JPH0418418B2 - - Google Patents

Info

Publication number
JPH0418418B2
JPH0418418B2 JP56173004A JP17300481A JPH0418418B2 JP H0418418 B2 JPH0418418 B2 JP H0418418B2 JP 56173004 A JP56173004 A JP 56173004A JP 17300481 A JP17300481 A JP 17300481A JP H0418418 B2 JPH0418418 B2 JP H0418418B2
Authority
JP
Japan
Prior art keywords
grating
cathode
electron gun
image pickup
pickup tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56173004A
Other languages
Japanese (ja)
Other versions
JPS5875743A (en
Inventor
Masanori Maruyama
Masakazu Fukushima
Shinichi Kato
Chihaya Ogusu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Broadcasting Corp
Original Assignee
Hitachi Ltd
Nippon Hoso Kyokai NHK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Hoso Kyokai NHK filed Critical Hitachi Ltd
Priority to JP17300481A priority Critical patent/JPS5875743A/en
Priority to US06/437,335 priority patent/US4540916A/en
Priority to EP82110023A priority patent/EP0078523B1/en
Priority to KR8204883A priority patent/KR860000816B1/en
Priority to DE8282110023T priority patent/DE3272757D1/en
Publication of JPS5875743A publication Critical patent/JPS5875743A/en
Publication of JPH0418418B2 publication Critical patent/JPH0418418B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/488Schematic arrangements of the electrodes for beam forming; Place and form of the elecrodes

Description

【発明の詳細な説明】 本発明は、撮像管電子銃に係り、特に電子ビー
ムを形成する電子群の速度分布の拡大を小さく抑
えた電子銃の電極構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an image pickup tube electron gun, and more particularly to an electrode configuration of an electron gun that suppresses expansion of the velocity distribution of a group of electrons forming an electron beam.

ビジコン形撮像管では、被写体照度に対応した
電荷パターンを光導電膜上に発生させ、電子銃で
発生させた電子ビームで光導電膜上を走査するこ
とにより、電荷パターンを順次放電し、この放電
に対応した充電電流を信号として外部に取り出し
ている。被写体により1度発生した電荷は、通常
は1回のビーム走査でその全量が放電されること
はなく、この為に被写体がなくなつても、次回以
降の走査において残留電荷に対応した偽信号が残
像として発生し、動く被写体の画質を劣化させ
る。
In a vidicon type image pickup tube, a charge pattern corresponding to the illuminance of the subject is generated on a photoconductive film, and the charge pattern is sequentially discharged by scanning the photoconductive film with an electron beam generated by an electron gun. The charging current corresponding to the current is taken out as a signal. The charge generated once by the object is usually not fully discharged in one beam scan, so even if the object disappears, a false signal corresponding to the residual charge will be generated in subsequent scans. This occurs as an afterimage and degrades the image quality of moving subjects.

特に、阻止形光導電膜を使用した撮像管におい
ては、光導電膜の有する静電容量と、走査電子ビ
ームの有するビーム抵抗との積で定まる時定数を
持つ残像が主体であり、これは通常容量性残像と
呼ばれる。ビーム抵抗は電子ビームを形成する電
子群の速度分布と等価であり、低残像を実現する
電子ビームは、電子群の速度分布が狭いことが必
要条件となる。
In particular, in image pickup tubes using a blocking photoconductive film, the main problem is an afterimage with a time constant determined by the product of the capacitance of the photoconductive film and the beam resistance of the scanning electron beam. This is called capacitive afterimage. Beam resistance is equivalent to the velocity distribution of the electron group forming the electron beam, and for an electron beam to achieve low afterimages, it is necessary that the velocity distribution of the electron group be narrow.

陰極から放出された電子群はマツクスウエル分
布をした速度分布をしているが、細いビームを形
成する過程においてビームの電流密度が上昇し、
電子相互のクーロン力に与えるエネルギ緩和現象
により速度分布が拡大されることが知られてい
る。この現象はベージユ効果と呼ばれ、速度分布
の拡大率は、軸上電流密度J(z)と軸上電位V
(z)に対しJ(z)1/3/V(z)1/2にほぼ比例する
事が知られている。
The electron group emitted from the cathode has a Maxwellian velocity distribution, but in the process of forming a narrow beam, the current density of the beam increases,
It is known that the velocity distribution is expanded by the energy relaxation phenomenon given to the Coulomb force between electrons. This phenomenon is called the Beige effect, and the rate of expansion of the velocity distribution is determined by the axial current density J(z) and the axial potential V.
(z) is known to be approximately proportional to J(z) 1/3 /V(z) 1/2 .

このような低残像を目的する電子銃では、でき
る限りビームの電流密度上昇を抑える必要があ
り、陰極に対向する第1格子を陰極に対し正電位
で動作させる2極形電子銃が提案されている。
In an electron gun that aims for such low image retention, it is necessary to suppress the increase in beam current density as much as possible, and a two-pole electron gun has been proposed in which the first grating facing the cathode is operated at a positive potential with respect to the cathode. There is.

理想的な低残像電子銃は、陰極から軸に平行に
電子を放出させ、電流密度の高いクロスオーバを
形成しない、いわゆる層流ビームを有するもので
ある。しかしながら従来の2極形電子銃では高照
度の被写体に対してもビーム不足を生じないよう
に、ビーム電流量のダイナミツクレンジを広くす
る必要性からクロスオーバ形の構成となつてお
り、しかもクロスオーバ点が第1格子に近い軸上
電位の低い位置に形成されるために、速度分布幅
拡大の抑制が十分ではなかつた。
An ideal low-afterimage electron gun would have a so-called laminar beam, with electrons emitted from the cathode parallel to the axis and without the formation of high current density crossovers. However, conventional bipolar electron guns have a cross-over type configuration due to the need to widen the dynamic range of the beam current so as not to cause insufficient beam even for high-illuminance objects. Since the over point was formed at a position near the first grid where the axial potential was low, the expansion of the velocity distribution width was not sufficiently suppressed.

本発明は、従来の2極形電子銃を改善し、より
低残像で、しかも低い陰極負荷(陰極放出電流密
度)でより大きなビーム電流を発生せしめること
ができる電子銃を提供することを目的とする。
The present invention aims to improve the conventional two-pole electron gun and provide an electron gun that can generate a larger beam current with less afterimage and a lower cathode load (cathode emission current density). do.

本発明に係る2極形電子銃においては、陰極に
対向して配置され陰極に対し正の電圧を印加した
第1格子の微小開口部近傍に発散電子レンズを形
成し、この発散レンズによつて第1格子開口を通
過した電子ビームを1度発散させ、クロスオーバ
点を第1格子開口から離れた軸上電位の高い位置
に形成させることにより、電子群の速度分布幅拡
大をより小さく抑え、同時に第2格子に設けられ
た微小開口を通過するビーム電流を増大せしめる
ことを基本原理としている。
In the bipolar electron gun according to the present invention, a diverging electron lens is formed in the vicinity of the minute aperture of the first grating, which is placed opposite to the cathode and to which a positive voltage is applied to the cathode. By making the electron beam that has passed through the first lattice aperture diverge once and forming a crossover point at a position with a high axial potential away from the first lattice aperture, the expansion of the velocity distribution width of the electron group can be suppressed to a smaller extent. The basic principle is to simultaneously increase the beam current passing through the minute aperture provided in the second grating.

以下、本発明を実施例を参照して詳細に説明す
る。
Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図はビジコン形撮像管の概略構成を示し、
1は陰極、2はヒータ、3は第1格子、4は第2
格子、5は第3格子、6はメツシユ状電極を有す
る第4格子、7は光導電膜ターゲツト、8は集束
コイル、9は偏向コイルであり、陰極1から放出
された電子ビーム10は、第1格子3、第2格子
4で構成される。電子銃で細く成形され、集束コ
イル8で発生する磁界レンズによりターゲツト7
上に結像され、偏向コイル9で発生する磁界によ
り走査される。ここでは電磁集束・電磁偏向形撮
像管を例として示したが、本発明は陰極1から第
2格子4までの電子銃部に係るものであり、以降
のビーム集束、偏向方式には関係なく、どのよう
な方式の撮像管にでも適用できる。
Figure 1 shows the schematic configuration of a vidicon type image pickup tube.
1 is the cathode, 2 is the heater, 3 is the first grid, 4 is the second
A grating, 5 is a third grating, 6 is a fourth grating having a mesh-like electrode, 7 is a photoconductive film target, 8 is a focusing coil, and 9 is a deflection coil. It is composed of a first lattice 3 and a second lattice 4. The target 7 is formed into a thin shape by an electron gun, and a magnetic field lens generated by a focusing coil 8
An image is formed on the image and scanned by the magnetic field generated by the deflection coil 9. Although an electromagnetic focusing/electromagnetic deflection type image pickup tube is shown here as an example, the present invention relates to the electron gun section from the cathode 1 to the second grating 4, and is not concerned with the subsequent beam focusing and deflection methods. It can be applied to any type of image pickup tube.

第2図は従来の2極形電子銃の要部を示す拡大
断面図であり、1は陰極面、3は第1格子、13
は第1格子に設けられた微小開口、4は第2格
子、14は第2格子4に設けられた微小開口、1
0は陰極面1の中心から放出された電子軌道を示
す。
FIG. 2 is an enlarged sectional view showing the main parts of a conventional two-pole electron gun, in which 1 is a cathode surface, 3 is a first grating, 13
1 is a minute opening provided in the first lattice, 4 is a second lattice, 14 is a minute opening provided in the second lattice 4,
0 indicates the electron trajectory emitted from the center of the cathode surface 1.

第1格子開口13を通過した電子ビームは開口
を通過後直ちに集束され、第1格子3に近い位置
にクロスオーバ15を形成する。
The electron beam passing through the first grating aperture 13 is focused immediately after passing through the aperture, and forms a crossover 15 at a position close to the first grating 3.

第3図及び第4図はそれぞれ本発明に係る2極
形電子銃の要部を示す拡大断面図である。第3図
の実施例では第1格子3を構成する平板電極31
の厚さを厚くし、この平板電極31の中心部に形
成する凹部の内径d1に対しその窪み深さl1をd1
2以上にする。窪みが深くなることにより、第2
格子4により生じる電界を遮へいする効果が生
じ、第1格子開口13近傍に発散レンズが形成さ
れ、開口13を通過する電子ビーム12は1度発
散し、第1格子開口13から離れた点にクロスオ
ーバ15を形成する。
FIGS. 3 and 4 are enlarged sectional views showing essential parts of the bipolar electron gun according to the present invention, respectively. In the embodiment shown in FIG.
The thickness of the recess formed at the center of the flat electrode 31 is increased, and the depth l 1 of the recess is set to d 1 /
Make it 2 or more. By deepening the depression, the second
The effect of shielding the electric field generated by the grating 4 is generated, and a diverging lens is formed near the first grating aperture 13, so that the electron beam 12 passing through the aperture 13 diverges once and crosses at a point away from the first grating aperture 13. Form over 15.

第4図に示した実施例では、第1格子3と第2
格子4の間に開口を有する中間格子20を設け、
この中間格子20には第1格子3と等しいか、も
しくはより低い電圧を印加して、第1格子開口1
3近傍に発散レンズを形成している。特に中間格
子20の電位を陰極1と同電位とすれば、ステム
リード線を増すことがなく好適である。
In the embodiment shown in FIG.
An intermediate grid 20 having an opening is provided between the grids 4,
A voltage equal to or lower than that of the first grid 3 is applied to the intermediate grid 20 so that the first grid opening 1
A diverging lens is formed in the vicinity of 3. In particular, it is preferable to set the potential of the intermediate grid 20 to be the same as that of the cathode 1 without increasing the number of stem leads.

第5図と第6図は、陰極からの軸上距離zに対
する軸上電位V(z)及び軸上電流密度J(z)を
第2図に示した従来例と第4図に示した実施例に
ついて各々示したものである。第5図に示した従
来例の特性に比べ第6図に示した実施例の特性
は、軸上電位V(z)(実線で図示)の陰極近傍の
立上りがゆるやかであり、軸上電流密度J(z)
(点線で図示)のピーク値(クロスオーバ点に相
当する)は陰極からより遠方の軸上電位が高い位
置に形成されており、電子群の速度分布幅拡大の
抑制がより強くなつている。
Figures 5 and 6 show the axial potential V(z) and axial current density J(z) with respect to the axial distance z from the cathode for the conventional example shown in Fig. 2 and the implementation example shown in Fig. 4. Examples are shown below. Compared to the characteristics of the conventional example shown in FIG. 5, the characteristics of the embodiment shown in FIG. J(z)
The peak value (corresponding to the crossover point) (shown by the dotted line) is formed at a position farther from the cathode where the axial potential is higher, and the expansion of the velocity distribution width of the electron group is more strongly suppressed.

第7図は、第1格子3の電圧EC1に対して、第
2格子開口14を通過するビーム電流iBと、陰極
中心点の電流速度(陰極負荷)ρCとを第2図に示
した従来例と第4図に示した実施例とについて
各々示したものである。
FIG. 7 shows the beam current i B passing through the second grating aperture 14 and the current velocity (cathode load) ρ C at the cathode center point with respect to the voltage E C1 of the first grating 3. The conventional example shown in FIG. 4 and the embodiment shown in FIG. 4 are shown respectively.

ここで第4図に示した実施例の電極寸法につい
て2つの具体例を示す。具体例1は第2格子開口
14の直径が30μm、具体例2は20μmであり、他
の寸法は全く同一である。第1格子3の板厚、第
1格子開口13の直径、陰極1と第1格子3の間
隙は第2図の従来例と同一であり、各々0.18mm、
200μm、0.15mmである。中間格子20の板厚、第
2格子4の板厚、第1格子3と中間格子20の間
隙、中間格子20と第2格子4の間隙は各各0.25
mm、1.0mm、0.2mm、0.2mmである。中間格子20の
開口部の径と、第1及び第2格子3,4の凹部の
内径はすべて0.65mmである。
Here, two specific examples will be shown regarding the electrode dimensions of the embodiment shown in FIG. In Specific Example 1, the diameter of the second grating opening 14 is 30 μm, and in Specific Example 2, it is 20 μm, and the other dimensions are exactly the same. The plate thickness of the first grating 3, the diameter of the first grating opening 13, and the gap between the cathode 1 and the first grating 3 are the same as in the conventional example shown in FIG. 2, and are each 0.18 mm.
200μm, 0.15mm. The plate thickness of the intermediate grating 20, the plate thickness of the second grating 4, the gap between the first grating 3 and the intermediate grating 20, and the gap between the intermediate grating 20 and the second grating 4 are each 0.25
mm, 1.0mm, 0.2mm, 0.2mm. The diameter of the opening of the intermediate grating 20 and the inner diameter of the recesses of the first and second gratings 3 and 4 are all 0.65 mm.

各電極への印加電圧は、陰極1は0V、第2格
子4は300V、中間格子20は陰極と同一の0V、
第1格子3は第7図に示すごとく数V〜数10Vで
ある。
The voltage applied to each electrode is 0V for the cathode 1, 300V for the second grid 4, 0V for the intermediate grid 20, which is the same as the cathode,
The first grating 3 has a voltage of several volts to several tens of volts, as shown in FIG.

第7図において、実線で示される曲線71,7
2及び73はそれぞれ、本発明に係る具体例1具
体例2及び従来例のビーム電流iBを示し、点線で
示される曲線74及び75はそれぞれ本発明電子
銃(具体例1及び具体例2)及び従来例の陰極負
荷ρCを示す。第7図については、本発明に係る電
子銃の特性を従来例と比較すると、曲線71,7
2と曲線73から明らかなように本発明電子銃
は、同一のEC1に対してビーム電流iB値が従来例
より大きく、しかもEC1に対するiBの立上りが従
来例より急になつている。これは発散レンズ系を
有する本発明電子銃がより鋭いビーム集束をして
いることを示している。一方陰極負荷ρCについて
比較すると(曲線74及び75参照)、本発明電
子銃は同一のEC1に対しより低い値となつており、
Child−Langmuirの式で与えられる理論値にほぼ
一致しており、ρC∝EC1 3/2の関係となつている。
これは、本発明電子銃では第1格子開口部の近傍
は電位変化がゆるやかであり、第2格子の電位で
形成される電界の効果が遮へいされているためで
ある。これに対し従来例では、第1格子開口の近
傍での電位変化が大きく、陰極中心部には第2格
子電位で形成される電界の効果により、より強い
電界が作用し負荷が上昇する。特にEC1が小さい
時にこの効果が顕著となり理論値から大きくずれ
てしまう。
In FIG. 7, curves 71, 7 shown as solid lines
2 and 73 indicate the beam currents i B of specific example 1 and specific example 2 according to the present invention and the conventional example, respectively, and curves 74 and 75 shown by dotted lines indicate the electron guns of the present invention (concrete example 1 and specific example 2), respectively. and the cathode load ρ C of the conventional example. Regarding FIG. 7, when comparing the characteristics of the electron gun according to the present invention with the conventional example, curves 71 and 7 are shown.
2 and curve 73, the electron gun of the present invention has a beam current i B value larger than that of the conventional example for the same E C1 , and moreover, the rise of i B with respect to E C1 is steeper than that of the conventional example. . This shows that the electron gun of the present invention having a diverging lens system has sharper beam focusing. On the other hand, when comparing the cathode load ρ C (see curves 74 and 75), the electron gun of the present invention has a lower value for the same E C1 ,
This almost matches the theoretical value given by the Child-Langmuir equation, and the relationship is ρ C ∝E C1 3/2 .
This is because, in the electron gun of the present invention, potential changes are gradual in the vicinity of the first grid opening, and the effect of the electric field formed by the potential of the second grid is shielded. On the other hand, in the conventional example, the potential change near the first lattice opening is large, and a stronger electric field acts on the cathode center due to the effect of the electric field formed by the second lattice potential, increasing the load. This effect is particularly noticeable when E C1 is small, resulting in a large deviation from the theoretical value.

第1格子に正の電位を印加する2極形電子銃で
は、陰極の寿命、信頼性が最も重要な点である
が、本発明によれば、従来例に比べ、より低い陰
極負荷でより大きなビーム電流を発生することが
でき、上述した寿命信頼性の点から極めて有利と
なる。
In a bipolar electron gun that applies a positive potential to the first grid, the life span and reliability of the cathode are the most important points. A beam current can be generated, which is extremely advantageous in terms of the lifetime reliability mentioned above.

又、上記の具体例1、及び2から明らかなよう
に、本発明電子銃では第2格子開口14の径を小
さくしてもビーム電流iBの低下が少ないので、従
来例よりも小さな開口を使用することが可能とな
り、撮像管の解像度向上に対しても有利となる。
Furthermore, as is clear from the above specific examples 1 and 2, in the electron gun of the present invention, even if the diameter of the second grating aperture 14 is made smaller, the decrease in beam current iB is small. This makes it possible to use this method, and it is also advantageous for improving the resolution of the image pickup tube.

以上説明したごとく本発明によれば、クロスオ
ーバ点を軸上電位の高い位置に形成し電子群の速
度分布拡大をより抑えることができ、しかもより
低い陰極負荷で大きなビーム電流を発生でき、陰
極の寿命信頼性、撮像管の解像度向上、残像の低
減の点から極めて有利な電子銃を実現できる。
As explained above, according to the present invention, the cross-over point can be formed at a position with a high axial potential to further suppress the expansion of the velocity distribution of electron groups, and a large beam current can be generated with a lower cathode load. This makes it possible to realize an extremely advantageous electron gun in terms of lifetime reliability, improved image pickup tube resolution, and reduced afterimages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は撮像管の概略構成を示す図、第2図は
従来の2極形電子銃の要部を示す拡大断面図、第
3図及び第4図はそれぞれ本発明に係る2極形電
子銃の要部を示す拡大断面図、第5図、第6図、
及び第7図は、本発明と従来例のビーム特性を比
較して示す図である。 1…陰極、2…ヒータ、3…第1格子、4…第
2格子、5…第3格子、6…第4格子、7…光導
電膜、8…集束コイル、9…偏向コイル、10,
11,12…電子ビーム、13…第1格子微小開
口、14…第2格子微小開口、15…クロスオー
バ、20…中間格子。
FIG. 1 is a diagram showing a schematic configuration of an image pickup tube, FIG. 2 is an enlarged sectional view showing the main parts of a conventional dipole electron gun, and FIGS. 3 and 4 are a diagram showing a dipole electron gun according to the present invention. Enlarged sectional views showing the main parts of the gun, Figures 5 and 6,
and FIG. 7 are diagrams showing a comparison of beam characteristics of the present invention and a conventional example. DESCRIPTION OF SYMBOLS 1... Cathode, 2... Heater, 3... First grating, 4... Second grating, 5... Third grating, 6... Fourth grating, 7... Photoconductive film, 8... Focusing coil, 9... Deflection coil, 10,
DESCRIPTION OF SYMBOLS 11, 12... Electron beam, 13... First grating micro-aperture, 14... Second grating micro-aperture, 15... Crossover, 20... Intermediate grating.

Claims (1)

【特許請求の範囲】 1 少なくとも、電子を放出する陰極と、その後
段に配置され該陰極に対し正の電圧を印加した第
1の微少開口を有する第1格子と、その後段に配
置され上記第1格子に対し正の電圧を印加した第
2の微少開口を有する第2格子とからなり、上記
第1格子と上記第2格子との間で上記第1格子の
微少開口の近傍に発散電子レンズを形成し、該発
散電子レンズによつて、上記第1格子と上記第2
格子との間で、かつ、上記第2格子近傍にクロス
オーバー点を生ぜしめるように構成したことを特
徴とする撮像管電子銃。 2 前記第1格子は、前記第1の微少開口を中心
とした凹部を有する平板電極を含み、上記凹部の
深さがその内径の1/2以上であり、上記凹部によ
つて前記第2格子により生ずる電界を遮蔽するこ
とにより前記発散電子レンズを形成することを特
徴とする特許請求の範囲第1項記載の撮像管電子
銃。 3 前記撮像管電子銃は、前記第1格子と前記第
2格子との間に配置され、上記第1格子の印加電
圧に等しいかもしくは低い電圧を印加した開口を
有する中間格子を具備し、上記中間格子により上
記発散電子レンズを形成することを特徴とする特
許請求の範囲第1項記載の撮像管電子銃。 4 前記中間格子に印加する電圧を、前記陰極に
印加する電圧と等しくしたことを特徴とする特許
請求の範囲第3項記載の撮像管電子銃。
[Scope of Claims] 1. At least a first grating having a cathode that emits electrons, a first micro-aperture disposed in its rear stage and to which a positive voltage is applied to the cathode, and a a second grating having a second minute aperture to which a positive voltage is applied to one grating, and a diverging electron lens in the vicinity of the minute aperture of the first grating between the first grating and the second grating. is formed, and the first grating and the second grating are formed by the diverging electron lens.
An image pickup tube electron gun characterized in that it is configured to generate a crossover point between the grating and in the vicinity of the second grating. 2. The first grating includes a flat plate electrode having a recess centered on the first minute opening, the depth of the recess is 1/2 or more of its inner diameter, and the recess allows the second grating to be connected to the second grating. 2. The image pickup tube electron gun according to claim 1, wherein the diverging electron lens is formed by shielding an electric field generated by the electron beam. 3. The image pickup tube electron gun includes an intermediate grating disposed between the first grating and the second grating, the intermediate grating having an aperture to which a voltage equal to or lower than the voltage applied to the first grating is applied; 2. The image pickup tube electron gun according to claim 1, wherein said diverging electron lens is formed by an intermediate grating. 4. The image pickup tube electron gun according to claim 3, wherein the voltage applied to the intermediate grid is equal to the voltage applied to the cathode.
JP17300481A 1981-10-30 1981-10-30 Pickup tube electron gun Granted JPS5875743A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP17300481A JPS5875743A (en) 1981-10-30 1981-10-30 Pickup tube electron gun
US06/437,335 US4540916A (en) 1981-10-30 1982-10-28 Electron gun for television camera tube
EP82110023A EP0078523B1 (en) 1981-10-30 1982-10-29 Electron gun for television camera tube
KR8204883A KR860000816B1 (en) 1981-10-30 1982-10-29 Electron gun for television camera tube
DE8282110023T DE3272757D1 (en) 1981-10-30 1982-10-29 Electron gun for television camera tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17300481A JPS5875743A (en) 1981-10-30 1981-10-30 Pickup tube electron gun

Publications (2)

Publication Number Publication Date
JPS5875743A JPS5875743A (en) 1983-05-07
JPH0418418B2 true JPH0418418B2 (en) 1992-03-27

Family

ID=15952401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17300481A Granted JPS5875743A (en) 1981-10-30 1981-10-30 Pickup tube electron gun

Country Status (1)

Country Link
JP (1) JPS5875743A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8302754A (en) * 1983-08-04 1985-03-01 Philips Nv CATHED BEAM TUBE.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154043A (en) * 1979-05-21 1980-12-01 Nippon Hoso Kyokai <Nhk> Image pickup tube
JPS5622030A (en) * 1979-07-12 1981-03-02 Philips Nv Device having image pickup tube
JPS5669755A (en) * 1979-11-08 1981-06-11 Sony Corp Electron gun

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154043A (en) * 1979-05-21 1980-12-01 Nippon Hoso Kyokai <Nhk> Image pickup tube
JPS5622030A (en) * 1979-07-12 1981-03-02 Philips Nv Device having image pickup tube
JPS5669755A (en) * 1979-11-08 1981-06-11 Sony Corp Electron gun

Also Published As

Publication number Publication date
JPS5875743A (en) 1983-05-07

Similar Documents

Publication Publication Date Title
JP4759113B2 (en) Charged particle beam column
JPH0736321B2 (en) Spectrometer-objective lens system for quantitative potential measurement
US6617579B2 (en) Scanning electronic beam apparatus
US3374379A (en) Low second grid voltage electron gun
JPH0211972B2 (en)
JPS647455B2 (en)
JPH0418418B2 (en)
Lin et al. High speed beam deflection and blanking for electron lithography
JPH0785812A (en) Crt electron gun having electron-beam-divergence-angle controlled by current quantity
US3217200A (en) Internal magnetic lens for electron beams
KR860000816B1 (en) Electron gun for television camera tube
JP3040272B2 (en) Color picture tube equipment
US4682077A (en) Television camera tube device
JPH0355234Y2 (en)
JP2000182558A (en) Scanning electron microscope
JP3040271B2 (en) Color picture tube equipment
JPH1186770A (en) Scanning electron microscope
JPH0352169B2 (en)
JPS5942945B2 (en) cathode ray tube device
JPS62241241A (en) Image pick-up tube device
US6448703B1 (en) Electrode unit with inverted dynamic focus voltage applied thereto for forming quadrupole lens and dynamic focus electron gun using the same
JPH0719543B2 (en) Cathode ray tube
JPS58197639A (en) Cathode-ray tube device
JPS6122410B2 (en)
Coates et al. Field emission electron gun