JPH0515851B2 - - Google Patents

Info

Publication number
JPH0515851B2
JPH0515851B2 JP22114386A JP22114386A JPH0515851B2 JP H0515851 B2 JPH0515851 B2 JP H0515851B2 JP 22114386 A JP22114386 A JP 22114386A JP 22114386 A JP22114386 A JP 22114386A JP H0515851 B2 JPH0515851 B2 JP H0515851B2
Authority
JP
Japan
Prior art keywords
piece
building
pin
rigidity
restraint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22114386A
Other languages
Japanese (ja)
Other versions
JPS6378936A (en
Inventor
Shunichi Yamada
Takuji Kobori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP22114386A priority Critical patent/JPS6378936A/en
Priority to US07/096,012 priority patent/US4890430A/en
Publication of JPS6378936A publication Critical patent/JPS6378936A/en
Priority to US07/400,691 priority patent/US4922667A/en
Publication of JPH0515851B2 publication Critical patent/JPH0515851B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は制震構造の建物架構に用いられる可
変剛性材に関するもので、構造部材中に設けたピ
ン接合部をピン接合と剛接合とに変換可能とし、
建物に入力する地震、風等の外力に応じて部材の
剛性を変化させ、地震等に対処させるものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a variable stiffness material used in a building frame with a vibration damping structure, in which a pin joint provided in a structural member is divided into a pin joint and a rigid joint. convertible,
The rigidity of the members is changed in response to external forces such as earthquakes and wind that enter the building to cope with earthquakes and the like.

〔従来の技術〕[Conventional technology]

従来、高層建築や重要構造物等の耐震設計にお
いては地震時の地盤の動きや建物の応答を計算
し、安全性をチエツクする動的設計が行われてい
る。
Conventionally, in the seismic design of high-rise buildings and important structures, dynamic design has been performed to check safety by calculating the ground movement and building response during an earthquake.

耐震の方法としては建物と基礎の間に積層ゴム
支承やダンパーを介在させた免震構法あるいは減
震構法、建物構成部材のうち、非主要部材の破壊
により地震エネルギーを消費させる方法、壁ある
いは柱等にスリツトを設け、建物を最適の剛性に
調整する方法等がある。
Earthquake resistance methods include seismic isolation or attenuation construction methods in which laminated rubber bearings or dampers are interposed between the building and the foundation, methods that consume earthquake energy by destroying non-main building components, walls or columns. There is a method to adjust the rigidity of the building to the optimum level by creating slits in the building.

ところで、現行の耐震設計手法により設計され
た建物の地震時における安全性の確認は、構造物
の塑性化を伴なう履歴特性による吸収エネルギー
が構造物に作用する地震エネルギーを上回るとい
う基本思想によるが、これには履歴ループ特性に
対する信頼性の問題がある。
By the way, confirmation of the safety of buildings designed using current seismic design methods in the event of an earthquake is based on the basic idea that the energy absorbed by the hysteresis characteristics associated with plasticization of the structure exceeds the seismic energy acting on the structure. However, this has the problem of reliability regarding the history loop characteristics.

また、従来の方法はいずれも地震や風等の自然
外力に対し、受身の耐震構造を与えるものであ
り、建物が特定の固有振動数を有するため地震と
いう不確定な入力に対し、共振現象を避けて通る
ことはできない。
In addition, all conventional methods provide a passive seismic structure against natural external forces such as earthquakes and wind, and because buildings have a specific natural frequency, they do not allow resonance phenomena to occur against uncertain inputs such as earthquakes. You can't avoid it.

これに対し、出願人は特願昭61−112026号にお
いて、上述のような受身の耐震方法でなく、感知
した地震動に基づく応答予測システムの判断のも
とに建物自体の剛性を変化させ、共振領域外また
は共振の少ない状態とし、建物および建物内の機
器、居住者等の安全を図つた制震方法を提供して
いる。
In contrast, in Japanese Patent Application No. 61-112026, the applicant proposed that instead of using the above-mentioned passive seismic resistance method, the rigidity of the building itself was changed based on the judgment of a response prediction system based on the detected seismic motion, and the We provide a vibration damping method that ensures the safety of buildings, equipment inside buildings, occupants, etc. by setting the vibration outside the area or in a state with little resonance.

上記の制震方法では柱、はり、ブレース、壁並
びにそれらの接合部の全部もしくは一部、または
建物と基礎あるいは隣接する建物との間に、コン
ピユーターの指令により連結状態が変化する制御
装置を設け、次のようにして、建物の制震を行な
う。
In the above seismic control method, a control device is installed in all or part of columns, beams, braces, walls, and their joints, or between a building and the foundation or an adjacent building, so that the connection state can be changed according to computer commands. , Damping the building is done as follows.

地震の発生を建物を中心に狭域および広域に
配置した地震感知装置により感知し、観測デー
タを有線、無線の通信網によりコンピユーター
に伝達する。広域の地震感知装置は既設の地震
観測点における地震計あるいは専用に設置した
ものをマイクロ回線あるいは電話回線等で結
ぶ。また狭域の地震感知装置は建物の周辺ある
いは周辺地盤内に設けた地震計や、建物基部や
建物内に設置した振動センサーからなり、風力
等の影響は建物内の振動センサーで感知する。
The occurrence of an earthquake is detected by earthquake sensing devices placed in both narrow and wide areas around buildings, and the observation data is transmitted to a computer via wired and wireless communication networks. Wide-area earthquake sensing equipment connects seismometers at existing earthquake observation points or specially installed equipment using micro-wires or telephone lines. In addition, narrow-area earthquake sensing devices consist of seismometers installed around buildings or in the surrounding ground, and vibration sensors installed at the base of buildings or inside buildings, and the effects of wind force etc. are detected by vibration sensors inside buildings.

感知した地震について、コンピユーターによ
り地震の規模の判断、周波数特性の分析、応答
量の予測を行ない、建物の振動を制御すべきか
否か、また制御すべき場合の制御量について、
共振をかわし、地震応答量の少ない最適剛性
(固有振動数)を与えるものとして判断を下す。
For detected earthquakes, a computer determines the scale of the earthquake, analyzes its frequency characteristics, and predicts the amount of response, and then determines whether or not the building's vibration should be controlled, and if so, the amount of control.
The decision is made as to provide the optimum stiffness (natural frequency) that avoids resonance and reduces the amount of seismic response.

コンピユーターの指令を建物の各部の制御装
置に伝え、建物の剛性をコンピユーターの予測
に基づく最適剛性となるよう制御装置を作動さ
せる。連結状態の調整は固定状態と連結解除状
態を油圧機構、電磁石等によりオン、オフで調
整するものや、固定状態、連結解除状態の外、
緊張力の導入や任意の位置での固定を油圧機構
あるいは特殊合金等を用いて調整するもの等が
考えられる。
The commands from the computer are transmitted to the control devices in each part of the building, and the control devices are operated so that the stiffness of the building reaches the optimal stiffness based on the computer's predictions. The connection state can be adjusted by turning the fixed state and uncoupled state on and off using hydraulic mechanisms, electromagnets, etc., and in addition to the fixed state and disconnected state,
It is conceivable to use a hydraulic mechanism or a special alloy to adjust the introduction of tension force and fixation at an arbitrary position.

また、建物内に配した振動センサーにより、
建物各部における応答量並びに制御を行つた場
合の実際の振動が検知でき、これをフイードバ
ツクして、制御量の修正等を行なうことができ
る。
In addition, vibration sensors placed inside the building will
The amount of response in each part of the building as well as the actual vibration when controlled can be detected, and this can be fed back to correct the amount of control.

〔発明の目的〕[Purpose of the invention]

この発明の建物架構の可変剛性材は、上述のよ
うな制震方法において、ブレースあるいは柱、梁
等に使用し、剛性を変化させて地震等に対処でき
るようにしたものである。なお、この発明は上述
の制震方法への使用にのみ限定するものではな
く、上記方法の改良方法に使用したり、あるいは
単に剛性を変化させるために使用することも可能
である。
The variable rigidity material of the building frame of the present invention is used for braces, columns, beams, etc. in the above-mentioned vibration damping method, so that the rigidity can be changed to cope with earthquakes and the like. Note that the present invention is not limited to use in the above-mentioned vibration damping method, but can also be used to improve the above-mentioned method, or simply to change rigidity.

〔発明の構成〕[Structure of the invention]

この発明の可変剛性材は第1図a,b,cに示
すように2以上のピース1a,1bからなる長尺
構造部材の中にピン接合と剛接合とに変換が可能
な接合部2を設けたものである。回転の支点とな
るピン接合部2は拘束材3により固定され、ピン
接合部2を介して接合した2ピース1a,1bを
結ぶ拘束材3が拘束状態と拘束解除状態との間で
可動であり、これによりピン接合と剛接合が変換
できる。拘束材3を動かすための駆動装置は油圧
シリンダー、電動式のもの、電磁式のもの等いず
れでも良い。
As shown in FIGS. 1a, b, and c, the variable rigidity material of the present invention has a joint 2 that can be converted into a pin joint and a rigid joint in a long structural member consisting of two or more pieces 1a and 1b. It was established. The pin joint part 2, which serves as the fulcrum of rotation, is fixed by a restraint member 3, and the restraint member 3, which connects the two pieces 1a and 1b joined via the pin joint part 2, is movable between a restraint state and a restraint release state. , This allows conversion between pin joints and rigid joints. The drive device for moving the restraining material 3 may be any one of a hydraulic cylinder, an electric type, an electromagnetic type, etc.

また、圧縮力には抵抗できない3ピン構造の部
材において、中央のピン接合部に拘束材を設け、
ピン接合と剛接合とに変換可能とすれば、必要に
応じ拘束状態または拘束解除状態とすることによ
り圧縮抵抗材になつたり、無抵抗材になつたりす
る。
In addition, in a member with a three-pin structure that cannot resist compressive force, a restraining material is provided at the central pin joint,
If it can be converted into a pin joint or a rigid joint, it can become a compression resistant material or a non-resistance material by placing it in a restrained state or a restrained state as necessary.

また、ピン接合部2において、一方のピース1
aから他方のピース1bに向けて係止用腕部4を
設けることにより、ピン接合部での回転方向を限
定することができ、この係止用腕部4と他方のピ
ース1bとの間に拘束材3を設ければよい。
Also, in the pin joint part 2, one piece 1
By providing the locking arm 4 from a to the other piece 1b, the rotation direction at the pin joint can be limited, and there is no space between the locking arm 4 and the other piece 1b. A restraining member 3 may be provided.

このようなピン接合と剛接合との間の交換はコ
ンピユーターの制御プログラムによつて行なうこ
とができる。すなわち、地震等の振動外力に応
じ、コンピユーターで、建物の剛性を制御するこ
とができ、建物各部での部材の剛性、連結状態を
変化させて、建物全体としての固有周期を変化さ
せるなどして共振をかわすこともできる。
Such exchange between pin joints and rigid joints can be performed by a computer control program. In other words, it is possible to control the rigidity of a building using a computer in response to external vibrational forces such as earthquakes, by changing the rigidity and connection state of members in each part of the building, and changing the natural period of the building as a whole. It can also avoid resonance.

〔実施例〕〔Example〕

次に、図示した実施例について説明する。 Next, the illustrated embodiment will be described.

第2図a〜eは一実施例におけるピン接合部2
の近傍を示したものである。
Figures 2a to 2e are pin joint parts 2 in one embodiment.
This shows the vicinity of .

2つのピース1a,1bがピン接合部2で接続
され、一方のピース1aから他方のピース1bに
向けて延びた係止用腕部4により、ピン接合部2
における回転方向が限定される。係止用腕部4に
は他方のピース1bを挟み込むように、可変剛性
材1の軸方向と直角な方向の拘束材3が蝶番5に
よつて取り付けられている。拘束材3の先端部に
は係止突起6があり、拘束材3の蝶番5での回転
により相手側のピース1bをつかんだり、離した
りすることができ、これによつてピン接合、剛接
合に変換できる。
Two pieces 1a and 1b are connected by a pin joint 2, and a locking arm 4 extending from one piece 1a toward the other piece 1b connects the pin joint 2.
The direction of rotation is limited. A restraining member 3 is attached to the locking arm portion 4 by a hinge 5 in a direction perpendicular to the axial direction of the variable rigidity member 1 so as to sandwich the other piece 1b. There is a locking protrusion 6 at the tip of the restraint material 3, and the rotation of the restraint material 3 on the hinge 5 allows the mating piece 1b to be grasped or released, thereby allowing pin joints and rigid joints. It can be converted to .

拘束材3には構造部材としての可変剛性材1の
せん断力と拘束した状態で生じるてこ反力の和の
力が生じるため、これに抵抗できるものとする必
要がある。このことは、拘束材3のピン機構とし
ての蝶番5についても同様である。
Since the restraint member 3 is subjected to a force that is the sum of the shear force of the variable rigidity member 1 as a structural member and the lever reaction force generated in the restrained state, it is necessary to be able to resist this force. This also applies to the hinge 5 as a pin mechanism of the restraining member 3.

拘束材3にかかる力が小さい場合は拘束材3の
係止突起6の支圧抵抗に代えて、第3図に示すよ
うに、拘束材3と相手側のピース1bとの接触面
での摩擦力によつて抵抗させたり、第4図に示す
ように拘束材3か相手側のピース1bに取り付け
た磁石9によつて抵抗させてもよい。
When the force applied to the restraint material 3 is small, instead of the bearing pressure resistance of the locking protrusion 6 of the restraint material 3, as shown in FIG. 3, friction at the contact surface between the restraint material 3 and the other piece 1b The resistance may be caused by a force, or by a magnet 9 attached to the restraining member 3 or the opposing piece 1b as shown in FIG.

拘束材3の回転は図に示すように相手側のピー
ス1bに設けた電動サーボモーター7等の簡単な
アクチユエーターにより自動制御できる。拘束材
3とサーボモーター7をつなぐ連結材8は棒鋼
等、剛なものを用いれば、拘束材3と相手側のピ
ース1bの衝突を防ぐことができる。このため、
連結材8と拘束材3およびサーボモーター7との
接合部はサーボモーター7の動きに追従できるよ
うにピン接合とし、必要に応じユニバーサルジヨ
イントとすることもできる。また、連結材8を圧
縮抵抗できないひも状の柔かいものとする場合に
は拘束材3と相手側のピース1bとの間にクツシ
ヨン材を設けて衝撃を緩和する。
As shown in the figure, the rotation of the restraining member 3 can be automatically controlled by a simple actuator such as an electric servo motor 7 provided on the other piece 1b. If the connecting member 8 connecting the restraining member 3 and the servo motor 7 is made of a rigid material such as a steel bar, collision between the restraining member 3 and the opposing piece 1b can be prevented. For this reason,
The joints between the connecting member 8, the restraining member 3, and the servo motor 7 are pin joints so that they can follow the movement of the servo motor 7, and can also be made into universal joints if necessary. In addition, when the connecting member 8 is made of a string-like soft material that cannot resist compression, a cushioning material is provided between the restraining member 3 and the mating piece 1b to reduce the impact.

アクチユエーターとしてのサーボモーター7の
パワーは係止突起6や磁石9を設ける場合には拘
束材3を回転させる程度の能力があればよい。ま
た、摩擦で抵抗させる場合には必要な摩擦力を起
こすだけのパワーが必要となる。逆に言えばサー
ボモーター7のトルクが大きい場合には、第3図
のように摩擦力で抵抗させることができる。
The power of the servo motor 7 as an actuator only needs to be capable of rotating the restraining member 3 when the locking protrusion 6 and the magnet 9 are provided. Furthermore, if friction is used to provide resistance, sufficient power is required to generate the necessary frictional force. Conversely, if the torque of the servo motor 7 is large, it can be resisted by frictional force as shown in FIG.

また、上述の構成とは逆に、相手側のピース1
bに拘束材を設け、係止用腕部4にサーボモータ
ーを設けても良い。この他、相対向する拘束材3
間を油圧シリンダー等で連結し、油圧シリンダー
を伸縮させて拘束材を開いたり閉じたりすること
もできる。
Also, contrary to the above configuration, the opponent piece 1
b may be provided with a restraining member, and the locking arm portion 4 may be provided with a servo motor. In addition, opposing restraining materials 3
It is also possible to connect them with a hydraulic cylinder or the like, and expand and contract the hydraulic cylinder to open and close the restraining material.

拘束材3が作動する時点は係止用腕部4と相手
側のピース1bが触れる時点、すなわちピン接合
部2を介して分かれた2ピース1a,1bが一直
線になるときである。このことにより、振動等、
絶えず動いている部材においてもピン接合と剛接
合に変換可能である。なお、ピン接合部2におけ
る最大の回転量は建物の変形が許容限度内に納ま
る程度である。
The point at which the restraining member 3 operates is when the locking arm 4 and the other piece 1b come into contact, that is, when the two pieces 1a and 1b separated through the pin joint 2 become in a straight line. Due to this, vibration etc.
Even parts that are constantly in motion can be converted into pin connections and rigid connections. Note that the maximum amount of rotation in the pin joint 2 is such that the deformation of the building is within permissible limits.

可変剛性材1の使い方としては柱、梁、ブレー
スなどの部材の中に、この可変接合部を全てピン
接合としたときに不安定構造となるまで設置でき
る。この範囲でピン接合と剛接合の数と位置を調
整することにより、部材の曲げ剛性を変えること
ができる。なお、ある部材について軸力に抵抗さ
せない場合には固定しているピン接合部の1つを
ルーズホールにすればよい。
The variable rigidity material 1 can be installed in members such as columns, beams, braces, etc. until the structure becomes unstable when all the variable joints are pin-jointed. By adjusting the number and position of pin joints and rigid joints within this range, the bending rigidity of the member can be changed. Note that if a certain member is not made to resist axial force, one of the fixed pin joints may be made into a loose hole.

また、梁または柱(モーメント柱も含む)の水
平荷重に対する抵抗機構を変化させるのに用いれ
ば部材の剛性コントロールができる。従つて、地
震等の周波数特性の不確定なものに対しても、コ
ンピユーター制御による時々刻々の剛性変化によ
り建物を共振させないことが可能である。
Furthermore, if it is used to change the resistance mechanism of a beam or column (including moment columns) against horizontal loads, the rigidity of the member can be controlled. Therefore, even when the frequency characteristics are uncertain, such as earthquakes, it is possible to prevent the building from resonating by changing the rigidity from time to time under computer control.

なお、係止用腕部4がある場合、回転の方向が
限定されるため、地震等の繰り返し荷重に対して
は、それぞれ逆向きに変化可能なものをペアとし
て用いる。
If there is a locking arm 4, the direction of rotation is limited, so a pair of locking arms 4 that can change in opposite directions is used in response to repeated loads such as earthquakes.

第5図a〜cはこの発明の可変剛性材をラーメ
ン構造の梁または柱に用いた場合の水平荷重に対
する力学機構のバリエーシヨンを示したもので、
a図は材端部2箇所のピン接合部2を両方とも拘
束し、剛接合とした状態、b図は一方の拘束を解
除し、一方のみピン接合とした場合、c図は両方
とも拘束を解除し、ピン接合とした場合である。
Figures 5a to 5c show variations of the mechanical mechanism for horizontal loads when the variable stiffness material of the present invention is used for beams or columns of rigid frame structures.
Figure a shows a state in which both the pin joints 2 at the two ends of the material are restrained, creating a rigid connection. Figure b shows a state in which one of the pin joints 2 is released and only one is joined with a pin. Figure c shows a state in which both are restrained. This is the case where it is released and a pin connection is made.

第6図a〜fは同様に両材端部および中央部の
合計3個所にピン接合部を設けた梁の鉛直荷重に
対する力学機構のバリエーシヨンを示したもので
ある。
6a to 6f similarly show variations of the mechanical mechanism for vertical loads of a beam in which pin joints are provided at a total of three locations, at the ends of both members and at the center.

第7図a〜dは建物最下階のモーメント柱に適
用した場合の例を示したもので、上下端部に拘束
材3により拘束可能なピン接合部2を設けた可変
剛性材1を用いている。なお、上側のピン接合部
2についてはルーズホール10により軸力に抵抗
させない構造としている。同図b〜dは曲げモー
メント図であり、b図は2本ともすべて拘束した
場合、c図は1本について上下の拘束を解除した
場合、d図は1本について上側のみ拘束を解除し
て柔かく抵抗させた場合である。
Figures 7a to 7d show an example of application to a moment column on the lowest floor of a building, using a variable rigidity member 1 with pin joints 2 at the upper and lower ends that can be restrained by restraints 3. ing. Note that the upper pin joint portion 2 has a structure in which the loose hole 10 does not resist axial force. Figures b to d in the same figure are bending moment diagrams. Figure b is when both of the wires are restrained, Figure c is when the upper and lower restraints are released for one wire, and Figure d is when only the upper restraint is released for one wire. This is a case of soft resistance.

第8図a〜cはこの発明の可変剛性材1の応用
例として、3ピン構造の部材において中央部のピ
ン接合部2に拘束材3を設け、拘束と無拘束の切
替えを可能とし、必要に応じて可変剛性材1を圧
縮抵抗材としたり無抵抗材として利用するもので
ある。中央のピン接合部2には、一方のピース1
aから他方のピース1bへ係止用腕部4を出して
おき、圧縮無抵抗時に圧縮力が加わつた時には一
方向にのみ回転するようにする。この時に不安定
な釣り合い状態が起こらないように係止用腕部4
の先端には相手側のピース1bを回転方向に押し
出すことができる程度の弱いばね11を設ける。
拘束材3は可変剛性材1を圧縮抵抗材として働か
せたときに座屈に耐える程度の比較的小さい断面
があればよい。使い方としてはブレースや耐震壁
の脚部の柱等に用いて建物架構の剛性を可変とす
ることができる。
8a to 8c show examples of application of the variable rigidity material 1 of the present invention, in which a restraining member 3 is provided at the central pin joint part 2 of a member with a 3-pin structure, enabling switching between restraint and non-restraint, and as required. Depending on the situation, the variable rigidity material 1 is used as a compression resistance material or as a non-resistance material. One piece 1 is attached to the central pin joint 2.
A locking arm 4 is extended from a to the other piece 1b so that it rotates only in one direction when a compressive force is applied when there is no compression resistance. At this time, the locking arm 4 is
A weak spring 11 is provided at the tip of the piece 1b, which is weak enough to push out the other piece 1b in the rotational direction.
The restraint material 3 only needs to have a relatively small cross section that can withstand buckling when the variable rigidity material 1 is used as a compression resistance material. It can be used for braces, pillars for the legs of seismic walls, etc. to vary the rigidity of building frames.

第9図は建物架構のブレースとして利用したも
ので、柱12と梁13に囲まれる部分に斜めに可
変剛性材1を配し、両端を柱梁接合部にピン14
で取り付けてある。中央のピン接合部2はピン接
合と剛接合で可変であり、ピン接合とすることに
より軸方向の圧縮力に抵抗せず、剛接合とするこ
とにより圧縮力に抵抗することができる。
Fig. 9 shows a structure used as a brace for a building frame, in which a variable rigidity member 1 is arranged diagonally in the area surrounded by columns 12 and beams 13, and pins 14 are attached at both ends to the column-beam joints.
It is installed with. The central pin joint portion 2 is variable between a pin joint and a rigid joint, and the pin joint does not resist compressive force in the axial direction, and the rigid joint allows it to resist compressive force.

第10図a,bは建物の最下階について、中央
の長期荷重用柱15の両側に3ピン構造の可変剛
性材1を地震時用柱として配した例で、地震の特
性に応じて中央のピン接合部2を拘束したり、拘
束解除したりして、建物の剛性を変える。図中1
6はブレースまたは耐震壁である。
Figures 10a and 10b are examples of the lowest floor of a building, where variable-rigidity members 1 with a 3-pin structure are arranged as earthquake columns on both sides of the central long-term load column 15. The rigidity of the building is changed by restraining or releasing the pin joint part 2 of the building. 1 in the diagram
6 is a brace or a shear wall.

〔発明の効果〕 部材中のピン接合部を拘束材により拘束状態
と拘束解除状態との間で可変としてあることに
より、ピン接合部をピン接合と剛接合との間で
自由に変換でき、部材の剛性を変えることがで
きる。
[Effects of the Invention] By making the pin joint part in the member variable between the restrained state and the restrained state by the restraining material, the pin joint part can be freely converted between pin joint and rigid joint, and the member The stiffness of can be changed.

コンピユーター等で、建物架構に用いた可変
剛性材の剛性変化を制御することにより、個々
の地震特性に応じて建物の固有周期を変動さ
せ、共振現象による建物の大きな変形を抑制す
ることができる。
By controlling changes in the rigidity of variable-rigidity materials used in building frames using computers, etc., it is possible to vary the natural period of the building according to individual seismic characteristics, thereby suppressing large deformations of the building due to resonance phenomena.

拘束材や駆動装置を必要とする以外は、特に
大きな断面を必要とせずに、建物の安全性を高
めることができる。
Apart from the need for restraints and drive devices, building safety can be improved without requiring a particularly large cross section.

コンピユーターを用いた制震方法に利用する
ことにより、共振がなく、揺れの少ない快適な
居住空間が形成される。
By using a computer-based vibration control method, a comfortable living space with no resonance and less shaking can be created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,b,cはそれぞれこの発明の基本構
造を示す正面図、拘束状態の断面図、および拘束
解除状態の断面図、第2図a〜eはそれぞれ一実
施例の正面図、拘束状態の断面図、その平面図、
拘束解除状態の断面図、およびその平面図、第3
図および第4図はそれぞれ拘束手段の変形例を示
す断面図、第5図a〜cおよび第6図a〜fは使
用状態における力学機構の変化を示す説明図、第
7図aはモーメント柱への適用例を示す正面図、
第7図b〜dは曲げモーメント図、第8図a〜c
は3ピン構造への適用例を示す正面図、第9図は
ブレースへの適用例を示す正面図、第10図a,
bは建物下端の軸力用柱に適用した場合の正面図
である。 1……可変剛性材、1a,1b……ピース、2
……ピン接合部、3……拘束材、4……係止用腕
部、5……蝶番、6……係止突起、7……サーボ
モーター、8……連結材、9……磁石、10……
ルーズホール、11……ばね、12……柱、13
……梁、14……ピン、15……長期荷重用柱、
16……ブレースまたは耐震壁。
Figures 1a, b, and c are a front view, a sectional view in a restrained state, and a sectional view in a released state, respectively, showing the basic structure of the present invention, and Figures 2 a to e are a front view and a restraint of one embodiment, respectively. A cross-sectional view of the state, its plan view,
Cross-sectional view and plan view of restraint release state, 3rd
Figures 5 and 4 are cross-sectional views showing modified examples of the restraining means, Figures 5 a to c and Figures 6 a to f are explanatory diagrams showing changes in the dynamic mechanism in use, and Figure 7 a is a moment column. A front view showing an example of application to
Figures 7b-d are bending moment diagrams, Figures 8a-c
is a front view showing an example of application to a 3-pin structure, FIG. 9 is a front view showing an example of application to a brace, and FIGS.
b is a front view when applied to an axial force column at the lower end of a building. 1... Variable rigidity material, 1a, 1b... Piece, 2
... Pin joint, 3 ... Restraining material, 4 ... Locking arm, 5 ... Hinge, 6 ... Locking protrusion, 7 ... Servo motor, 8 ... Connecting material, 9 ... Magnet, 10...
Loose hole, 11... Spring, 12... Pillar, 13
... Beam, 14 ... Pin, 15 ... Long-term load column,
16...Brace or shear wall.

Claims (1)

【特許請求の範囲】[Claims] 1 2以上のピースを回転の支点となるピンを介
して接合した長尺部材であり、一方のピースには
他方のピースの回転を拘束するための拘束材およ
び該拘束材を拘束状態と拘束解除状態の間で可動
とする駆動装置を設けてあり、一方のピースには
他方のピースの回転方向を限定するための係止用
腕部を設けてあり、前記拘束材は前記腕部に可変
剛性材と直角方向に取り付けた一対の挟持部材か
らなり、駆動装置により開閉して他方のピースを
解放、拘束するようにしてあることを特徴とする
建物架構の可変剛性材。
1 It is a long member in which two or more pieces are joined via a pin that serves as a fulcrum of rotation, and one piece has a restraining material for restraining the rotation of the other piece, and the restraining material is in a restrained state and released from restraint. A drive device is provided for movable between states, one piece is provided with a locking arm for limiting the direction of rotation of the other piece, and the restraint member has a variable rigidity on the arm. 1. A variable rigidity member for a building frame, comprising a pair of clamping members attached perpendicularly to the member and opened and closed by a drive device to release and restrain the other piece.
JP22114386A 1986-09-12 1986-09-19 Variable rigid material of building housing Granted JPS6378936A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP22114386A JPS6378936A (en) 1986-09-19 1986-09-19 Variable rigid material of building housing
US07/096,012 US4890430A (en) 1986-09-12 1987-09-10 Device and method for protecting a building against earthquake tremors
US07/400,691 US4922667A (en) 1986-09-12 1989-08-30 Device and method for protecting a building against earthquake tremors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22114386A JPS6378936A (en) 1986-09-19 1986-09-19 Variable rigid material of building housing

Publications (2)

Publication Number Publication Date
JPS6378936A JPS6378936A (en) 1988-04-09
JPH0515851B2 true JPH0515851B2 (en) 1993-03-02

Family

ID=16762140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22114386A Granted JPS6378936A (en) 1986-09-12 1986-09-19 Variable rigid material of building housing

Country Status (1)

Country Link
JP (1) JPS6378936A (en)

Also Published As

Publication number Publication date
JPS6378936A (en) 1988-04-09

Similar Documents

Publication Publication Date Title
JPH0522028B2 (en)
JPS62268479A (en) Earthquakeproof method of building
US8127502B2 (en) Building structure configured to exhibit a prescribed load-deflection relationship when a force is applied thereto
JPH0515851B2 (en)
Lu et al. Modal control of seismic structures using augmented state matrix
JPH11200660A (en) Vibration control structure for construction
JPH0559230B2 (en)
JP4828053B2 (en) Structure damping device
JPS6370734A (en) Axially variable rigid material of building housing
JPH01263333A (en) Variable bending rigidity device for structure
JPH1150689A (en) Vibration control mechanism
JPS63130839A (en) Rigid material variable in axial direction
JPH0370072B2 (en)
US20010032420A1 (en) Gravity balance frame
JPH0370071B2 (en)
JPH0572489B2 (en)
JPH0572490B2 (en)
JP2001065189A (en) Stud-type vibration control device
JPH0747898B2 (en) Variable rigidity device for building frame
JPH04250278A (en) Skeleton having vibration controller
JP3254322B2 (en) Seismic isolation device
JPH0438870B2 (en)
JPH0413516B2 (en)
JPH04146376A (en) Vibration absorbing device for structure
JPH0572488B2 (en)