった形で建物の剛性制御あるいは減衰力の制御
を行うことができる。
In the present invention, a shaft member extending along at least a plurality of floors in the height direction of the building is provided along a pillar of a multi-story building, and the upper and lower parts of the shaft member are part of the building, preferably the uppermost part and the lowermost part. Connect to. A connecting device that can change the connection state between free and locked or in multiple stages in the middle is provided in the middle or end of this shaft member, and by adjusting this connection state, bending can be performed against vibration disturbances such as earthquakes and winds. The rigidity of the building or the damping force can be controlled in the form of deformation control.

本発明の構造は多層階の建物の外柱に適用するのが効果
的であり、軸部材としては鋼管、形鋼、その他棒状部材
が利用される。
The structure of the present invention is effectively applied to the outer pillars of a multi-storey building, and a steel pipe, shaped steel, or other rod-shaped member is used as the shaft member.

柱本体を角形鋼管などの鋼管とした場合には、その内側
に軸部材としての鋼管などを挿入することにより、曲げ
変形制御機構が表面に表れないようにすることができ
る。
When the column body is a steel pipe such as a square steel pipe, the bending deformation control mechanism can be prevented from appearing on the surface by inserting a steel pipe or the like as a shaft member inside thereof.

連結装置としては、シリンダーとピストンなどからなる
油圧式の装置(以下、シリンダーロック装置と呼ぶ)が
利用でき、軸部材の連結部の一方にシリンダーを、他方
にピストンロッドを連結し、これらの相対変位を油路に
設けた開閉弁により調整し、架構を剛な状態と柔の状態
で変化させたり、架構の減衰性を調整することができ
る。
As a connecting device, a hydraulic device composed of a cylinder and a piston (hereinafter referred to as a cylinder lock device) can be used. A cylinder is connected to one of the connecting parts of the shaft member and a piston rod is connected to the other, and these relative parts are connected. The displacement can be adjusted by an on-off valve provided in the oil passage to change the frame between a rigid state and a flexible state, and the damping property of the frame can be adjusted.

〔作用〕[Action]

地震や風により、架構全体が曲げ変形することにより連
結装置(上述のシリンダーロック装置の場合、シリンダ
ーとピストンの間)に相対変位が生じる。
Due to an earthquake or wind, the entire frame is bent and deformed, so that a relative displacement occurs in the coupling device (between the cylinder and the piston in the case of the cylinder lock device described above).

建物の最上部と最下部を連結した場合、その変形は大き
く、高層ビルでは数cmにも及ぶ(層間のせん断変形に比
べて層間の曲げ変形は少ない)。
When the top and bottom of the building are connected, the deformation is large, and even in a high-rise building it extends to several cm (the bending deformation between layers is less than the shear deformation between layers).

上記の変形状態において、シリンダーロック装置などの
連結装置を制御することで、柱に沿って設けた軸部材の
効き具合を調整することができる。
In the above-mentioned deformed state, by controlling the coupling device such as the cylinder lock device, the effectiveness of the shaft member provided along the column can be adjusted.

このとき、軸部材はほとんど軸力のみを負担し、座屈に
関しては各層のダイヤフラムなどを利用して軸直角方向
の変位を拘束することにより、軸力に有効に抵抗させる
ことができる。
At this time, the shaft member almost bears only the axial force, and the buckling can effectively resist the axial force by restraining the displacement in the direction perpendicular to the axis by utilizing the diaphragm of each layer.

〔実施例〕〔Example〕

次に、実施例について説明する。 Next, examples will be described.

第1図〜第3図は本発明の一実施例を示したもので、高
層建物の外柱2aを構成する外側鋼管2の内側に軸部材と
しての内側鋼管1を設置している。この内側鋼管1は最
上部と最下部で、接合プレート6およびダイヤフラム5
によって剛接され、最上部において外側鋼管2の軸力は
内側鋼管1に伝達され、最下部において内側鋼管1の軸
力が地下の柱および基礎に伝えられる。
1 to 3 show an embodiment of the present invention, in which an inner steel pipe 1 as a shaft member is installed inside an outer steel pipe 2 which constitutes an outer column 2a of a high-rise building. The inner steel pipe 1 has a joining plate 6 and a diaphragm 5 at the top and the bottom.
The axial force of the outer steel pipe 2 is transmitted to the inner steel pipe 1 at the uppermost portion, and the axial force of the inner steel pipe 1 is transmitted to the underground column and the foundation at the lowermost portion.

また、内側鋼管1は基準階では第3図に示すように、微
小な隙間をおいて柱梁接合部のダイヤフラム4から切り
離されており、内側鋼管1の下部に設けたシリンダーロ
ック装置10の状態に応じ、軸方向の相対移動が可能とな
る。
Further, as shown in FIG. 3, the inner steel pipe 1 is separated from the diaphragm 4 of the beam-column joint at a small gap as shown in FIG. 3, and the state of the cylinder lock device 10 provided under the inner steel pipe 1 is shown. Accordingly, relative movement in the axial direction becomes possible.

第4図および第5図は本発明の構造を適用する建物の概
要を示したもので、本実施例においては効果の大きい建
物外周の外柱2aのみ、上述の2重鋼管構造とし、内柱2b
は通常の構造としている。また、シリンダーロック装置
10は外柱2aの1階部分に設置されている。
FIGS. 4 and 5 show the outline of a building to which the structure of the present invention is applied. In this embodiment, only the outer column 2a on the outer periphery of the building, which is highly effective, has the above-mentioned double steel pipe structure and the inner column. 2b
Has a normal structure. Also, cylinder lock device
10 is installed on the first floor of the outer pillar 2a.

第6図はシリンダーロック装置10の概念図であり、シリ
ンダー11内に両ロッド形式のピストン12aが挿入されて
おり、ピストン12aの両側の油圧室13を連結する油路14
に開閉弁15が設けられている。開閉弁15の開度を多段階
に制御することで、減衰抵抗力を能動的に変化させるこ
とができる。また、開閉弁15の開度を全開、全閉の間で
選択すれば、フリーとロックの2状態が実現できる。な
お、この場合の減衰力はシリンダー11とピストン12aの
相対速度または相対速度の2乗に比例する抵抗力として
与えられる。
FIG. 6 is a conceptual diagram of the cylinder lock device 10, in which a double rod type piston 12a is inserted in the cylinder 11, and an oil passage 14 connecting the hydraulic chambers 13 on both sides of the piston 12a.
An on-off valve 15 is provided in the. The damping resistance force can be actively changed by controlling the opening degree of the opening / closing valve 15 in multiple stages. Further, if the opening degree of the opening / closing valve 15 is selected between fully open and fully closed, two states of free and locked can be realized. The damping force in this case is given as a resistance force proportional to the relative speed of the cylinder 11 and the piston 12a or the square of the relative speed.

このシリンダーロック装置10を上記内側鋼管1の途中に
設置し、柱2aの伸縮による動きがシリンダーロック装置
10のシリンダー11とピストン12aの相対変位となるよう
接合する。
This cylinder lock device 10 is installed in the middle of the inner steel pipe 1, and the movement due to the expansion and contraction of the pillar 2a is the cylinder lock device.
Cylinder 11 and piston 12a of 10 are joined so that relative displacement occurs.

前述のようにシリンダーロック装置10をフリーとロック
の2状態で制御する場合には、柱の伸縮を許容したり、
拘束したりして、従来の能動的制震システムおよび可変
剛性構造の場合と同様に非共振性を考慮した制御を行う
ことができる。また、開閉弁15を多段階に制御したり、
適当な開度のオリフィスを設けるなどして、シリンダー
ロック装置10の減衰係数を調整することにより、建物の
架構特性に応じ、減衰性を考慮した制御、あるいは非共
振性と減衰性の両者を考慮した制御を行うことができ
る。
As mentioned above, when controlling the cylinder lock device 10 in two states of free and locked, it is possible to allow expansion and contraction of the pillar,
By restraining, it is possible to perform control considering non-resonance as in the case of the conventional active vibration control system and variable rigidity structure. In addition, the on-off valve 15 can be controlled in multiple stages,
By adjusting the damping coefficient of the cylinder lock device 10 by providing an orifice with an appropriate opening, etc., depending on the structure characteristics of the building, control that considers damping properties, or consider both non-resonance and damping properties. The controlled control can be performed.

次表(表−1)および第7図〜第9図は建物の変形状態
およびシリンダーロック装置10の状態などの関係をまと
めたものである。
The following table (Table-1) and FIGS. 7 to 9 summarize the relationship between the deformed state of the building and the state of the cylinder lock device 10.

振動外乱のほとんどない常時については、第7図
(a),(b)に示すように、実質的な建物の変形がな
く、シリンダーロック装置10の開閉弁15は制御する必要
がない。
As shown in FIGS. 7 (a) and 7 (b), there is substantially no deformation of the building and the on-off valve 15 of the cylinder lock device 10 does not need to be controlled at all times when there is almost no vibration disturbance.

第8図(a),(b)は開閉弁15を全開または開いた状
態に近い状態とした場合であり、内側鋼管1があまり効
いていない状態であり、固有周期は長くなる。非共振性
のみの判断による制震システムでは、卓越周期の短い地
震動などに対し、この状態での制御が行われる。また、
減衰性を考慮した制御を行う場合には、振動レベルの大
きい大地震に対し、シリンダーロック装置10の開閉弁15
の開度を大きくする(開状態に近い状態とする)ことに
より、大きな減衰力を得ることができる。
FIGS. 8 (a) and 8 (b) show the case where the on-off valve 15 is fully opened or close to the opened state, in which the inner steel pipe 1 is ineffective, and the natural period becomes long. In a seismic control system based only on the judgment of non-resonance, control is performed in this state for earthquake motions with a short dominant period. Also,
When performing control considering damping properties, the open / close valve 15 of the cylinder lock device 10 is protected against large earthquakes with large vibration levels.
A large damping force can be obtained by increasing the opening degree of (close to the open state).

第9図(a),(b)は開閉弁15を全閉または閉じた状
態に近い状態とした場合であり、内側鋼管1が十分に効
いた状態であり、固有周期は短くなる。非共振性のみの
判断による制震システムでは、卓越周期の長い地震動あ
るいは大風などに対し、この状態での制御が行われる。
また、減衰性を考慮した場合には、振動レベルの小さい
中小地震に対し、シリンダーロック装置10の開閉弁15の
開度を小さくする(閉状態に近い状態とする)ことによ
り、大きな減衰力を得ることができる。
9 (a) and 9 (b) show the case where the on-off valve 15 is fully closed or close to the closed state, the inner steel pipe 1 is in a sufficiently effective state, and the natural period becomes short. In the seismic control system based only on the judgment of non-resonance, control is performed in this state for earthquake motions or winds with a long dominant period.
Further, in consideration of the damping property, a large damping force can be obtained by reducing the opening degree of the opening / closing valve 15 of the cylinder lock device 10 (close to the closed state) for a small earthquake with a small vibration level. Obtainable.

〔発明の効果〕〔The invention's effect〕

本発明は建物の複数階にわたって設けた軸部材の柱軸方
向の変位を、連結装置の連結状態の調整により制御する
ものであり、能動型の制震システムとして地震動や風、
あるいはこれらによる建物の応答に応じて、連結装置の
連結状態を変化させるように制御することで、建物の応
答を低減することができ、各階のフレームごと剛性を制
御する場合に比べ、複数階にわたっての制御となるため
効率が良い。
The present invention controls the displacement in the axial direction of a pillar of a shaft member provided over a plurality of floors of a building by adjusting the connection state of a connecting device, and as an active damping system, seismic motion and wind,
Alternatively, the response of the building can be reduced by controlling the connection state of the connection device to change according to the response of the building due to these, and compared to the case where the rigidity of each frame on each floor is controlled, The efficiency is good because it is controlled.

また、複数階にわたる軸部材を介して建物の剛性を変化
させるため、結果的に大きな変形量に対処させることに
なり、精度の向上も図れる。
Further, since the rigidity of the building is changed through the shaft members extending over a plurality of floors, a large amount of deformation is dealt with as a result, and accuracy can be improved.

さらに、軸部材で建物の最上部と最下部を連結し、連結
装置を制御することにより、1箇所で建物全体に対する
制御を行うことができる(勿論、複数箇所で制御して構
わない)ので、制御システムが比較的簡単になる。
Further, by connecting the uppermost part and the lowermost part of the building with the shaft member and controlling the connecting device, the whole building can be controlled at one place (of course, it may be controlled at a plurality of places). The control system is relatively simple.

なお、連結状態を多段階に制御するなどして、減衰性を
考慮した制御を行うことも可能である。
It is also possible to perform the control in consideration of the damping property by controlling the connection state in multiple stages.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す鉛直断面図、第2図お
よび第3図はそれぞれ第1図のI−I断面図およびII−
II断面図、第4図は本発明を適用する建物の概要を示す
立面図、第5図は同じく平面図、第6図は連結装置とし
てのシリンダーロック装置の概念図、第7図(a)、第
8図(a)および第9図(a)はそれぞれ常時、地震ま
たは風に対する低減衰またはフリー状態、高減衰または
ロック状態における建物の変形状態を示す概要図、第7
図(b)、第8図(b)および第9図(b)はそれぞれ
第7図(a)、第8図(a)および第9図(a)の建物
の変形状態に対応する連結装置の状態を示す概要図であ
る。 1…内側鋼管、2…外側鋼管、2a…外柱、2b…内柱、3
…梁、4、5…ダイヤフラム、6…接合プレート、10…
シリンダーロック装置、11…シリンダー、12…ロッド、
12a…ピストン、13…油圧室、14…油路、15…開閉弁
FIG. 1 is a vertical sectional view showing an embodiment of the present invention, and FIGS. 2 and 3 are sectional views taken along line I-I and II- of FIG. 1, respectively.
II cross-sectional view, FIG. 4 is an elevation view showing an outline of a building to which the present invention is applied, FIG. 5 is a plan view of the same, FIG. 6 is a conceptual view of a cylinder locking device as a connecting device, and FIG. ), FIG. 8 (a) and FIG. 9 (a) are schematic diagrams showing the deformed state of the building at low damping or free state, high damping or locked state against earthquake or wind, respectively.
Drawing (b), Drawing 8 (b), and Drawing 9 (b) are connection devices corresponding to the modification state of the building of Drawing 7 (a), Drawing 8 (a), and Drawing 9 (a), respectively. It is a schematic diagram showing the state of. 1 ... inner steel pipe, 2 ... outer steel pipe, 2a ... outer pillar, 2b ... inner pillar, 3
… Beams, 4, 5… Diaphragms, 6… Joining plates, 10…
Cylinder lock device, 11 ... Cylinder, 12 ... Rod,
12a ... piston, 13 ... hydraulic chamber, 14 ... oil passage, 15 ... open / close valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】多層階の建物の柱に沿って、建物の高さ方
向に少なくとも複数階にわたって延びる軸部材の上部と
下部を前記建物の一部に連結し、前記軸部材の途中また
は端部に連結状態をフリーとロックまたは中間の多段階
で可変とした連結装置を介在させたことを特徴とする曲
げ変形制御機構を有する制震架構。
1. An upper part and a lower part of a shaft member extending along at least a plurality of floors in a height direction of the building along a pillar of a multi-story building, are connected to a part of the building, and the shaft member is provided at an intermediate or end portion thereof. A seismic control frame having a bending deformation control mechanism, characterized by interposing a coupling device in which the coupling state is variable in multiple stages of free and locked or intermediate.
【請求項2】多層階の建物の外柱を構成する外側鋼管の
内側に、建物の高さ方向に連続する内側鋼管を設け、前
記内側鋼管の最上部と最下部をそれぞれ前記建物の上部
および下部に連結し、前記内側鋼管の途中または端部に
連結状態をフリーとロックまたは中間の多段階で可変と
した連結装置を介在させたことを特徴とする曲げ変形制
御機構を有する制震架構。
2. An inner steel pipe that is continuous in the height direction of the building is provided inside an outer steel pipe that constitutes an outer column of a multi-story building, and the uppermost and lowermost portions of the inner steel pipe are respectively the upper portion and the upper portion of the building. A seismic control frame having a bending deformation control mechanism, characterized in that it is connected to a lower portion, and a connecting device intervening in the middle or at the end of the inner steel pipe, the connection state being variable between free and locked or intermediate multistage, is provided.
【請求項3】前記連結装置はシリンダーと、該シリンダ
ー内で往復動する両ロッド形式のピストンと、該ピスト
ンの両側の油圧室を連結する油路と、該油路に設けた開
閉弁とからなり、前記シリンダーを連結すべき一方の部
材に連結し、前記ピストンのロッドを連結すべき他方の
部材に連結するよう構成される連結装置である請求項1
または2記載の曲げ変形制御機構を有する制震架構。
3. The connecting device comprises a cylinder, a piston of a double rod type reciprocating in the cylinder, an oil passage connecting hydraulic chambers on both sides of the piston, and an opening / closing valve provided in the oil passage. And a connecting device configured to connect the cylinder to one member to be connected and to connect the rod of the piston to the other member to be connected.
Alternatively, a vibration control frame having the bending deformation control mechanism described in 2.
【請求項4】前記連結装置は前記開閉弁の開閉により、
前記シリンダーとピストンの相対的な移動を固定状態と
非固定状態との間で変化させるものである請求項3記載
の曲げ変形制御機構を有する制震架構。
4. The connecting device is configured to open and close the on-off valve,
The vibration control frame having a bending deformation control mechanism according to claim 3, wherein the relative movement of the cylinder and the piston is changed between a fixed state and a non-fixed state.
JP6123789A 1989-02-07 1989-03-14 Vibration control frame with bending deformation control mechanism Expired - Fee Related JPH0742735B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6123789A JPH0742735B2 (en) 1989-03-14 1989-03-14 Vibration control frame with bending deformation control mechanism
US07/475,367 US5065552A (en) 1989-02-07 1990-02-05 Active seismic response control system for use in structure
US07/475,818 US5036633A (en) 1989-02-07 1990-02-06 Variable damping and stiffness structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6123789A JPH0742735B2 (en) 1989-03-14 1989-03-14 Vibration control frame with bending deformation control mechanism

Publications (2)

Publication Number Publication Date
JPH02240341A JPH02240341A (en) 1990-09-25
JPH0742735B2 true JPH0742735B2 (en) 1995-05-10

Family

ID=13165422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6123789A Expired - Fee Related JPH0742735B2 (en) 1989-02-07 1989-03-14 Vibration control frame with bending deformation control mechanism

Country Status (1)

Country Link
JP (1) JPH0742735B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309677A (en) * 1991-04-05 1992-11-02 Taisei Corp Vibration control device for structure
JPH04312683A (en) * 1991-04-11 1992-11-04 Taisei Corp Deformation controller for construction by introducing variable pre-stress
JP2616334B2 (en) * 1992-02-21 1997-06-04 鹿島建設株式会社 High damping structure for control of column axial deformation
JP6809955B2 (en) * 2017-03-27 2021-01-06 三菱パワー株式会社 Seismic control structure

Also Published As

Publication number Publication date
JPH02240341A (en) 1990-09-25

Similar Documents

Publication Publication Date Title
US5491938A (en) High damping structure
JP6437685B1 (en) Seismic reinforcement device for existing buildings
JP4597660B2 (en) Building having seismic reinforcement structure and method for seismic reinforcement of building
JPH0742735B2 (en) Vibration control frame with bending deformation control mechanism
JP2001152695A (en) Three-storied house
JP4277649B2 (en) Composite damper and column beam structure
JPH0559230B2 (en)
JP3228180B2 (en) Damping structure
JP2005314917A (en) Vibration control stud
JP2601070B2 (en) High damping structure
JPH05231028A (en) Highly damping structure for controlling deformation in axial direction of column
JPH08277650A (en) Bending deformation control type vibration damping structure
JP2914187B2 (en) Bending deformation control type vibration control frame
JP2573525B2 (en) Partition wall damping structure
JP5183879B2 (en) Vibration control structure
JP3463085B2 (en) Seismic building
JP2601439Y2 (en) Brace equipment
JP3023911B2 (en) Seismic isolation / damping mechanism for multi-layer structures
JP3395500B2 (en) Bending deformation control type vibration control frame
JP2012233374A5 (en)
JPH11200662A (en) Vibration control structure
JP3100130B2 (en) Damping brace
JP3028034B2 (en) Damping structure
JP2012233374A (en) Seismic reinforcement structure
JP2766885B2 (en) Vibration control method for buildings

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees