JPH04312683A - Deformation controller for construction by introducing variable pre-stress - Google Patents

Deformation controller for construction by introducing variable pre-stress

Info

Publication number
JPH04312683A
JPH04312683A JP3079127A JP7912791A JPH04312683A JP H04312683 A JPH04312683 A JP H04312683A JP 3079127 A JP3079127 A JP 3079127A JP 7912791 A JP7912791 A JP 7912791A JP H04312683 A JPH04312683 A JP H04312683A
Authority
JP
Japan
Prior art keywords
deformation
construction
bending
tension
prestress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3079127A
Other languages
Japanese (ja)
Inventor
Atsushi Kobayashi
淳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP3079127A priority Critical patent/JPH04312683A/en
Publication of JPH04312683A publication Critical patent/JPH04312683A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control deformation caused by bending and rotation and to control defor mation of the whole construction by introducing variable pre-stress in a vertical direc tion of the construction, and controlling its magnitude. CONSTITUTION:Output variable jacks B are mounted to the lower ends of outside columns (a) on both sides of a construction A, and each of the jacks B is connected to one end of each of tension members T and T'. After that, the other end of each of the tension members T and T' is connected to the upper end of each of the outside columns (a). Then, the tension member T is introduced to the tension side of the construction A having bending and rotating deformation caused by an earthquake load and wind load, etc. Successively, the opposite tension member T' is released or eliminated, the tension side column is used as the compressed side column and vice versa by a vibration phenomenon of the construction A. Operations of introduction and release are alternately made at both outside columns (a) of directions receiving the bending and rotation between the tension members T and T', and constant damping action is always provided without depending on amplitude. According to the constitution, vibration of the construction A having bending and rotating deformation can be effectively reduced with a simple function.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は搭状構造物、超高層建物
等の構造物変形制御装置に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for controlling the deformation of structures such as tower-like structures and skyscrapers.

【0002】0002

【従来の技術】構造物に風荷重、地震外力が作用すると
構造物に揺れを生じる、図10は搭状、高層構造物の変
形状態を示し、曲げ断変形、基礎の回転による回転変形
、せん断変形等がある。本発明は曲げ変形及び回転変形
が卓越する塔状構造物、超高層建物等の構造物の変形制
御装置に係るものである。
[Prior Art] When a wind load or an external seismic force acts on a structure, the structure shakes. Figure 10 shows the deformation state of a tower-shaped, high-rise structure. There are deformations etc. The present invention relates to a deformation control device for structures such as tower-like structures and skyscrapers that are subject to significant bending and rotational deformation.

【0003】而してこれら構造物に、地震荷重、風荷重
等の変動外力が作用すると、同構造物に揺れを生じる。 従来、これを低減するための各種機構が提案されており
、これらはいずれも液体の粘性減衰効果を振動の抑止力
として用いるもので、その特性上、振幅が小さいときに
は減衰効果も小さく、減衰されるエネルギは振幅の2乗
に比例している。(図8参照)図中pは小変形域、qは
大変形域を示し、変形抑止力fは変形δに比例している
[0003] When a fluctuating external force such as an earthquake load or a wind load acts on these structures, the structures shake. Conventionally, various mechanisms have been proposed to reduce this, and all of these use the viscous damping effect of the liquid as a deterrent force for vibration.Due to their characteristics, when the amplitude is small, the damping effect is small, and the damping effect is small. The energy generated is proportional to the square of the amplitude. (See FIG. 8) In the figure, p indicates a small deformation region, q indicates a large deformation region, and the deformation restraining force f is proportional to the deformation δ.

【0004】曲げ、回転変形を生じている構造物の引張
側にプレストレスP0 を導入した構造物変形制御機構
が提案されている。(図4参照)これは、曲げ・回転変
形は引張側柱の伸びと圧縮側柱の縮みによって生じるの
で、導入されたプレストレスP0 によって曲げ・回転
変形を減少せしめようとするものである。
A structure deformation control mechanism has been proposed in which a prestress P0 is introduced on the tension side of a structure undergoing bending or rotational deformation. (See FIG. 4) This is because bending and rotational deformation is caused by the elongation of the tension side column and the contraction of the compression side column, so the introduced prestress P0 is intended to reduce the bending and rotational deformation.

【0005】[0005]

【発明が解決しようとする課題】前者の、構造物の架構
の一部に粘性減衰機構を設けた場合の復元力特性は、前
掲の図8に示すような模式図で表わされ、エネルギ消費
(減衰)は変形速度と変形振幅に比例し、変形速度は変
形振幅に比例するため、振幅減衰の効果が変形振幅の2
乗に比例して小さくなり、従って小さな変形領域では効
果が損なわれる。
[Problem to be Solved by the Invention] In the former case, the restoring force characteristics when a viscous damping mechanism is provided in a part of the frame of a structure are schematically shown in FIG. (damping) is proportional to the deformation speed and deformation amplitude, and the deformation speed is proportional to the deformation amplitude, so the effect of amplitude attenuation is 2 times the deformation amplitude.
The effect decreases proportionally to the power of the power, so the effect is lost in small deformation regions.

【0006】また後者の場合、図4に示す如く、引張側
の柱にプレストレスを作用させて構造物の曲げ、回転変
形を減少させた際、構造物の振動現象によって1/2周
期後には、この位置の柱は圧縮側柱となり、図5示すよ
うにこのままプレストレスを導入し続けると、かえって
構造物の曲げ、回転変形を増大させることとなる。本発
明は前記従来技術の有する問題点に鑑みて提案されたも
ので、その目的とする処は、構造物の鉛直方向に導入し
たプレストレス力の大きさを調節することによって、曲
げ、回転による変形を制御し、構造物全体の変形を制御
しうる構造物変形制御装置を提供する点にある。
In the latter case, as shown in FIG. 4, when prestress is applied to the column on the tension side to reduce the bending and rotational deformation of the structure, after 1/2 cycle due to the vibration phenomenon of the structure. , the column at this position becomes a compression side column, and if prestress is continued to be introduced as shown in FIG. 5, the bending and rotational deformation of the structure will increase on the contrary. The present invention has been proposed in view of the problems of the prior art described above, and its purpose is to adjust the magnitude of the prestress force introduced in the vertical direction of the structure to prevent bending and rotation. The object of the present invention is to provide a structure deformation control device that can control deformation and control deformation of the entire structure.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係るプレストレス導入による構造物変形制
御装置は、曲げ変形及び回転変形が卓越する構造物の軸
材の上下両端または部分的に亘って緊張材を接続してな
り、前記緊張材を介して構造物の変形を抑止する方向に
プレストレスを作用させるとともに、不要時には、同プ
レストレスを解放、または所要の値に低減させるように
構成されている。
[Means for Solving the Problems] In order to achieve the above object, a structure deformation control device by introducing prestress according to the present invention is provided at both upper and lower ends or in a portion of a shaft member of a structure where bending deformation and rotational deformation are predominant. By connecting tension members across the entire structure, prestress is applied through the tension members in the direction of suppressing deformation of the structure, and when unnecessary, the prestress is released or reduced to a required value. It is configured as follows.

【0008】[0008]

【作用】本発明は前記したように構成されているので、
構造物材の軸材に引張力が作用し、且つ同軸材が伸びつ
つあるときのみ、同軸材の上下両端または部分的に配設
された緊張材によってプレストレスを導入して構造物の
変形を防止し、その他の場合には、前記プレストレスを
解放し、または所定の値に低減することによって、変形
、振幅によらず常に一定の減衰作用を与えることができ
る。
[Operation] Since the present invention is constructed as described above,
Only when a tensile force is applied to the shaft member of a structural material and the coaxial member is elongating, prestress is introduced by tension members placed at both the upper and lower ends of the coaxial member or partially to prevent deformation of the structure. In other cases, by releasing the prestress or reducing it to a predetermined value, it is possible to always provide a constant damping effect regardless of deformation or amplitude.

【0009】[0009]

【実施例】図1は本発明の一実施例を示し、構造物Aの
両側の外側柱aの各下端には出力可変ジヤツキBが取付
けられ、同各ジヤツキBに一端を接続された緊張材T、
T′の他端が前記柱aの上端に接続されている。なお柱
aがボツクス状、円筒型の場合は緊張材Tを同柱aの内
部空間に設けることができる。
[Embodiment] Fig. 1 shows an embodiment of the present invention, in which variable output jacks B are attached to the lower ends of the outer columns a on both sides of the structure A, and tension members are connected at one end to each jack B. T,
The other end of T' is connected to the upper end of the column a. In addition, when the column a is box-shaped or cylindrical, the tension material T can be provided in the internal space of the column a.

【0010】而して図3(a)に示す如く、前記構造物
Aにおける地震荷重、風荷重等によって曲げ、回転変形
を生じている構造物Aの引張側の緊張材Tにプレストレ
スP0 を導入し、反対側の緊張材T′に導入したプレ
ストレスを解放、または一定値まで減少し、次いで構造
物Aの振動現象によって1/2周期後は引張側の柱は圧
縮側柱となり、圧縮側の柱は引張側柱となるので図3(
b)に示す如く緊張材T′にプレストレスP0 を導入
し、緊張材Tのプレストレスを解放、または一定値まで
減少し、以上の操作を曲げ、回転を受ける方向の両外側
柱で交互行なうことによって、このような制御を行なわ
ない場合に比して、構造物Aの曲げ、回転変形を減少す
ることができる。これを復元力特性の形で模式的に表わ
すと図6のようになる。図6は柱に引張力が作用し、且
つ柱が伸びつつある場合のみプレストレスを導入し、そ
の他のプレストレスを解放した場合を示しているが、柱
に作用する力にかかわらず、柱が伸びつつある場合のみ
にプレストレスを導入し、その他の場合に解放すると図
7の如くなる。
As shown in FIG. 3(a), a prestress P0 is applied to the tensile material T on the tension side of the structure A, which is bent and rotationally deformed due to earthquake loads, wind loads, etc. The prestress introduced into the tendon T' on the opposite side is released or reduced to a certain value, and then, due to the vibration phenomenon of structure A, after 1/2 cycle, the column on the tension side becomes a column on the compression side, and the column is compressed. The side pillars are tension side pillars, so they are shown in Figure 3 (
As shown in b), a prestress P0 is introduced into the tendon T', the prestress of the tendon T is released or reduced to a certain value, and the above operations are performed alternately on both outer columns in the direction of bending and rotation. By doing so, bending and rotational deformation of the structure A can be reduced compared to the case where such control is not performed. This is schematically expressed in the form of restoring force characteristics as shown in FIG. Figure 6 shows a case where prestress is introduced only when a tensile force is applied to the column and the column is elongating, and other prestresses are released, but regardless of the force acting on the column, the column is If prestress is introduced only when it is elongating, and released in other cases, the result will be as shown in Fig. 7.

【0011】一方、構造物の架構の一部に粘性減衰機構
を組込んだ従来の場合は、その復元特性が図8に示す如
き模式図で表わされ、図9に示す本発明の変形制御装置
による復元特性図と顕著に相違する点は、従来技術にお
いてはエネルギ消費(減衰)は変形速度と変形振幅に比
例し、変形速度は変形振幅に比例するため、振動減衰の
効果が変形振幅の2乗に比例して小さくなるため小さな
変形領域では効果が損なわれるのに反し、本発明によれ
ば振幅減衰の効果が、変形振幅にのみ比例するため、小
変形の領域から大変形の領域まで有効に作用する点であ
る。また減衰の効果は図8、図9の斜線の面積で示され
るから同じ抵抗力(復元力)増加分に対して4/π倍の
減衰作用が期待できるという点でも有利である。
On the other hand, in the conventional case where a viscous damping mechanism is incorporated into a part of the frame of a structure, its restoring characteristics are schematically shown in FIG. 8, and the deformation control according to the present invention is shown in FIG. The notable difference from the restoring characteristic diagram of the device is that in the conventional technology, energy consumption (damping) is proportional to the deformation speed and deformation amplitude, and the deformation speed is proportional to the deformation amplitude, so the vibration damping effect is proportional to the deformation amplitude. On the other hand, according to the present invention, the amplitude attenuation effect is proportional only to the deformation amplitude, so the effect is lost in small deformation areas because it decreases in proportion to the square of the deformation. This is a point where it works effectively. Further, since the damping effect is shown by the shaded area in FIGS. 8 and 9, it is advantageous in that a damping effect 4/π times can be expected for the same increase in resistance force (restoring force).

【0012】図2は前記出力可変ジヤツキを模式的に示
したもので、基礎にアンカーボルトCを介して固定され
たシリンダbにピストンcが可摺動的に嵌装され、同ピ
ストンcのロツドに継手dを介して緊張材Tが連結され
、前記シリンダbにおけるピストンcの下部は空洞e、
または自由に流出入する油室に形成され、ピストンcの
上部にジヤツキ圧力室1が形成されている。前記シリン
ダbには高圧側逆止弁2、低圧側逆止弁3、高圧側蓋圧
室4、低圧側蓋圧室5、高圧側逆止弁6、低圧力側逆止
弁7が油路8を介して接続されている。図中9は補助ポ
ンプ、10は油タンクである。次にその作動を説明する
。 (イ)  先ず補助ポンプ9を用いて高圧側蓋圧室4の
内圧をPH 、低圧側蓋圧室5とシリンダb内のジヤツ
キ圧力室1の内圧をPL に高めておく。 (ロ)  構造物Aに地震荷重、風荷重によって曲げ、
回転変形が生じようとすると、緊張材Tにプレストレス
TH が発生する。 (ハ)   更に変形が進行し、ジヤツキ圧力室1内の
圧力がPH +ΔPになると逆止弁6の作用でジヤツキ
圧力室1内の油圧は高圧蓄圧室4側へ解放され、常にP
〜PH +ΔPの範囲に保たれる。従って緊張材Tの張
力もほぼ一定値TH に保持される。高圧側蓄圧室4内
の圧力はP>PH +ΔPで開くように構成された解放
弁2で一定値に保持され、余分な油は低圧側蓄圧室5へ
排出される。 また同低圧側蓄圧室5内の圧力はP>PL +ΔPで開
かれるように構成された解放弁3によって一定値PL 
に保持され、余分な油は油タンク10に排出される。(
ニ)而して構造物の変形が最大点に至ると構造物は復元
力によって逆方向に変形し始める。このときジヤツキ圧
力室1内は減圧されて負圧になろうとするが、逆止弁7
からの油の流入で低圧PL に保持される。従って緊張
材Tには低プレストレスTL (TL <TH でTL
 は殆んど0に近い値)が作用することになる。(ニ)
低圧側蓄圧室5内の油は高圧側蓄圧室4と、不足する場
合は補助ポンプ9から補充される。
FIG. 2 schematically shows the variable output jack, in which a piston c is slidably fitted into a cylinder b fixed to the foundation via an anchor bolt C, and the rod of the piston c is A tendon T is connected to the cylinder b via a joint d, and the lower part of the piston c in the cylinder b has a cavity e,
Alternatively, it is formed as an oil chamber that freely flows in and out, and a jack pressure chamber 1 is formed above the piston c. A high pressure side check valve 2, a low pressure side check valve 3, a high pressure side lid pressure chamber 4, a low pressure side lid pressure chamber 5, a high pressure side check valve 6, and a low pressure side check valve 7 are connected to the cylinder b. 8. In the figure, 9 is an auxiliary pump, and 10 is an oil tank. Next, its operation will be explained. (a) First, use the auxiliary pump 9 to raise the internal pressure of the high-pressure side lid pressure chamber 4 to PH and the internal pressures of the low-pressure side lid pressure chamber 5 and the jack pressure chamber 1 in cylinder b to PL. (b) Structure A is bent by earthquake load and wind load,
When rotational deformation is about to occur, prestress TH is generated in the tendon T. (c) When the deformation progresses further and the pressure in the jack pressure chamber 1 reaches PH + ΔP, the hydraulic pressure in the jack pressure chamber 1 is released to the high pressure accumulator chamber 4 side by the action of the check valve 6, and the pressure in the jack pressure chamber 1 is always maintained at P
~PH + ΔP. Therefore, the tension of the tendon T is also maintained at a substantially constant value TH. The pressure in the high-pressure side pressure accumulation chamber 4 is maintained at a constant value by a release valve 2 configured to open when P>PH +ΔP, and excess oil is discharged to the low-pressure side pressure accumulation chamber 5. In addition, the pressure in the low-pressure side pressure storage chamber 5 is maintained at a constant value PL by the release valve 3, which is configured to open when P>PL +ΔP.
The excess oil is then discharged into the oil tank 10. (
d) When the deformation of the structure reaches its maximum point, the structure begins to deform in the opposite direction due to the restoring force. At this time, the pressure inside the jack pressure chamber 1 is reduced and the pressure is about to become negative, but the check valve 7
The pressure is maintained at low pressure PL by the inflow of oil from PL. Therefore, the tendon T has a low prestress TL (TL < TH and TL
(approximately 0) will be effective. (d)
The oil in the low-pressure side pressure storage chamber 5 is replenished from the high-pressure side pressure storage chamber 4 and, if insufficient, from the auxiliary pump 9.

【0013】ただし実際の構造物の曲げ、回転変形は必
らず引張側と圧縮側とが存在するので、作動中に(ホ)
に述べた補助ポンプ9の作動は殆んど必要がなくなる。 また風振動のように長時間持続する振動の場合には、何
回かの振動によって自然に圧力条件(PH 、PL )
が成立するので、(イ)の段階において不足する油量を
補う以外は、補助ポンプ9は殆んど必要なくなる。
However, in actual bending and rotational deformation of structures, there is always a tension side and a compression side, so (e)
The operation of the auxiliary pump 9 described in 1 is almost unnecessary. In addition, in the case of vibrations that last for a long time, such as wind vibrations, the pressure conditions (PH, PL) will naturally change after several vibrations.
Since this holds true, the auxiliary pump 9 is hardly needed except for supplementing the insufficient amount of oil in the step (a).

【0014】[0014]

【発明の効果】本発明に係る構造物変形制御装置は前記
したように、曲げ変形及び回転変形が卓越する構造物の
軸材の上下両端または部分的に亘って緊張材を接続し、
同緊張材を介して構造物の変形を抑止する方向にプレス
トレスを作用させると同時に、不要時には同プレストレ
スを解放、または所望の値に低減させるようにしたこと
によって、簡単な機構で曲げ、回転変形の卓越する構造
物の振動を有効に低減することができ、またTMD等の
従来機構のように、建造物の上部に重量物を載架する必
要がなく、同従来機構のように長周期、大振幅の振動に
対しての設計上の制約がなく、どのような場合でも適用
可能である。
Effects of the Invention As described above, the structure deformation control device according to the present invention connects tendons at both upper and lower ends or partially over a shaft member of a structure where bending deformation and rotational deformation are predominant,
By applying prestress in the direction of suppressing the deformation of the structure through the tension material, and at the same time releasing the prestress when unnecessary or reducing it to a desired value, the structure can be bent with a simple mechanism. It is possible to effectively reduce the vibration of structures that are prone to rotational deformation, and unlike conventional mechanisms such as TMD, there is no need to place heavy objects on top of the structure, and unlike conventional mechanisms, it is possible to reduce There are no design restrictions on periodic, large-amplitude vibrations, and it can be applied in any situation.

【0015】更に粘性減衰機構を用いた制御装置は微小
振幅領域での効果が減少するが、本発明によればこのよ
うなことがなくなる。
Furthermore, although a control device using a viscous damping mechanism has a reduced effect in a small amplitude region, the present invention eliminates this problem.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係る可変プレストレス導入による構造
物変形制御装置の一実施例を示す立面図である。
FIG. 1 is an elevational view showing an embodiment of a structure deformation control device by introducing variable prestress according to the present invention.

【図2】出力可変ジヤツキ機構の模式図である。FIG. 2 is a schematic diagram of a variable output jack mechanism.

【図3】構造物の曲げを受ける両側で交互にプレストレ
スを導入、解放する状態を示す説明図で(a)は左側の
柱に、(b)は右側の柱にプレストレスを導入した場合
を示す。
[Figure 3] An explanatory diagram showing the state in which prestress is alternately introduced and released on both sides of a structure subjected to bending. (a) shows the case where prestress is introduced to the column on the left, and (b) shows the case where prestress is introduced to the column on the right. shows.

【図4】引張側柱にプレストレスを作用させた状態を示
す説明図である。
FIG. 4 is an explanatory diagram showing a state in which prestress is applied to the tension side column.

【図5】圧縮側柱にプレストレスを作用させた状態を示
す説明図である。
FIG. 5 is an explanatory diagram showing a state in which prestress is applied to the compression side column.

【図6】柱に引張力が作用し、且つ柱が伸びつつある場
合のみプレストレスを導入し、その他の場合にはプレス
トレスを解放した場合の復元力特性図である。
FIG. 6 is a restoring force characteristic diagram when prestress is introduced only when tensile force is applied to the column and the column is elongating, and prestress is released in other cases.

【図7】柱に作用する力にかかわらず、柱が伸びる方向
に変形する場合にプレストレスを導入し、その他の場合
に解放した場合の復元力特性図である。
FIG. 7 is a restoring force characteristic diagram when prestress is introduced when the column is deformed in the direction of extension, and released in other cases, regardless of the force acting on the column.

【図8】粘性減衰機構による復元特性図である。FIG. 8 is a diagram of restoration characteristics by a viscous damping mechanism.

【図9】本発明による復元特性図である。FIG. 9 is a restoration characteristic diagram according to the present invention.

【図10】構造物の変形を示す説明図である。FIG. 10 is an explanatory diagram showing deformation of a structure.

【符号の説明】[Explanation of symbols]

A    構造物 B    出力可変ジヤツキ T    緊張材 T′  緊張材 a    外側柱 A Structure B. Variable output jack T Tensile material T' Tensile material a Outer pillar

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  曲げ変形及び回転変形が卓越する構造
物の軸材の上下両端または部分的に亘って緊張材を接続
してなり、前記緊張材を介して構造物の変形を抑止する
方向にプレストレスを作用させるとともに、不要時には
、同プレストレスを解放、または所要の値に低減させる
ように構成されたことを特徴とする可変プレストレス導
入による構造物の変形制御装置。
Claim 1: Tensile members are connected to both upper and lower ends or partially of a shaft member of a structure where bending deformation and rotational deformation are predominant, and the structure is directed in a direction that suppresses deformation of the structure through the tension members. A device for controlling deformation of a structure by introducing variable prestress, characterized in that it is configured to apply prestress and, when unnecessary, release or reduce the prestress to a required value.
JP3079127A 1991-04-11 1991-04-11 Deformation controller for construction by introducing variable pre-stress Pending JPH04312683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3079127A JPH04312683A (en) 1991-04-11 1991-04-11 Deformation controller for construction by introducing variable pre-stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3079127A JPH04312683A (en) 1991-04-11 1991-04-11 Deformation controller for construction by introducing variable pre-stress

Publications (1)

Publication Number Publication Date
JPH04312683A true JPH04312683A (en) 1992-11-04

Family

ID=13681278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3079127A Pending JPH04312683A (en) 1991-04-11 1991-04-11 Deformation controller for construction by introducing variable pre-stress

Country Status (1)

Country Link
JP (1) JPH04312683A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520954A (en) * 2009-03-18 2012-09-10 ファウ・エス・エル・インターナツイオナール・アクチエンゲゼルシヤフト Support structure with high structure buffer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263333A (en) * 1988-04-15 1989-10-19 Kajima Corp Variable bending rigidity device for structure
JPH02213539A (en) * 1989-02-13 1990-08-24 Nippon Sekkei Jimusho:Kk Horizontal displacement automatic control mechanism of structure
JPH02240341A (en) * 1989-03-14 1990-09-25 Kajima Corp Damping frame having controlling mechanism for bending deformation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263333A (en) * 1988-04-15 1989-10-19 Kajima Corp Variable bending rigidity device for structure
JPH02213539A (en) * 1989-02-13 1990-08-24 Nippon Sekkei Jimusho:Kk Horizontal displacement automatic control mechanism of structure
JPH02240341A (en) * 1989-03-14 1990-09-25 Kajima Corp Damping frame having controlling mechanism for bending deformation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520954A (en) * 2009-03-18 2012-09-10 ファウ・エス・エル・インターナツイオナール・アクチエンゲゼルシヤフト Support structure with high structure buffer

Similar Documents

Publication Publication Date Title
US4409765A (en) Earth-quake proof building construction
JP3538289B2 (en) Vibration control device using toggle mechanism
WO2018150234A1 (en) Force limiter and energy dissipater
Golzar et al. Design and experimental validation of a re-centring viscous dissipater
Galyautdinov Deformation of reinforced concrete slabs on yielding supports under short-time dynamic loading
JP3931289B2 (en) Vibration control device
Namdar et al. Timber beam seismic design–A numerical simulation
CN1303295C (en) Super elastic shape memory alloy damper for rope, cable and slender rod
JP5104436B2 (en) Damping panel and frame structure using the same
JPH04312683A (en) Deformation controller for construction by introducing variable pre-stress
JP4597660B2 (en) Building having seismic reinforcement structure and method for seismic reinforcement of building
CN108930346B (en) Self-resetting swinging wall containing buckling restrained shape memory alloy bars and building
JPH02209572A (en) Damping damper applying high strength bolt
Pocanschi et al. Braced steel frames with Hysteretic Dampers
CN114108945B (en) Vibration reduction inhaul cable beam string structure and method
JPH09195567A (en) Passive vibration control structure with highly attenuating capacity
JPS6389724A (en) Permanent ground anchor using multi-stage bearing plate
JP2601439Y2 (en) Brace equipment
Tan et al. Structural design of twin towers with vibration absorbers
CN211285964U (en) Beam column node structure of assembled single-storey factory building
JP3724541B2 (en) Vibration control device between multiple building structures
CN212336390U (en) Buckling-shearing type metal damper applied to seismic isolation layer
JPH0366877A (en) Anti-seismic damper using bolt drive
CN115162816B (en) Prestressed tensile anti-overturning shock insulation device and construction method thereof
JP4825088B2 (en) Seismic reinforcement structure for existing buildings